Spaces:
Sleeping
Sleeping
File size: 44,964 Bytes
bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 |
import copy
import os.path
import gradio as gr
import matplotlib.pyplot as plt
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
import pandas as pd
from analysis.shap_model import shap_calculate
from static.process import *
from analysis.linear_model import *
from visualization.draw_learning_curve_total import draw_learning_curve_total
from static.paint import *
import warnings
warnings.filterwarnings("ignore")
class Container:
def __init__(self, x_train=None, y_train=None, x_test=None, y_test=None, hyper_params_optimize=None):
self.x_train = x_train
self.y_train = y_train
self.x_test = x_test
self.y_test = y_test
self.hyper_params_optimize = hyper_params_optimize
self.info = dict()
self.y_pred = None
self.train_sizes = None
self.train_scores_mean = None
self.train_scores_std = None
self.test_scores_mean = None
self.test_scores_std = None
self.status = None
self.model = None
def set_info(self, info: dict):
self.info = info
def set_y_pred(self, y_pred):
self.y_pred = y_pred
def get_learning_curve_values(self):
return [
self.train_sizes,
self.train_scores_mean,
self.train_scores_std,
self.test_scores_mean,
self.test_scores_std
]
def set_learning_curve_values(self, train_sizes, train_scores_mean, train_scores_std, test_scores_mean, test_scores_std):
self.train_sizes = train_sizes
self.train_scores_mean = train_scores_mean
self.train_scores_std = train_scores_std
self.test_scores_mean = test_scores_mean
self.test_scores_std = test_scores_std
def get_status(self):
return self.status
def set_status(self, status: str):
self.status = status
def get_model(self):
return self.model
def set_model(self, model):
self.model = model
class StaticValue:
max_num = 10
class FilePath:
png_base = "./buffer/{}.png"
excel_base = "./buffer/{}.xlsx"
# [绘图]
display_dataset = "current_excel_data"
learning_curve_train_plot = "learning_curve_train_plot"
learning_curve_validation_plot = "learning_curve_validation_plot"
shap_beeswarm_plot = "shap_beeswarm_plot"
class MN: # ModelName
classification = "classification"
regression = "regression"
linear_regression = "linear_regression"
polynomial_regression = "polynomial_regression"
logistic_regression = "logistic_regression"
# [绘图]
learning_curve_train = "learning_curve_train"
learning_curve_validation = "learning_curve_validation"
shap_beeswarm = "shap_beeswarm"
class LN: # LabelName
choose_dataset_radio = "选择所需数据源 [必选]"
display_total_col_num_text = "总列数"
display_total_row_num_text = "总行数"
display_na_list_text = "存在缺失值的列"
del_all_na_col_button = "删除所有存在缺失值的列 [可选]"
display_duplicate_num_text = "重复的行数"
del_col_checkboxgroup = "选择所需删除的列"
del_col_button = "删除 [可选]"
remain_row_slider = "保留的行数"
remain_row_button = "保留 [可选]"
del_duplicate_button = "删除所有重复行 [可选]"
encode_label_checkboxgroup = "选择所需标签编码的字符型数值列"
display_encode_label_dataframe = "标签编码信息"
encode_label_button = "字符型转数值型 [可选]"
change_data_type_to_float_button = "将所有数据强制转换为浮点型(除第1列以外)[必选]"
standardize_data_checkboxgroup = "选择所需标准化的列"
standardize_data_button = "标准化 [可选]"
select_as_y_radio = "选择因变量 [必选]"
choose_assign_radio = "选择任务类型(同时会根据任务类型将第1列数据强制转换)[必选]"
linear_regression_model_radio = "选择线性回归的模型"
model_optimize_radio = "选择超参数优化方法"
model_train_button = "训练"
select_as_model_radio = "选择所需训练的模型"
title_name_textbox = "标题"
x_label_textbox = "x 轴名称"
y_label_textbox = "y 轴名称"
colors = ["颜色 {}".format(i) for i in range(StaticValue.max_num)]
labels = ["图例 {}".format(i) for i in range(StaticValue.max_num)]
# [绘图]
learning_curve_checkboxgroup = "选择所需绘制学习曲线的模型"
learning_curve_train_button = "绘制训练集学习曲线"
learning_curve_validation_button = "绘制验证集学习曲线"
shap_beeswarm_radio = "选择所需绘制蜂群特征图的模型"
shap_beeswarm_button = "绘制蜂群特征图"
learning_curve_train_plot = "训练集学习曲线"
learning_curve_validation_plot = "验证集学习曲线"
shap_beeswarm_plot = "蜂群特征图"
def get_return_extra(is_visible, extra_gr_dict: dict = None):
if is_visible:
gr_dict = {
draw_file: gr.File(Dataset.after_get_file(), visible=Dataset.check_file()),
}
if extra_gr_dict:
gr_dict.update(extra_gr_dict)
return gr_dict
gr_dict = {
draw_plot: gr.Plot(visible=False),
draw_file: gr.File(visible=False),
}
gr_dict.update(dict(zip(colorpickers, [gr.ColorPicker(visible=False)] * StaticValue.max_num)))
gr_dict.update(dict(zip(color_textboxs, [gr.Textbox(visible=False)] * StaticValue.max_num)))
gr_dict.update(dict(zip(legend_labels_textboxs, [gr.Textbox(visible=False)] * StaticValue.max_num)))
gr_dict.update({title_name_textbox: gr.Textbox(visible=False)})
gr_dict.update({x_label_textbox: gr.Textbox(visible=False)})
gr_dict.update({y_label_textbox: gr.Textbox(visible=False)})
return gr_dict
def get_outputs():
gr_set = {
choose_custom_dataset_file,
display_dataset_dataframe,
display_total_col_num_text,
display_total_row_num_text,
display_na_list_text,
del_all_na_col_button,
display_duplicate_num_text,
del_duplicate_button,
del_col_checkboxgroup,
del_col_button,
remain_row_slider,
remain_row_button,
encode_label_button,
display_encode_label_dataframe,
encode_label_checkboxgroup,
data_type_dataframe,
change_data_type_to_float_button,
standardize_data_checkboxgroup,
standardize_data_button,
select_as_y_radio,
linear_regression_model_radio,
model_optimize_radio,
model_train_button,
model_train_checkbox,
select_as_model_radio,
choose_assign_radio,
display_dataset,
draw_plot,
draw_file,
title_name_textbox,
x_label_textbox,
y_label_textbox,
# [绘图]
learning_curve_checkboxgroup,
learning_curve_train_button,
learning_curve_validation_button,
shap_beeswarm_radio,
shap_beeswarm_button,
}
gr_set.update(set(colorpickers))
gr_set.update(set(color_textboxs))
gr_set.update(set(legend_labels_textboxs))
return gr_set
def get_return(is_visible, extra_gr_dict: dict = None):
if is_visible:
gr_dict = {
display_dataset_dataframe: gr.Dataframe(add_index_into_df(Dataset.data), type="pandas", visible=True),
display_dataset: gr.File(Dataset.after_get_display_dataset_file(), visible=Dataset.check_display_dataset_file()),
display_total_col_num_text: gr.Textbox(str(Dataset.get_total_col_num()), visible=True, label=LN.display_total_col_num_text),
display_total_row_num_text: gr.Textbox(str(Dataset.get_total_row_num()), visible=True, label=LN.display_total_row_num_text),
display_na_list_text: gr.Textbox(Dataset.get_na_list_str(), visible=True, label=LN.display_na_list_text),
del_all_na_col_button: gr.Button(LN.del_all_na_col_button, visible=True),
display_duplicate_num_text: gr.Textbox(str(Dataset.get_duplicate_num()), visible=True, label=LN.display_duplicate_num_text),
del_duplicate_button: gr.Button(LN.del_duplicate_button, visible=True),
del_col_checkboxgroup: gr.Checkboxgroup(Dataset.get_col_list(), visible=True, label=LN.del_col_checkboxgroup),
del_col_button: gr.Button(LN.del_col_button, visible=True),
remain_row_slider: gr.Slider(0, Dataset.get_max_num(), value=Dataset.get_total_row_num(), step=1, visible=True, label=LN.remain_row_slider),
remain_row_button: gr.Button(LN.remain_row_button, visible=True),
encode_label_button: gr.Button(LN.encode_label_button, visible=True),
encode_label_checkboxgroup: gr.Checkboxgroup(Dataset.get_non_numeric_list(), visible=True, label=LN.encode_label_checkboxgroup),
display_encode_label_dataframe: gr.Dataframe(visible=False),
data_type_dataframe: gr.Dataframe(Dataset.get_data_type(), visible=True),
change_data_type_to_float_button: gr.Button(LN.change_data_type_to_float_button, visible=True),
select_as_y_radio: gr.Radio(Dataset.get_col_list(), visible=True, label=LN.select_as_y_radio),
standardize_data_checkboxgroup: gr.Checkboxgroup(Dataset.get_non_standardized_data(), visible=True, label=LN.standardize_data_checkboxgroup),
standardize_data_button: gr.Button(LN.standardize_data_button, visible=True),
choose_assign_radio: gr.Radio(Dataset.get_assign_list(), visible=True, label=LN.choose_assign_radio),
select_as_model_radio: gr.Radio(Dataset.get_model_list(), visible=Dataset.check_before_train(), label=LN.select_as_model_radio),
model_optimize_radio: gr.Radio(Dataset.get_optimize_list(), visible=Dataset.check_before_train(), label=LN.model_optimize_radio),
linear_regression_model_radio: gr.Radio(Dataset.get_linear_regression_model_list(), visible=Dataset.get_linear_regression_mark(), label=LN.linear_regression_model_radio),
model_train_button: gr.Button(LN.model_train_button, visible=Dataset.check_before_train()),
model_train_checkbox: gr.Checkbox(Dataset.get_model_container_status(), visible=Dataset.check_select_model(), label=Dataset.get_model_label()),
draw_plot: gr.Plot(visible=False),
draw_file: gr.File(visible=False),
title_name_textbox: gr.Textbox(visible=False),
x_label_textbox: gr.Textbox(visible=False),
y_label_textbox: gr.Textbox(visible=False),
# [绘图]
learning_curve_checkboxgroup: gr.Checkboxgroup(Dataset.get_trained_model_list(), visible=Dataset.check_before_train(), label=LN.learning_curve_checkboxgroup),
learning_curve_train_button: gr.Button(LN.learning_curve_train_button, visible=Dataset.check_before_train()),
learning_curve_validation_button: gr.Button(LN.learning_curve_validation_button, visible=Dataset.check_before_train()),
shap_beeswarm_radio: gr.Radio(Dataset.get_trained_model_list(), visible=Dataset.check_before_train(), label=LN.shap_beeswarm_radio),
shap_beeswarm_button: gr.Button(LN.shap_beeswarm_button, visible=Dataset.check_before_train()),
}
gr_dict.update(dict(zip(colorpickers, [gr.ColorPicker(visible=False)] * StaticValue.max_num)))
gr_dict.update(dict(zip(color_textboxs, [gr.Textbox(visible=False)] * StaticValue.max_num)))
gr_dict.update(dict(zip(legend_labels_textboxs, [gr.Textbox(visible=False)] * StaticValue.max_num)))
if extra_gr_dict:
gr_dict.update(extra_gr_dict)
return gr_dict
gr_dict = {
choose_custom_dataset_file: gr.File(None, visible=True),
display_dataset_dataframe: gr.Dataframe(visible=False),
display_dataset: gr.File(visible=False),
display_total_col_num_text: gr.Textbox(visible=False),
display_total_row_num_text: gr.Textbox(visible=False),
display_na_list_text: gr.Textbox(visible=False),
del_all_na_col_button: gr.Button(visible=False),
display_duplicate_num_text: gr.Textbox(visible=False),
del_duplicate_button: gr.Button(visible=False),
del_col_checkboxgroup: gr.Checkboxgroup(visible=False),
del_col_button: gr.Button(visible=False),
remain_row_slider: gr.Slider(visible=False),
encode_label_button: gr.Button(visible=False),
display_encode_label_dataframe: gr.Dataframe(visible=False),
encode_label_checkboxgroup: gr.Checkboxgroup(visible=False),
data_type_dataframe: gr.Dataframe(visible=False),
change_data_type_to_float_button: gr.Button(visible=False),
standardize_data_checkboxgroup: gr.Checkboxgroup(visible=False),
standardize_data_button: gr.Button(visible=False),
select_as_y_radio: gr.Radio(visible=False),
linear_regression_model_radio: gr.Radio(visible=False),
model_optimize_radio: gr.Radio(visible=False),
model_train_button: gr.Button(visible=False),
model_train_checkbox: gr.Checkbox(visible=False),
select_as_model_radio: gr.Radio(visible=False),
choose_assign_radio: gr.Radio(visible=False),
draw_plot: gr.Plot(visible=False),
draw_file: gr.File(visible=False),
title_name_textbox: gr.Textbox(visible=False),
x_label_textbox: gr.Textbox(visible=False),
y_label_textbox: gr.Textbox(visible=False),
# [绘图]
learning_curve_checkboxgroup: gr.Checkboxgroup(visible=False),
learning_curve_train_button: gr.Button(visible=False),
learning_curve_validation_button: gr.Button(visible=False),
shap_beeswarm_radio: gr.Radio(visible=False),
shap_beeswarm_button: gr.Button(visible=False),
}
gr_dict.update(dict(zip(colorpickers, [gr.ColorPicker(visible=False)] * StaticValue.max_num)))
gr_dict.update(dict(zip(color_textboxs, [gr.Textbox(visible=False)] * StaticValue.max_num)))
gr_dict.update(dict(zip(legend_labels_textboxs, [gr.Textbox(visible=False)] * StaticValue.max_num)))
return gr_dict
class Dataset:
file = ""
data = pd.DataFrame()
na_list = []
non_numeric_list = []
str2int_mappings = {}
max_num = 0
data_copy = pd.DataFrame()
assign = ""
cur_model = ""
select_y_mark = False
container_dict = {
MN.linear_regression: Container(),
MN.polynomial_regression: Container(),
MN.logistic_regression: Container(),
}
visualize = ""
@classmethod
def get_dataset_list(cls):
return ["Iris Dataset", "Wine Dataset", "Breast Cancer Dataset", "自定义"]
@classmethod
def get_col_list(cls):
return [x for x in cls.data.columns.values]
@classmethod
def get_na_list_str(cls) -> str:
na_series = cls.data.isna().any(axis=0)
na_list = []
na_list_str = ""
for i in range(len(na_series)):
cur_value = na_series[i]
cur_index = na_series.index[i]
if cur_value:
na_list_str += cur_index + ", "
na_list.append(cur_index)
na_list_str = na_list_str.rstrip(", ")
cls.na_list = na_list
if not na_list:
return "无"
return na_list_str
@classmethod
def get_total_col_num(cls) -> int:
return len(cls.data.columns)
@classmethod
def get_total_row_num(cls) -> int:
return len(cls.data)
@classmethod
def update(cls, file: str, data: pd.DataFrame):
cls.file = file
cls.data = data
cls.max_num = len(data)
cls.data_copy = data
@classmethod
def clear(cls):
cls.file = ""
cls.data = pd.DataFrame()
@classmethod
def get_display_dataset_file(cls):
file_path = FilePath.excel_base.format(FilePath.display_dataset)
return file_path
@classmethod
def check_display_dataset_file(cls):
return os.path.exists(cls.get_display_dataset_file())
@classmethod
def after_get_display_dataset_file(cls):
if not cls.data.empty:
cls.data.to_excel(cls.get_display_dataset_file(), index=False)
return cls.get_display_dataset_file() if cls.check_display_dataset_file() else None
@classmethod
def del_col(cls, col_list: list):
for col in col_list:
if col in cls.data.columns.values:
cls.data.drop(col, axis=1, inplace=True)
@classmethod
def get_max_num(cls):
return cls.max_num
@classmethod
def remain_row(cls, num):
cls.data = cls.data_copy.iloc[:num, :]
@classmethod
def del_all_na_col(cls):
for col in cls.na_list:
if col in cls.data.columns.values:
cls.data.drop(col, axis=1, inplace=True)
@classmethod
def get_duplicate_num(cls):
data_copy = copy.deepcopy(cls.data)
return len(cls.data) - len(data_copy.drop_duplicates())
@classmethod
def del_duplicate(cls):
cls.data = cls.data.drop_duplicates().reset_index().drop("index", axis=1)
@classmethod
def encode_label(cls, col_list: list, extra_mark=False):
data_copy = copy.deepcopy(cls.data)
str2int_mappings = dict(zip(col_list, [{} for _ in range(len(col_list))]))
for col in str2int_mappings.keys():
keys = np.array(data_copy[col].drop_duplicates())
values = [x for x in range(len(keys))]
str2int_mappings[col] = dict(zip(keys, values))
for col, mapping in str2int_mappings.items():
series = data_copy[col]
for k, v in mapping.items():
series.replace(k, v, inplace=True)
data_copy[col] = series
for k, v in str2int_mappings.items():
if np.nan in v.keys():
v.update({"nan": v.pop(np.nan)})
str2int_mappings[k] = v
if extra_mark:
return data_copy
else:
cls.data = data_copy
cls.str2int_mappings = str2int_mappings
@classmethod
def get_str2int_mappings_df(cls):
columns_list = ["列名", "字符型", "数值型"]
str2int_mappings_df = pd.DataFrame(columns=columns_list)
for k, v in cls.str2int_mappings.items():
cur_df = pd.DataFrame(columns=columns_list)
cur_df["列名"] = pd.DataFrame([k] * len(v.keys()))
cur_df["字符型"] = pd.DataFrame([x for x in v.keys()])
cur_df["数值型"] = pd.DataFrame([x for x in v.values()])
str2int_mappings_df = pd.concat([str2int_mappings_df, cur_df], axis=0)
blank_df = pd.DataFrame(columns=columns_list)
blank_df.loc[0] = ["", "", ""]
str2int_mappings_df = pd.concat([str2int_mappings_df, blank_df], axis=0)
return str2int_mappings_df.iloc[:-1, :]
@classmethod
def get_non_numeric_list(cls):
data_copy = copy.deepcopy(cls.data)
data_copy = data_copy.astype(str)
non_numeric_list = []
for col in data_copy.columns.values:
if pd.to_numeric(data_copy[col], errors="coerce").isnull().values.any():
non_numeric_list.append(col)
cls.non_numeric_list = non_numeric_list
return non_numeric_list
@classmethod
def get_data_type(cls):
columns_list = ["列名", "数据类型"]
data_type_dict = {}
for col in cls.data.columns.values:
data_type_dict[col] = cls.data[col].dtype.name
data_type_df = pd.DataFrame(columns=columns_list)
data_type_df["列名"] = [x for x in data_type_dict.keys()]
data_type_df["数据类型"] = [x for x in data_type_dict.values()]
return data_type_df
@classmethod
def change_data_type_to_float(cls):
data_copy = cls.data
for i, col in enumerate(data_copy.columns.values):
if i != 0:
data_copy[col] = data_copy[col].astype(float)
cls.data = data_copy
@classmethod
def get_non_standardized_data(cls):
not_standardized_data_list = []
for col in cls.data.columns.values:
if cls.data[col].dtype.name in ["int64", "float64"]:
if not np.array_equal(np.round(preprocessing.scale(cls.data[col]), decimals=2),
np.round(cls.data[col].values.round(2), decimals=2)):
not_standardized_data_list.append(col)
return not_standardized_data_list
@classmethod
def check_before_train(cls):
if cls.assign == "" or not cls.select_y_mark:
return False
for i, col in enumerate(cls.data.columns.values):
if i == 0:
if not (all(isinstance(x, str) for x in cls.data.iloc[:, 0]) or all(
isinstance(x, float) for x in cls.data.iloc[:, 0])):
return False
else:
if cls.data[col].dtype.name != "float64":
return False
return True
@classmethod
def standardize_data(cls, col_list: list):
for col in col_list:
cls.data[col] = preprocessing.scale(cls.data[col])
@classmethod
def select_as_y(cls, col: str):
cls.data = pd.concat([cls.data[col], cls.data.drop(col, axis=1)], axis=1)
cls.select_y_mark = True
@classmethod
def get_optimize_list(cls):
return ["无", "网格搜索", "贝叶斯优化"]
@classmethod
def get_optimize_name_mapping(cls):
return dict(zip(cls.get_optimize_list(), ["None", "grid_search", "bayes_search"]))
@classmethod
def get_linear_regression_model_list(cls):
return ["线性回归", "Lasso回归", "Ridge回归", "弹性网络回归"]
@classmethod
def get_linear_regression_model_name_mapping(cls):
return dict(zip(cls.get_linear_regression_model_list(), ["LinearRegression", "Lasso", "Ridge", "ElasticNet"]))
@classmethod
def train_model(cls, optimize, linear_regression_model_type=None):
optimize = cls.get_optimize_name_mapping()[optimize]
data_copy = cls.data
if cls.assign == MN.classification:
data_copy = cls.encode_label([cls.data.columns.values[0]], True)
x_train, x_test, y_train, y_test = train_test_split(
data_copy.values[:, 1:],
data_copy.values[:, :1],
random_state=Config.RANDOM_STATE,
train_size=0.8
)
container = Container(x_train, y_train, x_test, y_test, optimize)
if cls.cur_model == MN.linear_regression:
container = linear_regression(container, cls.get_linear_regression_model_name_mapping()[linear_regression_model_type])
elif cls.cur_model == MN.polynomial_regression:
container = polynomial_regression(container)
elif cls.cur_model == MN.logistic_regression:
container = logistic_regression(container)
cls.container_dict[cls.cur_model] = container
@classmethod
def get_model_container_status(cls):
return True if cls.cur_model != "" and cls.container_dict[cls.cur_model].get_status() == "trained" else False
@classmethod
def get_model_label(cls):
return str(cls.get_model_name_mapping()[cls.cur_model]) + "模型是否完成训练" if cls.cur_model != "" else ""
@classmethod
def check_select_model(cls):
return True if cls.cur_model != "" and cls.check_before_train() else False
@classmethod
def get_model_name(cls):
return [x for x in cls.container_dict.keys()]
@classmethod
def get_model_chinese_name(cls):
return ["线性回归", "多项式回归", "逻辑斯谛分类"]
@classmethod
def get_model_name_mapping(cls):
return dict(zip(cls.get_model_name(), cls.get_model_chinese_name()))
@classmethod
def get_model_name_mapping_reverse(cls):
return dict(zip(cls.get_model_chinese_name(), cls.get_model_name()))
@classmethod
def get_trained_model_list(cls):
trained_model_list = []
for model_name, container in cls.container_dict.items():
if container.get_status() == "trained":
trained_model_list.append(cls.get_model_name_mapping()[model_name])
return trained_model_list
@classmethod
def draw_plot(cls, select_model, color_list: list, label_list: list, name: str, x_label: str, y_label: str, is_default: bool):
# [绘图]
if cls.visualize == MN.learning_curve_train:
return cls.draw_learning_curve_train_plot(select_model, color_list, label_list, name, x_label, y_label, is_default)
elif cls.visualize == MN.learning_curve_validation:
return cls.draw_learning_curve_validation_plot(select_model, color_list, label_list, name, x_label, y_label, is_default)
elif cls.visualize == MN.shap_beeswarm:
return cls.draw_shap_beeswarm_plot(select_model, color_list, label_list, name, x_label, y_label, is_default)
@classmethod
def draw_learning_curve_train_plot(cls, model_list, color_list: list, label_list: list, name: str, x_label: str, y_label: str, is_default: bool):
learning_curve_dict = {}
for model_name in model_list:
model_name = cls.get_model_name_mapping_reverse()[model_name]
learning_curve_dict[model_name] = cls.container_dict[model_name].get_learning_curve_values()
color_cur_list = Config.COLORS if is_default else color_list
label_cur_list = [x for x in learning_curve_dict.keys()] if is_default else label_list
x_cur_label = "Train Sizes" if is_default else x_label
y_cur_label = "Accuracy" if is_default else y_label
cur_name = "" if is_default else name
paint_object = PaintObject()
paint_object.set_color_cur_list(color_cur_list)
paint_object.set_label_cur_list(label_cur_list)
paint_object.set_x_cur_label(x_cur_label)
paint_object.set_y_cur_label(y_cur_label)
paint_object.set_name(cur_name)
return draw_learning_curve_total(learning_curve_dict, "train", paint_object)
@classmethod
def draw_learning_curve_validation_plot(cls, model_list, color_list: list, label_list: list, name: str, x_label: str, y_label: str, is_default: bool):
learning_curve_dict = {}
for model_name in model_list:
model_name = cls.get_model_name_mapping_reverse()[model_name]
learning_curve_dict[model_name] = cls.container_dict[model_name].get_learning_curve_values()
color_cur_list = Config.COLORS if is_default else color_list
label_cur_list = [x for x in learning_curve_dict.keys()] if is_default else label_list
x_cur_label = "Train Sizes" if is_default else x_label
y_cur_label = "Accuracy" if is_default else y_label
cur_name = "" if is_default else name
paint_object = PaintObject()
paint_object.set_color_cur_list(color_cur_list)
paint_object.set_label_cur_list(label_cur_list)
paint_object.set_x_cur_label(x_cur_label)
paint_object.set_y_cur_label(y_cur_label)
paint_object.set_name(cur_name)
return draw_learning_curve_total(learning_curve_dict, "validation", paint_object)
@classmethod
def draw_shap_beeswarm_plot(cls, model_name, color_list: list, label_list: list, name: str, x_label: str, y_label: str, is_default: bool):
model_name = cls.get_model_name_mapping_reverse()[model_name]
container = cls.container_dict[model_name]
# color_cur_list = Config.COLORS if is_default else color_list
# label_cur_list = [x for x in learning_curve_dict.keys()] if is_default else label_list
# x_cur_label = "Train Sizes" if is_default else x_label
# y_cur_label = "Accuracy" if is_default else y_label
cur_name = "" if is_default else name
paint_object = PaintObject()
# paint_object.set_color_cur_list(color_cur_list)
# paint_object.set_label_cur_list(label_cur_list)
# paint_object.set_x_cur_label(x_cur_label)
# paint_object.set_y_cur_label(y_cur_label)
paint_object.set_name(cur_name)
return shap_calculate(container.get_model(), container.x_train, cls.data.columns.values, paint_object)
@classmethod
def get_file(cls):
# [绘图]
if cls.visualize == MN.learning_curve_train:
return FilePath.png_base.format(FilePath.learning_curve_train_plot)
elif cls.visualize == MN.learning_curve_validation:
return FilePath.png_base.format(FilePath.learning_curve_validation_plot)
elif cls.visualize == MN.shap_beeswarm:
return FilePath.png_base.format(FilePath.shap_beeswarm_plot)
@classmethod
def check_file(cls):
return os.path.exists(cls.get_file())
@classmethod
def after_get_file(cls):
return cls.get_file() if cls.check_file() else None
@classmethod
def get_model_list(cls):
model_list = []
for model_name in cls.container_dict.keys():
model_list.append(cls.get_model_name_mapping()[model_name])
return model_list
@classmethod
def select_as_model(cls, model_name: str):
cls.cur_model = cls.get_model_name_mapping_reverse()[model_name]
@classmethod
def get_model_mark(cls):
return True if cls.cur_model != "" else False
@classmethod
def get_linear_regression_mark(cls):
return True if cls.cur_model == MN.linear_regression else False
@classmethod
def get_assign_list(cls):
return ["分类", "回归"]
@classmethod
def get_assign_mapping_reverse(cls):
return dict(zip(cls.get_assign_list(), [MN.classification, MN.regression]))
@classmethod
def choose_assign(cls, assign: str):
cls.assign = cls.get_assign_mapping_reverse()[assign]
data_copy = cls.data
if cls.assign == MN.classification:
data_copy.iloc[:, 0] = data_copy.iloc[:, 0].astype(str)
else:
data_copy.iloc[:, 0] = data_copy.iloc[:, 0].astype(float)
cls.data = data_copy
cls.change_data_type_to_float()
@classmethod
def colorpickers_change(cls, paint_object):
cur_num = paint_object.get_color_cur_num()
true_list = [gr.ColorPicker(paint_object.get_color_cur_list()[i], visible=True, label=LN.colors[i]) for i in range(cur_num)]
return true_list + [gr.ColorPicker(visible=False)] * (StaticValue.max_num - cur_num)
@classmethod
def color_textboxs_change(cls, paint_object):
cur_num = paint_object.get_color_cur_num()
true_list = [gr.Textbox(paint_object.get_color_cur_list()[i], visible=True, show_label=False) for i in range(cur_num)]
return true_list + [gr.Textbox(visible=False)] * (StaticValue.max_num - cur_num)
@classmethod
def labels_change(cls, paint_object):
cur_num = paint_object.get_label_cur_num()
true_list = [gr.Textbox(paint_object.get_label_cur_list()[i], visible=True, label=LN.labels[i]) for i in range(cur_num)]
return true_list + [gr.Textbox(visible=False)] * (StaticValue.max_num - cur_num)
def choose_assign(assign: str):
Dataset.choose_assign(assign)
return get_return(True)
def select_as_model(model_name: str):
Dataset.select_as_model(model_name)
return get_return(True)
# [绘图]
def shap_beeswarm_first_draw_plot(*inputs):
Dataset.visualize = MN.shap_beeswarm
return first_draw_plot(inputs)
def learning_curve_validation_first_draw_plot(*inputs):
Dataset.visualize = MN.learning_curve_validation
return first_draw_plot(inputs)
def learning_curve_train_first_draw_plot(*inputs):
Dataset.visualize = MN.learning_curve_train
return first_draw_plot(inputs)
def first_draw_plot(inputs):
select_model = inputs[0]
x_label = ""
y_label = ""
name = ""
color_list = []
label_list = []
cur_plt, paint_object = Dataset.draw_plot(select_model, color_list, label_list, name, x_label, y_label, True)
return first_draw_plot_with_non_first_draw_plot(cur_plt, paint_object)
def out_non_first_draw_plot(*inputs):
return non_first_draw_plot(inputs)
def non_first_draw_plot(inputs):
name = inputs[0]
x_label = inputs[1]
y_label = inputs[2]
color_list = list(inputs[3: StaticValue.max_num+3])
label_list = list(inputs[StaticValue.max_num+3: 2*StaticValue.max_num+3])
start_index = 2*StaticValue.max_num+3
# 绘图
if Dataset.visualize == MN.learning_curve_train:
select_model = inputs[start_index]
elif Dataset.visualize == MN.learning_curve_validation:
select_model = inputs[start_index]
elif Dataset.visualize == MN.shap_beeswarm:
select_model = inputs[start_index+1]
else:
select_model = inputs[start_index: start_index+1]
cur_plt, paint_object = Dataset.draw_plot(select_model, color_list, label_list, name, x_label, y_label, False)
return first_draw_plot_with_non_first_draw_plot(cur_plt, paint_object)
def first_draw_plot_with_non_first_draw_plot(cur_plt, paint_object):
extra_gr_dict = {}
# [绘图]
if Dataset.visualize == MN.learning_curve_train:
cur_plt.savefig(FilePath.png_base.format(FilePath.learning_curve_train_plot), dpi=300)
extra_gr_dict.update({draw_plot: gr.Plot(cur_plt, visible=True, label=LN.learning_curve_train_plot)})
elif Dataset.visualize == MN.learning_curve_validation:
cur_plt.savefig(FilePath.png_base.format(FilePath.learning_curve_validation_plot), dpi=300)
extra_gr_dict.update({draw_plot: gr.Plot(cur_plt, visible=True, label=LN.learning_curve_validation_plot)})
elif Dataset.visualize == MN.shap_beeswarm:
cur_plt.savefig(FilePath.png_base.format(FilePath.shap_beeswarm_plot), dpi=300)
extra_gr_dict.update({draw_plot: gr.Plot(cur_plt, visible=True, label=LN.shap_beeswarm_plot)})
extra_gr_dict.update(dict(zip(colorpickers, Dataset.colorpickers_change(paint_object))))
extra_gr_dict.update(dict(zip(color_textboxs, Dataset.color_textboxs_change(paint_object))))
extra_gr_dict.update(dict(zip(legend_labels_textboxs, Dataset.labels_change(paint_object))))
extra_gr_dict.update({title_name_textbox: gr.Textbox(paint_object.get_name(), visible=True, label=LN.title_name_textbox)})
extra_gr_dict.update({x_label_textbox: gr.Textbox(paint_object.get_x_cur_label(), visible=True, label=LN.x_label_textbox)})
extra_gr_dict.update({y_label_textbox: gr.Textbox(paint_object.get_y_cur_label(), visible=True, label=LN.y_label_textbox)})
return get_return_extra(True, extra_gr_dict)
def train_model(optimize, linear_regression_model_type):
Dataset.train_model(optimize, linear_regression_model_type)
return get_return(True)
def select_as_y(col: str):
Dataset.select_as_y(col)
return get_return(True)
def standardize_data(col_list: list):
Dataset.standardize_data(col_list)
return get_return(True)
def change_data_type_to_float():
Dataset.change_data_type_to_float()
return get_return(True)
def encode_label(col_list: list):
Dataset.encode_label(col_list)
return get_return(True, {
display_encode_label_dataframe: gr.Dataframe(Dataset.get_str2int_mappings_df(), type="pandas", visible=True,
label=LN.display_encode_label_dataframe)})
def del_duplicate():
Dataset.del_duplicate()
return get_return(True)
def del_all_na_col():
Dataset.del_all_na_col()
return get_return(True)
def remain_row(num):
Dataset.remain_row(num)
return get_return(True)
def del_col(col_list: list):
Dataset.del_col(col_list)
return get_return(True)
def add_index_into_df(df: pd.DataFrame) -> pd.DataFrame:
if df.empty:
return df
index_df = pd.DataFrame([x for x in range(len(df))], columns=["[*index]"])
return pd.concat([index_df, df], axis=1)
def choose_dataset(file: str):
if file == "自定义":
Dataset.clear()
return get_return(False)
df = load_data(file)
Dataset.update(file, df)
return get_return(True, {choose_custom_dataset_file: gr.File(visible=False)})
def choose_custom_dataset(file: str):
df = load_custom_data(file)
Dataset.update(file, df)
return get_return(True, {choose_custom_dataset_file: gr.File(Dataset.file, visible=True)})
with gr.Blocks() as demo:
'''
组件
'''
with gr.Tab("机器学习"):
# 选择数据源
with gr.Accordion("数据源"):
with gr.Group():
choose_dataset_radio = gr.Radio(Dataset.get_dataset_list(), label=LN.choose_dataset_radio)
choose_custom_dataset_file = gr.File(visible=False)
# 显示数据表信息
with gr.Accordion("当前数据信息"):
display_dataset_dataframe = gr.Dataframe(visible=False)
display_dataset = gr.File(visible=False)
with gr.Row():
display_total_col_num_text = gr.Textbox(visible=False)
display_total_row_num_text = gr.Textbox(visible=False)
with gr.Column():
remain_row_slider = gr.Slider(visible=False)
remain_row_button = gr.Button(visible=False)
with gr.Row():
with gr.Column():
with gr.Row():
display_na_list_text = gr.Textbox(visible=False)
display_duplicate_num_text = gr.Textbox(visible=False)
with gr.Row():
del_all_na_col_button = gr.Button(visible=False)
del_duplicate_button = gr.Button(visible=False)
# 操作数据表
with gr.Accordion("数据处理"):
select_as_y_radio = gr.Radio(visible=False)
with gr.Row():
with gr.Column():
data_type_dataframe = gr.Dataframe(visible=False)
change_data_type_to_float_button = gr.Button(visible=False)
choose_assign_radio = gr.Radio(visible=False)
with gr.Column():
del_col_checkboxgroup = gr.Checkboxgroup(visible=False)
del_col_button = gr.Button(visible=False)
encode_label_checkboxgroup = gr.Checkboxgroup(visible=False)
encode_label_button = gr.Button(visible=False)
display_encode_label_dataframe = gr.Dataframe(visible=False)
standardize_data_checkboxgroup = gr.Checkboxgroup(visible=False)
standardize_data_button = gr.Button(visible=False)
# 数据模型
with gr.Accordion("数据模型"):
select_as_model_radio = gr.Radio(visible=False)
linear_regression_model_radio = gr.Radio(visible=False)
model_optimize_radio = gr.Radio(visible=False)
model_train_button = gr.Button(visible=False)
model_train_checkbox = gr.Checkbox(visible=False)
# 可视化
with gr.Accordion("数据可视化"):
with gr.Tab("学习曲线图"):
learning_curve_checkboxgroup = gr.Checkboxgroup(visible=False)
with gr.Row():
learning_curve_train_button = gr.Button(visible=False)
learning_curve_validation_button = gr.Button(visible=False)
with gr.Tab("蜂群特征图"):
shap_beeswarm_radio = gr.Radio(visible=False)
shap_beeswarm_button = gr.Button(visible=False)
legend_labels_textboxs = []
with gr.Accordion("图例"):
with gr.Row():
for i in range(StaticValue.max_num):
with gr.Row():
label = gr.Textbox(visible=False)
legend_labels_textboxs.append(label)
with gr.Accordion("坐标轴"):
with gr.Row():
title_name_textbox = gr.Textbox(visible=False)
x_label_textbox = gr.Textbox(visible=False)
y_label_textbox = gr.Textbox(visible=False)
colorpickers = []
color_textboxs = []
with gr.Accordion("颜色"):
with gr.Row():
for i in range(StaticValue.max_num):
with gr.Row():
colorpicker = gr.ColorPicker(visible=False)
colorpickers.append(colorpicker)
color_textbox = gr.Textbox(visible=False)
color_textboxs.append(color_textbox)
draw_plot = gr.Plot(visible=False)
draw_file = gr.File(visible=False)
'''
监听事件
'''
# 选择数据源
choose_dataset_radio.change(fn=choose_dataset, inputs=[choose_dataset_radio], outputs=get_outputs())
choose_custom_dataset_file.upload(fn=choose_custom_dataset, inputs=[choose_custom_dataset_file], outputs=get_outputs())
# 操作数据表
# 删除所选列
del_col_button.click(fn=del_col, inputs=[del_col_checkboxgroup], outputs=get_outputs())
# 保留行
remain_row_button.click(fn=remain_row, inputs=[remain_row_slider], outputs=get_outputs())
# 删除所有存在缺失值的列
del_all_na_col_button.click(fn=del_all_na_col, outputs=get_outputs())
# 删除所有重复的行
del_duplicate_button.click(fn=del_duplicate, outputs=get_outputs())
# 字符型列转数值型列
encode_label_button.click(fn=encode_label, inputs=[encode_label_checkboxgroup], outputs=get_outputs())
# 将所有数据强制转换为浮点型(除第1列之外)
change_data_type_to_float_button.click(fn=change_data_type_to_float, outputs=get_outputs())
# 标准化数据
standardize_data_button.click(fn=standardize_data, inputs=[standardize_data_checkboxgroup], outputs=get_outputs())
# 选择因变量
select_as_y_radio.change(fn=select_as_y, inputs=[select_as_y_radio], outputs=get_outputs())
# 选择任务类型(强制转换第1列)
choose_assign_radio.change(fn=choose_assign, inputs=[choose_assign_radio], outputs=get_outputs())
# 数据模型
select_as_model_radio.change(fn=select_as_model, inputs=[select_as_model_radio], outputs=get_outputs())
model_train_button.click(fn=train_model, inputs=[model_optimize_radio, linear_regression_model_radio], outputs=get_outputs())
# 可视化
learning_curve_train_button.click(fn=learning_curve_train_first_draw_plot, inputs=[learning_curve_checkboxgroup], outputs=get_outputs())
learning_curve_validation_button.click(fn=learning_curve_validation_first_draw_plot, inputs=[learning_curve_checkboxgroup], outputs=get_outputs())
shap_beeswarm_button.click(fn=shap_beeswarm_first_draw_plot, inputs=[shap_beeswarm_radio], outputs=get_outputs())
title_name_textbox.blur(fn=out_non_first_draw_plot, inputs=[title_name_textbox] + [x_label_textbox] + [y_label_textbox] + colorpickers + legend_labels_textboxs
+ [learning_curve_checkboxgroup] + [shap_beeswarm_radio], outputs=get_outputs())
x_label_textbox.blur(fn=out_non_first_draw_plot, inputs=[title_name_textbox] + [x_label_textbox] + [y_label_textbox] + colorpickers + legend_labels_textboxs
+ [learning_curve_checkboxgroup] + [shap_beeswarm_radio], outputs=get_outputs())
y_label_textbox.blur(fn=out_non_first_draw_plot, inputs=[title_name_textbox] + [x_label_textbox] + [y_label_textbox] + colorpickers + legend_labels_textboxs
+ [learning_curve_checkboxgroup] + [shap_beeswarm_radio], outputs=get_outputs())
for i in range(StaticValue.max_num):
colorpickers[i].blur(fn=out_non_first_draw_plot, inputs=[title_name_textbox] + [x_label_textbox] + [y_label_textbox] + colorpickers + legend_labels_textboxs
+ [learning_curve_checkboxgroup] + [shap_beeswarm_radio], outputs=get_outputs())
color_textboxs[i].blur(fn=out_non_first_draw_plot, inputs=[title_name_textbox] + [x_label_textbox] + [y_label_textbox] + color_textboxs + legend_labels_textboxs
+ [learning_curve_checkboxgroup] + [shap_beeswarm_radio], outputs=get_outputs())
legend_labels_textboxs[i].blur(fn=out_non_first_draw_plot, inputs=[title_name_textbox] + [x_label_textbox] + [y_label_textbox] + colorpickers + legend_labels_textboxs
+ [learning_curve_checkboxgroup] + [shap_beeswarm_radio], outputs=get_outputs())
if __name__ == "__main__":
demo.launch()
|