File size: 44,964 Bytes
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
bd39f54
 
11b81b9
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
 
 
 
bd39f54
11b81b9
 
 
 
 
 
 
bd39f54
 
 
 
 
 
11b81b9
bd39f54
 
 
 
11b81b9
 
 
 
 
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
 
 
 
 
 
 
 
 
bd39f54
 
 
 
 
11b81b9
 
 
bd39f54
 
 
11b81b9
 
 
 
 
 
 
 
 
 
 
bd39f54
11b81b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
 
 
 
 
 
 
 
 
 
bd39f54
 
 
 
 
 
 
11b81b9
 
 
 
 
bd39f54
 
 
 
 
 
11b81b9
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
 
 
 
 
 
 
 
bd39f54
 
 
 
 
 
 
11b81b9
 
 
 
bd39f54
 
 
 
 
 
 
 
11b81b9
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
 
 
 
 
 
 
 
 
 
bd39f54
 
 
 
 
 
 
11b81b9
 
 
 
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
 
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
 
bd39f54
 
 
 
 
 
 
 
 
 
 
11b81b9
 
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
 
 
 
 
 
 
 
 
 
 
bd39f54
 
 
 
 
 
11b81b9
 
 
 
 
 
 
 
 
 
 
 
 
 
bd39f54
 
11b81b9
bd39f54
 
 
 
 
 
11b81b9
 
 
 
 
 
 
 
 
 
 
 
 
 
bd39f54
 
11b81b9
bd39f54
 
 
11b81b9
 
 
 
 
 
 
 
 
 
 
 
 
 
bd39f54
 
11b81b9
 
 
 
 
 
 
 
bd39f54
 
11b81b9
 
bd39f54
 
11b81b9
 
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
bd39f54
11b81b9
bd39f54
 
 
 
11b81b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd39f54
11b81b9
 
 
 
 
 
 
bd39f54
11b81b9
bd39f54
11b81b9
bd39f54
 
11b81b9
 
bd39f54
 
11b81b9
 
 
 
 
 
 
bd39f54
11b81b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
 
 
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd39f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b81b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd39f54
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
import copy
import os.path

import gradio as gr
import matplotlib.pyplot as plt
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
import pandas as pd

from analysis.shap_model import shap_calculate
from static.process import *
from analysis.linear_model import *
from visualization.draw_learning_curve_total import draw_learning_curve_total
from static.paint import *

import warnings

warnings.filterwarnings("ignore")


class Container:
    def __init__(self, x_train=None, y_train=None, x_test=None, y_test=None, hyper_params_optimize=None):
        self.x_train = x_train
        self.y_train = y_train
        self.x_test = x_test
        self.y_test = y_test
        self.hyper_params_optimize = hyper_params_optimize
        self.info = dict()
        self.y_pred = None
        self.train_sizes = None
        self.train_scores_mean = None
        self.train_scores_std = None
        self.test_scores_mean = None
        self.test_scores_std = None
        self.status = None
        self.model = None

    def set_info(self, info: dict):
        self.info = info

    def set_y_pred(self, y_pred):
        self.y_pred = y_pred

    def get_learning_curve_values(self):
        return [
            self.train_sizes,
            self.train_scores_mean,
            self.train_scores_std,
            self.test_scores_mean,
            self.test_scores_std
        ]

    def set_learning_curve_values(self, train_sizes, train_scores_mean, train_scores_std, test_scores_mean, test_scores_std):
        self.train_sizes = train_sizes
        self.train_scores_mean = train_scores_mean
        self.train_scores_std = train_scores_std
        self.test_scores_mean = test_scores_mean
        self.test_scores_std = test_scores_std

    def get_status(self):
        return self.status

    def set_status(self, status: str):
        self.status = status

    def get_model(self):
        return self.model

    def set_model(self, model):
        self.model = model


class StaticValue:
    max_num = 10


class FilePath:
    png_base = "./buffer/{}.png"
    excel_base = "./buffer/{}.xlsx"

    # [绘图]
    display_dataset = "current_excel_data"
    learning_curve_train_plot = "learning_curve_train_plot"
    learning_curve_validation_plot = "learning_curve_validation_plot"
    shap_beeswarm_plot = "shap_beeswarm_plot"


class MN:  # ModelName
    classification = "classification"
    regression = "regression"

    linear_regression = "linear_regression"
    polynomial_regression = "polynomial_regression"
    logistic_regression = "logistic_regression"

    # [绘图]
    learning_curve_train = "learning_curve_train"
    learning_curve_validation = "learning_curve_validation"
    shap_beeswarm = "shap_beeswarm"


class LN:  # LabelName
    choose_dataset_radio = "选择所需数据源 [必选]"
    display_total_col_num_text = "总列数"
    display_total_row_num_text = "总行数"
    display_na_list_text = "存在缺失值的列"
    del_all_na_col_button = "删除所有存在缺失值的列 [可选]"
    display_duplicate_num_text = "重复的行数"
    del_col_checkboxgroup = "选择所需删除的列"
    del_col_button = "删除 [可选]"
    remain_row_slider = "保留的行数"
    remain_row_button = "保留 [可选]"
    del_duplicate_button = "删除所有重复行 [可选]"
    encode_label_checkboxgroup = "选择所需标签编码的字符型数值列"
    display_encode_label_dataframe = "标签编码信息"
    encode_label_button = "字符型转数值型 [可选]"
    change_data_type_to_float_button = "将所有数据强制转换为浮点型(除第1列以外)[必选]"
    standardize_data_checkboxgroup = "选择所需标准化的列"
    standardize_data_button = "标准化 [可选]"
    select_as_y_radio = "选择因变量 [必选]"
    choose_assign_radio = "选择任务类型(同时会根据任务类型将第1列数据强制转换)[必选]"
    linear_regression_model_radio = "选择线性回归的模型"
    model_optimize_radio = "选择超参数优化方法"
    model_train_button = "训练"
    select_as_model_radio = "选择所需训练的模型"

    title_name_textbox = "标题"
    x_label_textbox = "x 轴名称"
    y_label_textbox = "y 轴名称"
    colors = ["颜色 {}".format(i) for i in range(StaticValue.max_num)]
    labels = ["图例 {}".format(i) for i in range(StaticValue.max_num)]

    # [绘图]
    learning_curve_checkboxgroup = "选择所需绘制学习曲线的模型"
    learning_curve_train_button = "绘制训练集学习曲线"
    learning_curve_validation_button = "绘制验证集学习曲线"
    shap_beeswarm_radio = "选择所需绘制蜂群特征图的模型"
    shap_beeswarm_button = "绘制蜂群特征图"

    learning_curve_train_plot = "训练集学习曲线"
    learning_curve_validation_plot = "验证集学习曲线"
    shap_beeswarm_plot = "蜂群特征图"


def get_return_extra(is_visible, extra_gr_dict: dict = None):
    if is_visible:
        gr_dict = {
            draw_file: gr.File(Dataset.after_get_file(), visible=Dataset.check_file()),
        }

        if extra_gr_dict:
            gr_dict.update(extra_gr_dict)

        return gr_dict

    gr_dict = {
        draw_plot: gr.Plot(visible=False),
        draw_file: gr.File(visible=False),
    }

    gr_dict.update(dict(zip(colorpickers, [gr.ColorPicker(visible=False)] * StaticValue.max_num)))
    gr_dict.update(dict(zip(color_textboxs, [gr.Textbox(visible=False)] * StaticValue.max_num)))
    gr_dict.update(dict(zip(legend_labels_textboxs, [gr.Textbox(visible=False)] * StaticValue.max_num)))
    gr_dict.update({title_name_textbox: gr.Textbox(visible=False)})
    gr_dict.update({x_label_textbox: gr.Textbox(visible=False)})
    gr_dict.update({y_label_textbox: gr.Textbox(visible=False)})

    return gr_dict


def get_outputs():
    gr_set = {
        choose_custom_dataset_file,
        display_dataset_dataframe,
        display_total_col_num_text,
        display_total_row_num_text,
        display_na_list_text,
        del_all_na_col_button,
        display_duplicate_num_text,
        del_duplicate_button,
        del_col_checkboxgroup,
        del_col_button,
        remain_row_slider,
        remain_row_button,
        encode_label_button,
        display_encode_label_dataframe,
        encode_label_checkboxgroup,
        data_type_dataframe,
        change_data_type_to_float_button,
        standardize_data_checkboxgroup,
        standardize_data_button,
        select_as_y_radio,
        linear_regression_model_radio,
        model_optimize_radio,
        model_train_button,
        model_train_checkbox,
        select_as_model_radio,
        choose_assign_radio,
        display_dataset,
        draw_plot,
        draw_file,
        title_name_textbox,
        x_label_textbox,
        y_label_textbox,

        # [绘图]
        learning_curve_checkboxgroup,
        learning_curve_train_button,
        learning_curve_validation_button,
        shap_beeswarm_radio,
        shap_beeswarm_button,
    }

    gr_set.update(set(colorpickers))
    gr_set.update(set(color_textboxs))
    gr_set.update(set(legend_labels_textboxs))

    return gr_set


def get_return(is_visible, extra_gr_dict: dict = None):
    if is_visible:
        gr_dict = {
            display_dataset_dataframe: gr.Dataframe(add_index_into_df(Dataset.data), type="pandas", visible=True),
            display_dataset: gr.File(Dataset.after_get_display_dataset_file(), visible=Dataset.check_display_dataset_file()),
            display_total_col_num_text: gr.Textbox(str(Dataset.get_total_col_num()), visible=True, label=LN.display_total_col_num_text),
            display_total_row_num_text: gr.Textbox(str(Dataset.get_total_row_num()), visible=True, label=LN.display_total_row_num_text),
            display_na_list_text: gr.Textbox(Dataset.get_na_list_str(), visible=True, label=LN.display_na_list_text),
            del_all_na_col_button: gr.Button(LN.del_all_na_col_button, visible=True),
            display_duplicate_num_text: gr.Textbox(str(Dataset.get_duplicate_num()), visible=True, label=LN.display_duplicate_num_text),
            del_duplicate_button: gr.Button(LN.del_duplicate_button, visible=True),
            del_col_checkboxgroup: gr.Checkboxgroup(Dataset.get_col_list(), visible=True, label=LN.del_col_checkboxgroup),
            del_col_button: gr.Button(LN.del_col_button, visible=True),
            remain_row_slider: gr.Slider(0, Dataset.get_max_num(), value=Dataset.get_total_row_num(), step=1, visible=True, label=LN.remain_row_slider),
            remain_row_button: gr.Button(LN.remain_row_button, visible=True),
            encode_label_button: gr.Button(LN.encode_label_button, visible=True),
            encode_label_checkboxgroup: gr.Checkboxgroup(Dataset.get_non_numeric_list(), visible=True, label=LN.encode_label_checkboxgroup),
            display_encode_label_dataframe: gr.Dataframe(visible=False),
            data_type_dataframe: gr.Dataframe(Dataset.get_data_type(), visible=True),
            change_data_type_to_float_button: gr.Button(LN.change_data_type_to_float_button, visible=True),
            select_as_y_radio: gr.Radio(Dataset.get_col_list(), visible=True, label=LN.select_as_y_radio),
            standardize_data_checkboxgroup: gr.Checkboxgroup(Dataset.get_non_standardized_data(), visible=True, label=LN.standardize_data_checkboxgroup),
            standardize_data_button: gr.Button(LN.standardize_data_button, visible=True),
            choose_assign_radio: gr.Radio(Dataset.get_assign_list(), visible=True, label=LN.choose_assign_radio),

            select_as_model_radio: gr.Radio(Dataset.get_model_list(), visible=Dataset.check_before_train(), label=LN.select_as_model_radio),
            model_optimize_radio: gr.Radio(Dataset.get_optimize_list(), visible=Dataset.check_before_train(), label=LN.model_optimize_radio),

            linear_regression_model_radio: gr.Radio(Dataset.get_linear_regression_model_list(), visible=Dataset.get_linear_regression_mark(), label=LN.linear_regression_model_radio),

            model_train_button: gr.Button(LN.model_train_button, visible=Dataset.check_before_train()),
            model_train_checkbox: gr.Checkbox(Dataset.get_model_container_status(), visible=Dataset.check_select_model(), label=Dataset.get_model_label()),

            draw_plot: gr.Plot(visible=False),
            draw_file: gr.File(visible=False),
            title_name_textbox: gr.Textbox(visible=False),
            x_label_textbox: gr.Textbox(visible=False),
            y_label_textbox: gr.Textbox(visible=False),

            # [绘图]
            learning_curve_checkboxgroup: gr.Checkboxgroup(Dataset.get_trained_model_list(), visible=Dataset.check_before_train(), label=LN.learning_curve_checkboxgroup),
            learning_curve_train_button: gr.Button(LN.learning_curve_train_button, visible=Dataset.check_before_train()),
            learning_curve_validation_button: gr.Button(LN.learning_curve_validation_button, visible=Dataset.check_before_train()),
            shap_beeswarm_radio: gr.Radio(Dataset.get_trained_model_list(), visible=Dataset.check_before_train(), label=LN.shap_beeswarm_radio),
            shap_beeswarm_button: gr.Button(LN.shap_beeswarm_button, visible=Dataset.check_before_train()),
        }

        gr_dict.update(dict(zip(colorpickers, [gr.ColorPicker(visible=False)] * StaticValue.max_num)))
        gr_dict.update(dict(zip(color_textboxs, [gr.Textbox(visible=False)] * StaticValue.max_num)))
        gr_dict.update(dict(zip(legend_labels_textboxs, [gr.Textbox(visible=False)] * StaticValue.max_num)))

        if extra_gr_dict:
            gr_dict.update(extra_gr_dict)

        return gr_dict

    gr_dict = {
        choose_custom_dataset_file: gr.File(None, visible=True),
        display_dataset_dataframe: gr.Dataframe(visible=False),
        display_dataset: gr.File(visible=False),
        display_total_col_num_text: gr.Textbox(visible=False),
        display_total_row_num_text: gr.Textbox(visible=False),
        display_na_list_text: gr.Textbox(visible=False),
        del_all_na_col_button: gr.Button(visible=False),
        display_duplicate_num_text: gr.Textbox(visible=False),
        del_duplicate_button: gr.Button(visible=False),
        del_col_checkboxgroup: gr.Checkboxgroup(visible=False),
        del_col_button: gr.Button(visible=False),
        remain_row_slider: gr.Slider(visible=False),
        encode_label_button: gr.Button(visible=False),
        display_encode_label_dataframe: gr.Dataframe(visible=False),
        encode_label_checkboxgroup: gr.Checkboxgroup(visible=False),
        data_type_dataframe: gr.Dataframe(visible=False),
        change_data_type_to_float_button: gr.Button(visible=False),
        standardize_data_checkboxgroup: gr.Checkboxgroup(visible=False),
        standardize_data_button: gr.Button(visible=False),
        select_as_y_radio: gr.Radio(visible=False),
        linear_regression_model_radio: gr.Radio(visible=False),
        model_optimize_radio: gr.Radio(visible=False),
        model_train_button: gr.Button(visible=False),
        model_train_checkbox: gr.Checkbox(visible=False),
        select_as_model_radio: gr.Radio(visible=False),
        choose_assign_radio: gr.Radio(visible=False),

        draw_plot: gr.Plot(visible=False),
        draw_file: gr.File(visible=False),
        title_name_textbox: gr.Textbox(visible=False),
        x_label_textbox: gr.Textbox(visible=False),
        y_label_textbox: gr.Textbox(visible=False),

        # [绘图]
        learning_curve_checkboxgroup: gr.Checkboxgroup(visible=False),
        learning_curve_train_button: gr.Button(visible=False),
        learning_curve_validation_button: gr.Button(visible=False),
        shap_beeswarm_radio: gr.Radio(visible=False),
        shap_beeswarm_button: gr.Button(visible=False),
    }

    gr_dict.update(dict(zip(colorpickers, [gr.ColorPicker(visible=False)] * StaticValue.max_num)))
    gr_dict.update(dict(zip(color_textboxs, [gr.Textbox(visible=False)] * StaticValue.max_num)))
    gr_dict.update(dict(zip(legend_labels_textboxs, [gr.Textbox(visible=False)] * StaticValue.max_num)))

    return gr_dict


class Dataset:
    file = ""
    data = pd.DataFrame()

    na_list = []
    non_numeric_list = []
    str2int_mappings = {}
    max_num = 0
    data_copy = pd.DataFrame()
    assign = ""
    cur_model = ""
    select_y_mark = False

    container_dict = {
        MN.linear_regression: Container(),
        MN.polynomial_regression: Container(),
        MN.logistic_regression: Container(),
    }

    visualize = ""

    @classmethod
    def get_dataset_list(cls):
        return ["Iris Dataset", "Wine Dataset", "Breast Cancer Dataset", "自定义"]

    @classmethod
    def get_col_list(cls):
        return [x for x in cls.data.columns.values]

    @classmethod
    def get_na_list_str(cls) -> str:
        na_series = cls.data.isna().any(axis=0)
        na_list = []
        na_list_str = ""
        for i in range(len(na_series)):
            cur_value = na_series[i]
            cur_index = na_series.index[i]
            if cur_value:
                na_list_str += cur_index + ", "
                na_list.append(cur_index)

        na_list_str = na_list_str.rstrip(", ")

        cls.na_list = na_list

        if not na_list:
            return "无"

        return na_list_str

    @classmethod
    def get_total_col_num(cls) -> int:
        return len(cls.data.columns)

    @classmethod
    def get_total_row_num(cls) -> int:
        return len(cls.data)

    @classmethod
    def update(cls, file: str, data: pd.DataFrame):
        cls.file = file
        cls.data = data
        cls.max_num = len(data)
        cls.data_copy = data

    @classmethod
    def clear(cls):
        cls.file = ""
        cls.data = pd.DataFrame()

    @classmethod
    def get_display_dataset_file(cls):
        file_path = FilePath.excel_base.format(FilePath.display_dataset)

        return file_path

    @classmethod
    def check_display_dataset_file(cls):
        return os.path.exists(cls.get_display_dataset_file())

    @classmethod
    def after_get_display_dataset_file(cls):
        if not cls.data.empty:
            cls.data.to_excel(cls.get_display_dataset_file(), index=False)

        return cls.get_display_dataset_file() if cls.check_display_dataset_file() else None

    @classmethod
    def del_col(cls, col_list: list):
        for col in col_list:
            if col in cls.data.columns.values:
                cls.data.drop(col, axis=1, inplace=True)

    @classmethod
    def get_max_num(cls):
        return cls.max_num

    @classmethod
    def remain_row(cls, num):
        cls.data = cls.data_copy.iloc[:num, :]

    @classmethod
    def del_all_na_col(cls):
        for col in cls.na_list:
            if col in cls.data.columns.values:
                cls.data.drop(col, axis=1, inplace=True)

    @classmethod
    def get_duplicate_num(cls):
        data_copy = copy.deepcopy(cls.data)
        return len(cls.data) - len(data_copy.drop_duplicates())

    @classmethod
    def del_duplicate(cls):
        cls.data = cls.data.drop_duplicates().reset_index().drop("index", axis=1)

    @classmethod
    def encode_label(cls, col_list: list, extra_mark=False):
        data_copy = copy.deepcopy(cls.data)

        str2int_mappings = dict(zip(col_list, [{} for _ in range(len(col_list))]))

        for col in str2int_mappings.keys():
            keys = np.array(data_copy[col].drop_duplicates())
            values = [x for x in range(len(keys))]
            str2int_mappings[col] = dict(zip(keys, values))

        for col, mapping in str2int_mappings.items():
            series = data_copy[col]

            for k, v in mapping.items():
                series.replace(k, v, inplace=True)
            data_copy[col] = series

        for k, v in str2int_mappings.items():
            if np.nan in v.keys():
                v.update({"nan": v.pop(np.nan)})
                str2int_mappings[k] = v

        if extra_mark:
            return data_copy
        else:
            cls.data = data_copy
            cls.str2int_mappings = str2int_mappings

    @classmethod
    def get_str2int_mappings_df(cls):
        columns_list = ["列名", "字符型", "数值型"]
        str2int_mappings_df = pd.DataFrame(columns=columns_list)

        for k, v in cls.str2int_mappings.items():
            cur_df = pd.DataFrame(columns=columns_list)
            cur_df["列名"] = pd.DataFrame([k] * len(v.keys()))
            cur_df["字符型"] = pd.DataFrame([x for x in v.keys()])
            cur_df["数值型"] = pd.DataFrame([x for x in v.values()])

            str2int_mappings_df = pd.concat([str2int_mappings_df, cur_df], axis=0)

            blank_df = pd.DataFrame(columns=columns_list)
            blank_df.loc[0] = ["", "", ""]
            str2int_mappings_df = pd.concat([str2int_mappings_df, blank_df], axis=0)

        return str2int_mappings_df.iloc[:-1, :]

    @classmethod
    def get_non_numeric_list(cls):
        data_copy = copy.deepcopy(cls.data)
        data_copy = data_copy.astype(str)

        non_numeric_list = []
        for col in data_copy.columns.values:
            if pd.to_numeric(data_copy[col], errors="coerce").isnull().values.any():
                non_numeric_list.append(col)

        cls.non_numeric_list = non_numeric_list

        return non_numeric_list

    @classmethod
    def get_data_type(cls):
        columns_list = ["列名", "数据类型"]

        data_type_dict = {}

        for col in cls.data.columns.values:
            data_type_dict[col] = cls.data[col].dtype.name

        data_type_df = pd.DataFrame(columns=columns_list)
        data_type_df["列名"] = [x for x in data_type_dict.keys()]
        data_type_df["数据类型"] = [x for x in data_type_dict.values()]

        return data_type_df

    @classmethod
    def change_data_type_to_float(cls):
        data_copy = cls.data

        for i, col in enumerate(data_copy.columns.values):
            if i != 0:
                data_copy[col] = data_copy[col].astype(float)

        cls.data = data_copy

    @classmethod
    def get_non_standardized_data(cls):
        not_standardized_data_list = []

        for col in cls.data.columns.values:
            if cls.data[col].dtype.name in ["int64", "float64"]:
                if not np.array_equal(np.round(preprocessing.scale(cls.data[col]), decimals=2),
                                      np.round(cls.data[col].values.round(2), decimals=2)):
                    not_standardized_data_list.append(col)

        return not_standardized_data_list

    @classmethod
    def check_before_train(cls):
        if cls.assign == "" or not cls.select_y_mark:
            return False

        for i, col in enumerate(cls.data.columns.values):
            if i == 0:
                if not (all(isinstance(x, str) for x in cls.data.iloc[:, 0]) or all(
                        isinstance(x, float) for x in cls.data.iloc[:, 0])):
                    return False
            else:
                if cls.data[col].dtype.name != "float64":
                    return False

        return True

    @classmethod
    def standardize_data(cls, col_list: list):
        for col in col_list:
            cls.data[col] = preprocessing.scale(cls.data[col])

    @classmethod
    def select_as_y(cls, col: str):
        cls.data = pd.concat([cls.data[col], cls.data.drop(col, axis=1)], axis=1)
        cls.select_y_mark = True

    @classmethod
    def get_optimize_list(cls):
        return ["无", "网格搜索", "贝叶斯优化"]

    @classmethod
    def get_optimize_name_mapping(cls):
        return dict(zip(cls.get_optimize_list(), ["None", "grid_search", "bayes_search"]))

    @classmethod
    def get_linear_regression_model_list(cls):
        return ["线性回归", "Lasso回归", "Ridge回归", "弹性网络回归"]

    @classmethod
    def get_linear_regression_model_name_mapping(cls):
        return dict(zip(cls.get_linear_regression_model_list(), ["LinearRegression", "Lasso", "Ridge", "ElasticNet"]))

    @classmethod
    def train_model(cls, optimize, linear_regression_model_type=None):
        optimize = cls.get_optimize_name_mapping()[optimize]

        data_copy = cls.data
        if cls.assign == MN.classification:
            data_copy = cls.encode_label([cls.data.columns.values[0]], True)

        x_train, x_test, y_train, y_test = train_test_split(
            data_copy.values[:, 1:],
            data_copy.values[:, :1],
            random_state=Config.RANDOM_STATE,
            train_size=0.8
        )
        container = Container(x_train, y_train, x_test, y_test, optimize)

        if cls.cur_model == MN.linear_regression:
            container = linear_regression(container, cls.get_linear_regression_model_name_mapping()[linear_regression_model_type])
        elif cls.cur_model == MN.polynomial_regression:
            container = polynomial_regression(container)
        elif cls.cur_model == MN.logistic_regression:
            container = logistic_regression(container)

        cls.container_dict[cls.cur_model] = container

    @classmethod
    def get_model_container_status(cls):
        return True if cls.cur_model != "" and cls.container_dict[cls.cur_model].get_status() == "trained" else False

    @classmethod
    def get_model_label(cls):
        return str(cls.get_model_name_mapping()[cls.cur_model]) + "模型是否完成训练" if cls.cur_model != "" else ""

    @classmethod
    def check_select_model(cls):
        return True if cls.cur_model != "" and cls.check_before_train() else False

    @classmethod
    def get_model_name(cls):
        return [x for x in cls.container_dict.keys()]

    @classmethod
    def get_model_chinese_name(cls):
        return ["线性回归", "多项式回归", "逻辑斯谛分类"]

    @classmethod
    def get_model_name_mapping(cls):
        return dict(zip(cls.get_model_name(), cls.get_model_chinese_name()))

    @classmethod
    def get_model_name_mapping_reverse(cls):
        return dict(zip(cls.get_model_chinese_name(), cls.get_model_name()))

    @classmethod
    def get_trained_model_list(cls):
        trained_model_list = []

        for model_name, container in cls.container_dict.items():
            if container.get_status() == "trained":
                trained_model_list.append(cls.get_model_name_mapping()[model_name])

        return trained_model_list

    @classmethod
    def draw_plot(cls, select_model, color_list: list, label_list: list, name: str, x_label: str, y_label: str, is_default: bool):
        # [绘图]
        if cls.visualize == MN.learning_curve_train:
            return cls.draw_learning_curve_train_plot(select_model, color_list, label_list, name, x_label, y_label, is_default)
        elif cls.visualize == MN.learning_curve_validation:
            return cls.draw_learning_curve_validation_plot(select_model, color_list, label_list, name, x_label, y_label, is_default)
        elif cls.visualize == MN.shap_beeswarm:
            return cls.draw_shap_beeswarm_plot(select_model, color_list, label_list, name, x_label, y_label, is_default)

    @classmethod
    def draw_learning_curve_train_plot(cls, model_list, color_list: list, label_list: list, name: str, x_label: str, y_label: str, is_default: bool):
        learning_curve_dict = {}

        for model_name in model_list:
            model_name = cls.get_model_name_mapping_reverse()[model_name]
            learning_curve_dict[model_name] = cls.container_dict[model_name].get_learning_curve_values()

        color_cur_list = Config.COLORS if is_default else color_list
        label_cur_list = [x for x in learning_curve_dict.keys()] if is_default else label_list
        x_cur_label = "Train Sizes" if is_default else x_label
        y_cur_label = "Accuracy" if is_default else y_label
        cur_name = "" if is_default else name

        paint_object = PaintObject()
        paint_object.set_color_cur_list(color_cur_list)
        paint_object.set_label_cur_list(label_cur_list)
        paint_object.set_x_cur_label(x_cur_label)
        paint_object.set_y_cur_label(y_cur_label)
        paint_object.set_name(cur_name)

        return draw_learning_curve_total(learning_curve_dict, "train", paint_object)

    @classmethod
    def draw_learning_curve_validation_plot(cls, model_list, color_list: list, label_list: list, name: str, x_label: str, y_label: str, is_default: bool):
        learning_curve_dict = {}

        for model_name in model_list:
            model_name = cls.get_model_name_mapping_reverse()[model_name]
            learning_curve_dict[model_name] = cls.container_dict[model_name].get_learning_curve_values()

        color_cur_list = Config.COLORS if is_default else color_list
        label_cur_list = [x for x in learning_curve_dict.keys()] if is_default else label_list
        x_cur_label = "Train Sizes" if is_default else x_label
        y_cur_label = "Accuracy" if is_default else y_label
        cur_name = "" if is_default else name

        paint_object = PaintObject()
        paint_object.set_color_cur_list(color_cur_list)
        paint_object.set_label_cur_list(label_cur_list)
        paint_object.set_x_cur_label(x_cur_label)
        paint_object.set_y_cur_label(y_cur_label)
        paint_object.set_name(cur_name)

        return draw_learning_curve_total(learning_curve_dict, "validation", paint_object)

    @classmethod
    def draw_shap_beeswarm_plot(cls, model_name, color_list: list, label_list: list, name: str, x_label: str, y_label: str, is_default: bool):
        model_name = cls.get_model_name_mapping_reverse()[model_name]
        container = cls.container_dict[model_name]

        # color_cur_list = Config.COLORS if is_default else color_list
        # label_cur_list = [x for x in learning_curve_dict.keys()] if is_default else label_list
        # x_cur_label = "Train Sizes" if is_default else x_label
        # y_cur_label = "Accuracy" if is_default else y_label
        cur_name = "" if is_default else name

        paint_object = PaintObject()
        # paint_object.set_color_cur_list(color_cur_list)
        # paint_object.set_label_cur_list(label_cur_list)
        # paint_object.set_x_cur_label(x_cur_label)
        # paint_object.set_y_cur_label(y_cur_label)
        paint_object.set_name(cur_name)

        return shap_calculate(container.get_model(), container.x_train, cls.data.columns.values, paint_object)

    @classmethod
    def get_file(cls):
        # [绘图]
        if cls.visualize == MN.learning_curve_train:
            return FilePath.png_base.format(FilePath.learning_curve_train_plot)
        elif cls.visualize == MN.learning_curve_validation:
            return FilePath.png_base.format(FilePath.learning_curve_validation_plot)
        elif cls.visualize == MN.shap_beeswarm:
            return FilePath.png_base.format(FilePath.shap_beeswarm_plot)

    @classmethod
    def check_file(cls):
        return os.path.exists(cls.get_file())

    @classmethod
    def after_get_file(cls):
        return cls.get_file() if cls.check_file() else None

    @classmethod
    def get_model_list(cls):
        model_list = []
        for model_name in cls.container_dict.keys():
            model_list.append(cls.get_model_name_mapping()[model_name])

        return model_list

    @classmethod
    def select_as_model(cls, model_name: str):
        cls.cur_model = cls.get_model_name_mapping_reverse()[model_name]

    @classmethod
    def get_model_mark(cls):
        return True if cls.cur_model != "" else False

    @classmethod
    def get_linear_regression_mark(cls):
        return True if cls.cur_model == MN.linear_regression else False

    @classmethod
    def get_assign_list(cls):
        return ["分类", "回归"]

    @classmethod
    def get_assign_mapping_reverse(cls):
        return dict(zip(cls.get_assign_list(), [MN.classification, MN.regression]))

    @classmethod
    def choose_assign(cls, assign: str):
        cls.assign = cls.get_assign_mapping_reverse()[assign]

        data_copy = cls.data

        if cls.assign == MN.classification:
            data_copy.iloc[:, 0] = data_copy.iloc[:, 0].astype(str)
        else:
            data_copy.iloc[:, 0] = data_copy.iloc[:, 0].astype(float)

        cls.data = data_copy
        cls.change_data_type_to_float()

    @classmethod
    def colorpickers_change(cls, paint_object):
        cur_num = paint_object.get_color_cur_num()

        true_list = [gr.ColorPicker(paint_object.get_color_cur_list()[i], visible=True, label=LN.colors[i]) for i in range(cur_num)]

        return true_list + [gr.ColorPicker(visible=False)] * (StaticValue.max_num - cur_num)

    @classmethod
    def color_textboxs_change(cls, paint_object):
        cur_num = paint_object.get_color_cur_num()

        true_list = [gr.Textbox(paint_object.get_color_cur_list()[i], visible=True, show_label=False) for i in range(cur_num)]

        return true_list + [gr.Textbox(visible=False)] * (StaticValue.max_num - cur_num)

    @classmethod
    def labels_change(cls, paint_object):
        cur_num = paint_object.get_label_cur_num()

        true_list = [gr.Textbox(paint_object.get_label_cur_list()[i], visible=True, label=LN.labels[i]) for i in range(cur_num)]

        return true_list + [gr.Textbox(visible=False)] * (StaticValue.max_num - cur_num)


def choose_assign(assign: str):
    Dataset.choose_assign(assign)

    return get_return(True)


def select_as_model(model_name: str):
    Dataset.select_as_model(model_name)

    return get_return(True)


# [绘图]
def shap_beeswarm_first_draw_plot(*inputs):
    Dataset.visualize = MN.shap_beeswarm
    return first_draw_plot(inputs)


def learning_curve_validation_first_draw_plot(*inputs):
    Dataset.visualize = MN.learning_curve_validation
    return first_draw_plot(inputs)


def learning_curve_train_first_draw_plot(*inputs):
    Dataset.visualize = MN.learning_curve_train
    return first_draw_plot(inputs)


def first_draw_plot(inputs):
    select_model = inputs[0]
    x_label = ""
    y_label = ""
    name = ""
    color_list = []
    label_list = []

    cur_plt, paint_object = Dataset.draw_plot(select_model, color_list, label_list, name, x_label, y_label, True)

    return first_draw_plot_with_non_first_draw_plot(cur_plt, paint_object)


def out_non_first_draw_plot(*inputs):
    return non_first_draw_plot(inputs)


def non_first_draw_plot(inputs):
    name = inputs[0]
    x_label = inputs[1]
    y_label = inputs[2]
    color_list = list(inputs[3: StaticValue.max_num+3])
    label_list = list(inputs[StaticValue.max_num+3: 2*StaticValue.max_num+3])
    start_index = 2*StaticValue.max_num+3

    # 绘图
    if Dataset.visualize == MN.learning_curve_train:
        select_model = inputs[start_index]
    elif Dataset.visualize == MN.learning_curve_validation:
        select_model = inputs[start_index]
    elif Dataset.visualize == MN.shap_beeswarm:
        select_model = inputs[start_index+1]

    else:
        select_model = inputs[start_index: start_index+1]

    cur_plt, paint_object = Dataset.draw_plot(select_model, color_list, label_list, name, x_label, y_label, False)

    return first_draw_plot_with_non_first_draw_plot(cur_plt, paint_object)


def first_draw_plot_with_non_first_draw_plot(cur_plt, paint_object):
    extra_gr_dict = {}

    # [绘图]
    if Dataset.visualize == MN.learning_curve_train:
        cur_plt.savefig(FilePath.png_base.format(FilePath.learning_curve_train_plot), dpi=300)
        extra_gr_dict.update({draw_plot: gr.Plot(cur_plt, visible=True, label=LN.learning_curve_train_plot)})
    elif Dataset.visualize == MN.learning_curve_validation:
        cur_plt.savefig(FilePath.png_base.format(FilePath.learning_curve_validation_plot), dpi=300)
        extra_gr_dict.update({draw_plot: gr.Plot(cur_plt, visible=True, label=LN.learning_curve_validation_plot)})
    elif Dataset.visualize == MN.shap_beeswarm:
        cur_plt.savefig(FilePath.png_base.format(FilePath.shap_beeswarm_plot), dpi=300)
        extra_gr_dict.update({draw_plot: gr.Plot(cur_plt, visible=True, label=LN.shap_beeswarm_plot)})

    extra_gr_dict.update(dict(zip(colorpickers, Dataset.colorpickers_change(paint_object))))
    extra_gr_dict.update(dict(zip(color_textboxs, Dataset.color_textboxs_change(paint_object))))
    extra_gr_dict.update(dict(zip(legend_labels_textboxs, Dataset.labels_change(paint_object))))
    extra_gr_dict.update({title_name_textbox: gr.Textbox(paint_object.get_name(), visible=True, label=LN.title_name_textbox)})
    extra_gr_dict.update({x_label_textbox: gr.Textbox(paint_object.get_x_cur_label(), visible=True, label=LN.x_label_textbox)})
    extra_gr_dict.update({y_label_textbox: gr.Textbox(paint_object.get_y_cur_label(), visible=True, label=LN.y_label_textbox)})

    return get_return_extra(True, extra_gr_dict)


def train_model(optimize, linear_regression_model_type):
    Dataset.train_model(optimize, linear_regression_model_type)

    return get_return(True)


def select_as_y(col: str):
    Dataset.select_as_y(col)

    return get_return(True)


def standardize_data(col_list: list):
    Dataset.standardize_data(col_list)

    return get_return(True)


def change_data_type_to_float():
    Dataset.change_data_type_to_float()

    return get_return(True)


def encode_label(col_list: list):
    Dataset.encode_label(col_list)

    return get_return(True, {
        display_encode_label_dataframe: gr.Dataframe(Dataset.get_str2int_mappings_df(), type="pandas", visible=True,
                                                     label=LN.display_encode_label_dataframe)})


def del_duplicate():
    Dataset.del_duplicate()

    return get_return(True)


def del_all_na_col():
    Dataset.del_all_na_col()

    return get_return(True)


def remain_row(num):
    Dataset.remain_row(num)

    return get_return(True)


def del_col(col_list: list):
    Dataset.del_col(col_list)

    return get_return(True)


def add_index_into_df(df: pd.DataFrame) -> pd.DataFrame:
    if df.empty:
        return df

    index_df = pd.DataFrame([x for x in range(len(df))], columns=["[*index]"])

    return pd.concat([index_df, df], axis=1)


def choose_dataset(file: str):
    if file == "自定义":
        Dataset.clear()

        return get_return(False)

    df = load_data(file)
    Dataset.update(file, df)

    return get_return(True, {choose_custom_dataset_file: gr.File(visible=False)})


def choose_custom_dataset(file: str):
    df = load_custom_data(file)
    Dataset.update(file, df)

    return get_return(True, {choose_custom_dataset_file: gr.File(Dataset.file, visible=True)})


with gr.Blocks() as demo:
    '''
        组件
    '''

    with gr.Tab("机器学习"):
        # 选择数据源
        with gr.Accordion("数据源"):
            with gr.Group():
                choose_dataset_radio = gr.Radio(Dataset.get_dataset_list(), label=LN.choose_dataset_radio)
                choose_custom_dataset_file = gr.File(visible=False)

        # 显示数据表信息
        with gr.Accordion("当前数据信息"):
            display_dataset_dataframe = gr.Dataframe(visible=False)
            display_dataset = gr.File(visible=False)
            with gr.Row():
                display_total_col_num_text = gr.Textbox(visible=False)
                display_total_row_num_text = gr.Textbox(visible=False)
                with gr.Column():
                    remain_row_slider = gr.Slider(visible=False)
                    remain_row_button = gr.Button(visible=False)
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        display_na_list_text = gr.Textbox(visible=False)
                        display_duplicate_num_text = gr.Textbox(visible=False)
                    with gr.Row():
                        del_all_na_col_button = gr.Button(visible=False)
                        del_duplicate_button = gr.Button(visible=False)

        # 操作数据表
        with gr.Accordion("数据处理"):
            select_as_y_radio = gr.Radio(visible=False)
            with gr.Row():
                with gr.Column():
                    data_type_dataframe = gr.Dataframe(visible=False)
                    change_data_type_to_float_button = gr.Button(visible=False)
                    choose_assign_radio = gr.Radio(visible=False)
                with gr.Column():
                    del_col_checkboxgroup = gr.Checkboxgroup(visible=False)
                    del_col_button = gr.Button(visible=False)
                    encode_label_checkboxgroup = gr.Checkboxgroup(visible=False)
                    encode_label_button = gr.Button(visible=False)
                    display_encode_label_dataframe = gr.Dataframe(visible=False)
                    standardize_data_checkboxgroup = gr.Checkboxgroup(visible=False)
                    standardize_data_button = gr.Button(visible=False)

        # 数据模型
        with gr.Accordion("数据模型"):
            select_as_model_radio = gr.Radio(visible=False)
            linear_regression_model_radio = gr.Radio(visible=False)
            model_optimize_radio = gr.Radio(visible=False)
            model_train_button = gr.Button(visible=False)
            model_train_checkbox = gr.Checkbox(visible=False)

        # 可视化
        with gr.Accordion("数据可视化"):
            with gr.Tab("学习曲线图"):
                learning_curve_checkboxgroup = gr.Checkboxgroup(visible=False)
                with gr.Row():
                    learning_curve_train_button = gr.Button(visible=False)
                    learning_curve_validation_button = gr.Button(visible=False)

            with gr.Tab("蜂群特征图"):
                shap_beeswarm_radio = gr.Radio(visible=False)
                shap_beeswarm_button = gr.Button(visible=False)

            legend_labels_textboxs = []
            with gr.Accordion("图例"):
                with gr.Row():
                    for i in range(StaticValue.max_num):
                        with gr.Row():
                            label = gr.Textbox(visible=False)
                            legend_labels_textboxs.append(label)

            with gr.Accordion("坐标轴"):
                with gr.Row():
                    title_name_textbox = gr.Textbox(visible=False)
                    x_label_textbox = gr.Textbox(visible=False)
                    y_label_textbox = gr.Textbox(visible=False)

            colorpickers = []
            color_textboxs = []
            with gr.Accordion("颜色"):
                with gr.Row():
                    for i in range(StaticValue.max_num):
                        with gr.Row():
                            colorpicker = gr.ColorPicker(visible=False)
                            colorpickers.append(colorpicker)
                            color_textbox = gr.Textbox(visible=False)
                            color_textboxs.append(color_textbox)

            draw_plot = gr.Plot(visible=False)
            draw_file = gr.File(visible=False)

    '''
        监听事件
    '''

    # 选择数据源
    choose_dataset_radio.change(fn=choose_dataset, inputs=[choose_dataset_radio], outputs=get_outputs())
    choose_custom_dataset_file.upload(fn=choose_custom_dataset, inputs=[choose_custom_dataset_file], outputs=get_outputs())

    # 操作数据表

    # 删除所选列
    del_col_button.click(fn=del_col, inputs=[del_col_checkboxgroup], outputs=get_outputs())
    # 保留行
    remain_row_button.click(fn=remain_row, inputs=[remain_row_slider], outputs=get_outputs())
    # 删除所有存在缺失值的列
    del_all_na_col_button.click(fn=del_all_na_col, outputs=get_outputs())
    # 删除所有重复的行
    del_duplicate_button.click(fn=del_duplicate, outputs=get_outputs())
    # 字符型列转数值型列
    encode_label_button.click(fn=encode_label, inputs=[encode_label_checkboxgroup], outputs=get_outputs())
    # 将所有数据强制转换为浮点型(除第1列之外)
    change_data_type_to_float_button.click(fn=change_data_type_to_float, outputs=get_outputs())
    # 标准化数据
    standardize_data_button.click(fn=standardize_data, inputs=[standardize_data_checkboxgroup], outputs=get_outputs())
    # 选择因变量
    select_as_y_radio.change(fn=select_as_y, inputs=[select_as_y_radio], outputs=get_outputs())
    # 选择任务类型(强制转换第1列)
    choose_assign_radio.change(fn=choose_assign, inputs=[choose_assign_radio], outputs=get_outputs())

    # 数据模型
    select_as_model_radio.change(fn=select_as_model, inputs=[select_as_model_radio], outputs=get_outputs())
    model_train_button.click(fn=train_model, inputs=[model_optimize_radio, linear_regression_model_radio], outputs=get_outputs())

    # 可视化
    learning_curve_train_button.click(fn=learning_curve_train_first_draw_plot, inputs=[learning_curve_checkboxgroup], outputs=get_outputs())
    learning_curve_validation_button.click(fn=learning_curve_validation_first_draw_plot, inputs=[learning_curve_checkboxgroup], outputs=get_outputs())
    shap_beeswarm_button.click(fn=shap_beeswarm_first_draw_plot, inputs=[shap_beeswarm_radio], outputs=get_outputs())

    title_name_textbox.blur(fn=out_non_first_draw_plot, inputs=[title_name_textbox] + [x_label_textbox] + [y_label_textbox] + colorpickers + legend_labels_textboxs
                            + [learning_curve_checkboxgroup] + [shap_beeswarm_radio], outputs=get_outputs())
    x_label_textbox.blur(fn=out_non_first_draw_plot, inputs=[title_name_textbox] + [x_label_textbox] + [y_label_textbox] + colorpickers + legend_labels_textboxs
                         + [learning_curve_checkboxgroup] + [shap_beeswarm_radio], outputs=get_outputs())
    y_label_textbox.blur(fn=out_non_first_draw_plot, inputs=[title_name_textbox] + [x_label_textbox] + [y_label_textbox] + colorpickers + legend_labels_textboxs
                         + [learning_curve_checkboxgroup] + [shap_beeswarm_radio], outputs=get_outputs())
    for i in range(StaticValue.max_num):
        colorpickers[i].blur(fn=out_non_first_draw_plot, inputs=[title_name_textbox] + [x_label_textbox] + [y_label_textbox] + colorpickers + legend_labels_textboxs
                             + [learning_curve_checkboxgroup] + [shap_beeswarm_radio], outputs=get_outputs())
        color_textboxs[i].blur(fn=out_non_first_draw_plot, inputs=[title_name_textbox] + [x_label_textbox] + [y_label_textbox] + color_textboxs + legend_labels_textboxs
                               + [learning_curve_checkboxgroup] + [shap_beeswarm_radio], outputs=get_outputs())
        legend_labels_textboxs[i].blur(fn=out_non_first_draw_plot, inputs=[title_name_textbox] + [x_label_textbox] + [y_label_textbox] + colorpickers + legend_labels_textboxs
                                       + [learning_curve_checkboxgroup] + [shap_beeswarm_radio], outputs=get_outputs())

if __name__ == "__main__":
    demo.launch()