Spaces:
Sleeping
Sleeping
File size: 11,588 Bytes
bd39f54 10c7c36 bd39f54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
from datetime import datetime
import json
import sys
import numpy as np
import pandas as pd
import math
import time as sys_time
from coding.llh.visualization.draw_boxplot import draw_boxplot
from coding.llh.visualization.draw_heat_map import draw_heat_map
from coding.llh.visualization.draw_histogram import draw_histogram
from coding.llh.visualization.draw_histogram_line_subgraph import draw_histogram_line_subgraph
from coding.llh.visualization.draw_line_graph import draw_line_graph
from tqdm import tqdm
# 0202:
def data_transformation_extra(df: pd.DataFrame, str2int_mappings: dict) -> (pd.DataFrame):
# Delete "match_id" column
# df.drop("match_id", axis=1, inplace=True)
df["match_id"] = df["match_id"].apply(lambda x: x[-4:])
# Dissolve the two-mode data mapping into two part
value_to_replace_dict = {
"AD": "50"
}
value_to_replace = "AD"
df["p1_score"].replace(value_to_replace, value_to_replace_dict[value_to_replace], inplace=True)
df["p2_score"].replace(value_to_replace, value_to_replace_dict[value_to_replace], inplace=True)
str2int_mappings_to_dissolve = {
"p1_score": {"0": 0},
"p2_score": {"0": 0}
}
df["p1_score_mark"] = 0
df["p2_score_mark"] = 0
for key in str2int_mappings_to_dissolve.keys():
for i in range(1, len(df)):
if df.loc[i, key] == "15" and df.loc[i-1, key] == "0":
df.loc[i, key+"_mark"] = 1
elif df.loc[i, key] == "1" and df.loc[i-1, key] == "0":
df.loc[i, key + "_mark"] = 2
df["p1_score_normal"] = 0
df["p1_score_tiebreak"] = 0
df["p2_score_normal"] = 0
df["p2_score_tiebreak"] = 0
normal_counter = 0
tiebreak_counter = 0
for key in str2int_mappings_to_dissolve.keys():
for i in range(0, len(df)):
if df.loc[i, key] == "0":
normal_counter = 0
tiebreak_counter = 0
continue
if df.loc[i, key+"_mark"] == 1 or normal_counter > 0:
if int(df.loc[i, key]) > int(df.loc[i-1, key]):
normal_counter += 1
df.loc[i, key + "_normal"] = normal_counter
if df.loc[i, key] == value_to_replace_dict[value_to_replace]:
str2int_mappings_to_dissolve[key][value_to_replace] = normal_counter
else:
str2int_mappings_to_dissolve[key][df.loc[i, key]] = normal_counter
elif int(df.loc[i, key]) < int(df.loc[i-1, key]):
normal_counter -= 1
df.loc[i, key + "_normal"] = normal_counter
else:
df.loc[i, key + "_normal"] = normal_counter
elif df.loc[i, key+"_mark"] == 2 or tiebreak_counter > 0:
if int(df.loc[i, key]) > int(df.loc[i - 1, key]):
tiebreak_counter += 1
df.loc[i, key+"_tiebreak"] = tiebreak_counter
if df.loc[i, key] == value_to_replace_dict[value_to_replace]:
str2int_mappings_to_dissolve[key][value_to_replace] = tiebreak_counter
else:
str2int_mappings_to_dissolve[key][df.loc[i, key]] = tiebreak_counter
elif int(df.loc[i, key]) < int(df.loc[i - 1, key]):
tiebreak_counter -= 1
df.loc[i, key+"_tiebreak"] = tiebreak_counter
else:
df.loc[i, key + "_tiebreak"] = tiebreak_counter
str2int_mappings.update(str2int_mappings_to_dissolve)
df.drop("p1_score_mark", axis=1, inplace=True)
df.drop("p2_score_mark", axis=1, inplace=True)
df.drop("p1_score", axis=1, inplace=True)
df.drop("p2_score", axis=1, inplace=True)
# Transform "elapsed_time" time column
def transform_time_col(time: str):
h, m, s = time.strip().split(":")
seconds = int(h) * 3600 + int(m) * 60 + int(s)
return seconds
df["elapsed_time"] = df["elapsed_time"].apply(transform_time_col)
# Calculate "game_victor", "set_victor" column cumulative value
df["p1_game_victor"] = df.apply(lambda x: 1 if x["game_victor"] == 1 else 0, axis=1)
df["p2_game_victor"] = df.apply(lambda x: 1 if x["game_victor"] == 2 else 0, axis=1)
df["p1_set_victor"] = df.apply(lambda x: 1 if x["set_victor"] == 1 else 0, axis=1)
df["p2_set_victor"] = df.apply(lambda x: 1 if x["set_victor"] == 2 else 0, axis=1)
df["p1_game_victor"] = df.groupby(["player1", "player2"])["p1_game_victor"].cumsum()
df["p2_game_victor"] = df.groupby(["player1", "player2"])["p2_game_victor"].cumsum()
df["p1_set_victor"] = df.groupby(["player1", "player2"])["p1_set_victor"].cumsum()
df["p2_set_victor"] = df.groupby(["player1", "player2"])["p2_set_victor"].cumsum()
# Forced conversion of data types
for col in df.columns.values:
df[col] = df[col].astype("float")
# Save the mappings to a json format file
with open("./data/mappings.json", "w", encoding="utf-8") as f:
json.dump(str2int_mappings, f, indent=4, ensure_ascii=False)
return df
def data_transformation(df: pd.DataFrame) -> (pd.DataFrame, dict):
"""
0.
1. Define mappings
2. Create mappings
3. Modify the original data according to the mappings
4. Get type exception
5. Forced conversion of data types
"""
info = {}
# Define mappings
str2int_mappings = {
"player1": {},
"player2": {},
"winner_shot_type": {},
"serve_width": {},
"serve_depth": {},
"return_depth": {}
}
# Create mappings
for col in str2int_mappings.copy():
keys = np.array(df[col].drop_duplicates())
values = [x for x in range(len(keys))]
str2int_mappings[col] = dict(zip(keys, values))
# Modify the original data according to the mappings
for col, mapping in str2int_mappings.items():
series = df[col]
for k, v in mapping.items():
series.replace(k, v, inplace=True)
df[col] = series
df.replace('Not A Number', 0, inplace=True)
# Get type exception
# abnormal_type_values = []
#
# for col in df.columns.values:
# if col not in str2int_mappings.keys():
# for row in df[col]:
# if not (0 <= row <= sys.maxsize):
# abnormal_type_values.append(row)
#
# info["Number of abnormal type value"] = sorted(abnormal_type_values)
# # Forced conversion of data types
# for col in df.columns.values:
# df[col] = df[col].astype("float")
#
# # Save the mappings to a json format file
# with open("./mappings.json", "w", encoding="utf-8") as f:
# json.dump(str2int_mappings, f, indent=4, ensure_ascii=False)
# 0202:
df = data_transformation_extra(df, str2int_mappings)
return df, info
# Get descriptive indicators and filtered data based on boxplpot
def get_descriptive_indicators_related(df):
info = {}
descriptive_indicators_df = pd.DataFrame(
index=list(df.columns.values),
columns=[
"Min",
"Max",
"Avg",
"Standard Deviation",
"Standard Error",
"Upper Quartile",
"Median",
"Lower Quartile",
"Interquartile Distance",
"Kurtosis",
"Skewness",
"Coefficient of Variation"
]
)
for col in df.columns.values:
descriptive_indicators_df["Min"][col] = df[col].min()
descriptive_indicators_df["Max"][col] = df[col].max()
descriptive_indicators_df["Avg"][col] = df[col].mean()
descriptive_indicators_df["Standard Deviation"][col] = df[col].std()
descriptive_indicators_df["Standard Error"][col] = descriptive_indicators_df["Standard Deviation"][col] / \
math.sqrt(len(df[col]))
descriptive_indicators_df["Upper Quartile"][col] = df[col].quantile(0.75)
descriptive_indicators_df["Median"][col] = df[col].quantile(0.5)
descriptive_indicators_df["Lower Quartile"][col] = df[col].quantile(0.25)
descriptive_indicators_df["Interquartile Distance"][col] = descriptive_indicators_df["Lower Quartile"][col] - \
descriptive_indicators_df["Upper Quartile"][col]
descriptive_indicators_df["Kurtosis"][col] = df[col].kurt()
descriptive_indicators_df["Skewness"][col] = df[col].skew()
descriptive_indicators_df["Coefficient of Variation"][col] = descriptive_indicators_df["Standard Deviation"][col] \
/ descriptive_indicators_df["Avg"][col]
# draw_heat_map(descriptive_indicators_df.to_numpy(), "descriptive indicators", True)
#
# draw_boxplot(df, "descriptive indicators boxplot")
len_0 = len(df)
# tmp_df = \
# df[(df >= (descriptive_indicators_df["Lower Quartile"] - 1.5 * (descriptive_indicators_df["Upper Quartile"] -
# descriptive_indicators_df["Lower Quartile"])))
# & (df <= (descriptive_indicators_df["Upper Quartile"] + 1.5 * (descriptive_indicators_df["Upper Quartile"] -
# descriptive_indicators_df["Lower Quartile"])))][[
# "ProductChoice", "MembershipPoints", "ModeOfPayment", "ResidentCity", "PurchaseTenure", "IncomeClass",
# "CustomerPropensity", "CustomerAge", "LastPurchaseDuration"
# ]]
# tmp_df.dropna(inplace=True)
# df = pd.concat([tmp_df, df[["ProductChoice", "Channel", "MartialStatus"]]], axis=1, join="inner")
# df = pd.concat([df.iloc[:, :9], df.iloc[:, 10:]], axis=1)
# info["Number of offsetting value"] = len_0 - len(df)
#
# info["Total size of filtered data after descriptive analysis"] = len(df)
return df, info
# Create images of the distribution of the number of each variable
def variable_distribution(df):
counts_mappings = {}
print("counts analysis")
for col in tqdm(df.columns.values, desc='columns:'):
counts_mapping = {}
for x in tqdm(df[col], desc='cells'):
if x in counts_mapping.keys():
counts_mapping[x] += 1
else:
counts_mapping[x] = 1
counts_mappings[col] = counts_mapping
total_data_for_plot = []
print("plotting")
for col, mapping in tqdm(counts_mappings.items(), desc='columns'):
if col in ["set_no", 'game_no']:
sorting = sorted(mapping.items(), reverse=True, key=lambda m: m[0])
data = [x[1] for x in sorting]
labels = [x[0] for x in sorting]
total_data_for_plot.append(["line_graph", labels, data, col])
draw_line_graph(labels, data, col)
else:
sorting = sorted(mapping.items(), reverse=True, key=lambda m: m[1])
data = [x[1] for x in sorting]
labels = [x[0] for x in sorting]
will_rotate = True if col in ["player1","player2", "match_id"] else False
will_show_text = False if col in ["ResidentCity"] else True
total_data_for_plot.append(["histogram", data, labels, will_rotate, will_show_text, col])
draw_histogram(data, labels, will_rotate, will_show_text, col)
# draw_histogram_line_subgraph(total_data_for_plot)
|