Spaces:
Sleeping
Sleeping
File size: 102,936 Bytes
8d94a86 10c7c36 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 10c7c36 bd39f54 8d94a86 11b81b9 bd39f54 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 bd39f54 8d94a86 bd39f54 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 bd39f54 11b81b9 8d94a86 11b81b9 10c7c36 bd39f54 8d94a86 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 8d94a86 bd39f54 10c7c36 bd39f54 10c7c36 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 10c7c36 bd39f54 8d94a86 11b81b9 10c7c36 8d94a86 11b81b9 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 11b81b9 8d94a86 10c7c36 bd39f54 10c7c36 bd39f54 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 11b81b9 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 bd39f54 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 bd39f54 10c7c36 bd39f54 8d94a86 10c7c36 11b81b9 10c7c36 bd39f54 8d94a86 10c7c36 8d94a86 bd39f54 11b81b9 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 bd39f54 11b81b9 10c7c36 11b81b9 10c7c36 8d94a86 bd39f54 11b81b9 bd39f54 11b81b9 bd39f54 8d94a86 bd39f54 10c7c36 8d94a86 10c7c36 bd39f54 8d94a86 11b81b9 bd39f54 8d94a86 11b81b9 bd39f54 11b81b9 8d94a86 11b81b9 8d94a86 11b81b9 8d94a86 11b81b9 8d94a86 11b81b9 8d94a86 11b81b9 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 11b81b9 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 11b81b9 8d94a86 10c7c36 11b81b9 10c7c36 8d94a86 10c7c36 11b81b9 bd39f54 11b81b9 10c7c36 11b81b9 bd39f54 10c7c36 8d94a86 10c7c36 11b81b9 bd39f54 11b81b9 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 11b81b9 8d94a86 bd39f54 10c7c36 8d94a86 10c7c36 8d94a86 11b81b9 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 11b81b9 10c7c36 11b81b9 10c7c36 11b81b9 10c7c36 8d94a86 10c7c36 8d94a86 11b81b9 8d94a86 11b81b9 bd39f54 8d94a86 10c7c36 8d94a86 10c7c36 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 11b81b9 bd39f54 10c7c36 bd39f54 10c7c36 8d94a86 bd39f54 8d94a86 bd39f54 10c7c36 8d94a86 bd39f54 8d94a86 10c7c36 11b81b9 10c7c36 11b81b9 10c7c36 11b81b9 10c7c36 11b81b9 10c7c36 8d94a86 11b81b9 8d94a86 11b81b9 8d94a86 11b81b9 bd39f54 10c7c36 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 10c7c36 8d94a86 10c7c36 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 8d94a86 bd39f54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 |
import warnings
import os
import random
import math
import matplotlib.pyplot as plt
import gradio as gr
import pandas as pd
import copy
import numpy as np
import sklearn.preprocessing as preprocessing
from sklearn.model_selection import train_test_split
from sklearn.datasets import *
from analysis.model_train.bayes_model import NaiveBayesClassifierParams, naive_bayes_classifier
from analysis.model_train.distance_model import KNNClassifierParams, KNNRegressionParams, knn_classifier, knn_regressor
from analysis.model_train.gradient_model import GradientBoostingParams, gradient_boosting_regressor
from analysis.model_train.kernel_model import SVMClassifierParams, SVMRegressionParams, svm_classifier, svm_regressor
from analysis.model_train.linear_model import LinearRegressionParams, LogisticRegressionParams, \
PolynomialRegressionParams, linear_regressor, polynomial_regressor, logistic_classifier
from analysis.model_train.tree_model import DecisionTreeClassifierParams, RandomForestClassifierParams, \
RandomForestRegressionParams, XgboostClassifierParams, LightGBMClassifierParams, decision_tree_classifier, \
random_forest_classifier, random_forest_regressor, xgboost_classifier, lightGBM_classifier
from analysis.others.shap_model import draw_dependence, draw_force, draw_waterfall, draw_shap_beeswarm
from classes.static_custom_class import *
from metrics.calculate_classification_metrics import ClassificationMetrics
from metrics.calculate_regression_metrics import RegressionMetrics
from visualization.draw_boxplot import draw_boxplot
from visualization.draw_data_fit_total import draw_data_fit_total
from visualization.draw_heat_map import draw_heat_map
from visualization.draw_histogram import draw_histogram
from visualization.draw_learning_curve_total import draw_learning_curve_total
# from concurrent.futures import ThreadPoolExecutor
warnings.filterwarnings("ignore")
# thread_pool_executor = ThreadPoolExecutor(1024)
def get_container_dict():
model_name_list = [
# [模型]
MN.linear_regressor,
MN.polynomial_regressor,
MN.logistic_classifier,
MN.decision_tree_classifier,
MN.random_forest_classifier,
MN.random_forest_regressor,
MN.xgboost_classifier,
# MN.lightGBM_classifier,
MN.gradient_boosting_regressor,
MN.svm_classifier,
MN.svm_regressor,
MN.knn_classifier,
MN.knn_regressor,
MN.naive_bayes_classifier,
# 模型Step 10:在这里添加新的模型名称映射 (MN.模型名称: Container())
]
return dict(zip(model_name_list, [Container()] * len(model_name_list)))
class PaintObject:
def __init__(self):
self.color_cur_num = 0
self.color_cur_list = []
self.label_cur_num = 0
self.label_cur_list = []
self.x_cur_label = ""
self.y_cur_label = ""
self.name = ""
def get_color_cur_num(self):
return self.color_cur_num
def set_color_cur_num(self, color_cur_num):
self.color_cur_num = color_cur_num
def get_color_cur_list(self):
return self.color_cur_list
def set_color_cur_list(self, color_cur_list):
self.color_cur_list = color_cur_list
def get_label_cur_num(self):
return self.label_cur_num
def set_label_cur_num(self, label_cur_num):
self.label_cur_num = label_cur_num
def get_label_cur_list(self):
return self.label_cur_list
def set_label_cur_list(self, label_cur_list):
self.label_cur_list = label_cur_list
def get_x_cur_label(self):
return self.x_cur_label
def set_x_cur_label(self, x_cur_label):
self.x_cur_label = x_cur_label
def get_y_cur_label(self):
return self.y_cur_label
def set_y_cur_label(self, y_cur_label):
self.y_cur_label = y_cur_label
def get_name(self):
return self.name
def set_name(self, name):
self.name = name
class Container:
def __init__(self, x_train=None, y_train=None, x_test=None, y_test=None, hyper_params_optimize=None):
self.x_train = x_train
self.y_train = y_train
self.x_test = x_test
self.y_test = y_test
self.hyper_params_optimize = hyper_params_optimize
self.info = {"参数": {}, "指标": {}}
self.y_pred = None
self.train_sizes = None
self.train_scores_mean = None
self.train_scores_std = None
self.test_scores_mean = None
self.test_scores_std = None
self.status = None
self.model = None
def get_info(self):
return self.info
def set_info(self, info: dict):
self.info = info
def set_y_pred(self, y_pred):
self.y_pred = y_pred
def get_data_fit_values(self):
return [
self.y_pred,
self.y_test
]
def get_learning_curve_values(self):
return [
self.train_sizes,
self.train_scores_mean,
self.train_scores_std,
self.test_scores_mean,
self.test_scores_std
]
def set_learning_curve_values(self, train_sizes, train_scores_mean, train_scores_std, test_scores_mean,
test_scores_std):
self.train_sizes = train_sizes
self.train_scores_mean = train_scores_mean
self.train_scores_std = train_scores_std
self.test_scores_mean = test_scores_mean
self.test_scores_std = test_scores_std
def get_status(self):
return self.status
def set_status(self, status: str):
self.status = status
def get_model(self):
return self.model
def set_model(self, model):
self.model = model
class SelectModel:
def __init__(self):
self.models = None
self.waterfall_number = None
self.force_number = None
self.beeswarm_plot_type = None
self.dependence_col = None
self.data_distribution_col = None
self.data_distribution_is_rotate = None
self.descriptive_indicators_col = None
self.descriptive_indicators_is_rotate = None
self.heatmap_col = None
self.heatmap_is_rotate = None
def get_heatmap_col(self):
return self.heatmap_col
def set_heatmap_col(self, heatmap_col):
self.heatmap_col = heatmap_col
def get_heatmap_is_rotate(self):
return self.heatmap_is_rotate
def set_heatmap_is_rotate(self, heatmap_is_rotate):
self.heatmap_is_rotate = heatmap_is_rotate
def get_models(self):
return self.models
def set_models(self, models):
self.models = models
def get_waterfall_number(self):
return self.waterfall_number
def set_waterfall_number(self, waterfall_number):
self.waterfall_number = waterfall_number
def get_force_number(self):
return self.force_number
def set_force_number(self, force_number):
self.force_number = force_number
def get_beeswarm_plot_type(self):
return self.beeswarm_plot_type
def set_beeswarm_plot_type(self, beeswarm_plot_type):
self.beeswarm_plot_type = beeswarm_plot_type
def get_dependence_col(self):
return self.dependence_col
def set_dependence_col(self, dependence_col):
self.dependence_col = dependence_col
def get_data_distribution_col(self):
return self.data_distribution_col
def set_data_distribution_col(self, data_distribution_col):
self.data_distribution_col = data_distribution_col
def get_data_distribution_is_rotate(self):
return self.data_distribution_is_rotate
def set_data_distribution_is_rotate(self, data_distribution_is_rotate):
self.data_distribution_is_rotate = data_distribution_is_rotate
def get_descriptive_indicators_is_rotate(self):
return self.descriptive_indicators_is_rotate
def set_descriptive_indicators_is_rotate(self, descriptive_indicators_is_rotate):
self.descriptive_indicators_is_rotate = descriptive_indicators_is_rotate
def get_descriptive_indicators_col(self):
return self.descriptive_indicators_col
def set_descriptive_indicators_col(self, descriptive_indicators_col):
self.descriptive_indicators_col = descriptive_indicators_col
# [模型]
class ChooseModelMetrics:
@classmethod
def choose(cls, cur_model):
if cur_model == MN.linear_regressor:
return RegressionMetrics.get_metrics()
elif cur_model == MN.polynomial_regressor:
return RegressionMetrics.get_metrics()
elif cur_model == MN.logistic_classifier:
return ClassificationMetrics.get_metrics()
elif cur_model == MN.decision_tree_classifier:
return ClassificationMetrics.get_metrics()
elif cur_model == MN.random_forest_classifier:
return ClassificationMetrics.get_metrics()
elif cur_model == MN.random_forest_regressor:
return RegressionMetrics.get_metrics()
elif cur_model == MN.xgboost_classifier:
return ClassificationMetrics.get_metrics()
elif cur_model == MN.lightGBM_classifier:
return ClassificationMetrics.get_metrics()
elif cur_model == MN.gradient_boosting_regressor:
return RegressionMetrics.get_metrics()
elif cur_model == MN.svm_classifier:
return ClassificationMetrics.get_metrics()
elif cur_model == MN.svm_regressor:
return RegressionMetrics.get_metrics()
elif cur_model == MN.knn_classifier:
return ClassificationMetrics.get_metrics()
elif cur_model == MN.knn_regressor:
return RegressionMetrics.get_metrics()
elif cur_model == MN.naive_bayes_classifier:
return ClassificationMetrics.get_metrics()
# 模型Step 12:在这里添加新的模型指标类 (分类指标 / 回归指标)
# [模型]
class ChooseModelParams:
@classmethod
def choose(cls, cur_model):
if cur_model == MN.linear_regressor:
return LinearRegressionParams.get_params(Dataset.linear_regression_model_type)
elif cur_model == MN.polynomial_regressor:
return PolynomialRegressionParams.get_params()
elif cur_model == MN.logistic_classifier:
return LogisticRegressionParams.get_params()
elif cur_model == MN.decision_tree_classifier:
return DecisionTreeClassifierParams.get_params()
elif cur_model == MN.random_forest_classifier:
return RandomForestClassifierParams.get_params()
elif cur_model == MN.random_forest_regressor:
return RandomForestRegressionParams.get_params()
elif cur_model == MN.xgboost_classifier:
return XgboostClassifierParams.get_params()
elif cur_model == MN.lightGBM_classifier:
return LightGBMClassifierParams.get_params()
elif cur_model == MN.gradient_boosting_regressor:
return GradientBoostingParams.get_params()
elif cur_model == MN.svm_classifier:
return SVMClassifierParams.get_params()
elif cur_model == MN.svm_regressor:
return SVMRegressionParams.get_params()
elif cur_model == MN.knn_classifier:
return KNNClassifierParams.get_params()
elif cur_model == MN.knn_regressor:
return KNNRegressionParams.get_params()
elif cur_model == MN.naive_bayes_classifier:
return NaiveBayesClassifierParams.get_params(Dataset.naive_bayes_classifier_model_type)
# 模型Step 13:在这里添加新的模型超参数类 (如果该模型含有额外组件,需传入函数)
return {}
class Dataset:
file = ""
data = pd.DataFrame()
na_list = []
non_numeric_list = []
str2int_mappings = {}
max_num = 0
data_copy = pd.DataFrame()
assign = ""
cur_model = ""
select_y_mark = False
descriptive_indicators_df = pd.DataFrame()
# [模型]
linear_regression_model_type = ""
naive_bayes_classifier_model_type = ""
# 模型Step 14:在这里添加新的模型额外组件
container_dict = get_container_dict()
visualize = ""
choose_optimize = ""
@classmethod
def check_model_optimize_radio(cls):
if cls.choose_optimize != "None" and cls.choose_optimize:
return True
return False
@classmethod
def get_dependence_col(cls):
return [x for x in cls.data.columns.values][1:]
@classmethod
def reset_containers(cls):
cls.file = ""
cls.data = pd.DataFrame()
cls.na_list = []
cls.non_numeric_list = []
cls.str2int_mappings = {}
cls.max_num = 0
cls.data_copy = pd.DataFrame()
cls.assign = ""
cls.cur_model = ""
cls.select_y_mark = False
cls.descriptive_indicators_df = pd.DataFrame()
# [模型]
cls.linear_regression_model_type = ""
cls.naive_bayes_classifier_model_type = ""
# 模型Step 15:在这里添加新的模型额外组件
cls.container_dict = get_container_dict()
@classmethod
def check_descriptive_indicators_df(cls):
return True if not cls.descriptive_indicators_df.empty else False
@classmethod
def get_descriptive_indicators_df(cls):
return cls.descriptive_indicators_df
@classmethod
def get_notes(cls):
notes = ""
with open("./data/notes.md", "r", encoding="utf-8") as f:
notes = str(f.read())
return notes
@classmethod
def get_dataset_list(cls):
return ["自定义", "Iris Dataset", "Wine Dataset", "Breast Cancer Dataset", "Diabetes Dataset",
"California Housing Dataset"]
@classmethod
def get_col_list(cls):
return [x for x in cls.data.columns.values]
@classmethod
def get_na_list_str(cls) -> str:
na_series = cls.data.isna().any(axis=0)
na_list = []
na_list_str = ""
for i in range(len(na_series)):
cur_value = na_series[i]
cur_index = na_series.index[i]
if cur_value:
na_list_str += cur_index + ", "
na_list.append(cur_index)
na_list_str = na_list_str.rstrip(", ")
cls.na_list = na_list
if not na_list:
return "无"
return na_list_str
@classmethod
def get_total_col_num(cls) -> int:
return len(cls.data.columns)
@classmethod
def get_total_row_num(cls) -> int:
return len(cls.data)
@classmethod
def update(cls, file: str, data: pd.DataFrame):
cls.file = file
cls.data = data
cls.max_num = len(data)
cls.data_copy = data
@classmethod
def clear(cls):
cls.file = ""
cls.data = pd.DataFrame()
@classmethod
def get_display_dataset_file(cls):
file_path = FilePath.excel_base.format(FilePath.display_dataset)
return file_path
@classmethod
def check_display_dataset_file(cls):
return os.path.exists(cls.get_display_dataset_file())
@classmethod
def after_get_display_dataset_file(cls):
if not cls.data.empty:
cls.data.to_excel(cls.get_display_dataset_file(), index=False)
return cls.get_display_dataset_file() if cls.check_display_dataset_file() else None
@classmethod
def del_col(cls, col_list: list):
for col in col_list:
if col in cls.data.columns.values:
cls.data.drop(col, axis=1, inplace=True)
@classmethod
def get_max_num(cls):
return cls.max_num
@classmethod
def remain_row(cls, num):
cls.data = cls.data_copy.iloc[:num, :]
@classmethod
def del_all_na_col(cls):
for col in cls.na_list:
if col in cls.data.columns.values:
cls.data.drop(col, axis=1, inplace=True)
@classmethod
def get_duplicate_num(cls):
data_copy = copy.deepcopy(cls.data)
return len(cls.data) - len(data_copy.drop_duplicates())
@classmethod
def del_duplicate(cls):
cls.data = cls.data.drop_duplicates().reset_index().drop("index", axis=1)
@classmethod
def encode_label(cls, col_list: list, extra_mark=False):
data_copy = copy.deepcopy(cls.data)
str2int_mappings = dict(zip(col_list, [{} for _ in range(len(col_list))]))
for col in str2int_mappings.keys():
keys = np.array(data_copy[col].drop_duplicates())
values = [x for x in range(len(keys))]
str2int_mappings[col] = dict(zip(keys, values))
for col, mapping in str2int_mappings.items():
series = data_copy[col]
for k, v in mapping.items():
series.replace(k, v, inplace=True)
data_copy[col] = series
for k, v in str2int_mappings.items():
if np.nan in v.keys():
v.update({"nan": v.pop(np.nan)})
str2int_mappings[k] = v
if extra_mark:
return data_copy
else:
cls.data = data_copy
cls.str2int_mappings = str2int_mappings
@classmethod
def get_str2int_mappings_df(cls):
columns_list = ["列名", "字符型", "数值型"]
str2int_mappings_df = pd.DataFrame(columns=columns_list)
for k, v in cls.str2int_mappings.items():
cur_df = pd.DataFrame(columns=columns_list)
cur_df["列名"] = pd.DataFrame([k] * len(v.keys()))
cur_df["字符型"] = pd.DataFrame([x for x in v.keys()])
cur_df["数值型"] = pd.DataFrame([x for x in v.values()])
str2int_mappings_df = pd.concat([str2int_mappings_df, cur_df], axis=0)
blank_df = pd.DataFrame(columns=columns_list)
blank_df.loc[0] = ["", "", ""]
str2int_mappings_df = pd.concat([str2int_mappings_df, blank_df], axis=0)
return str2int_mappings_df.iloc[:-1, :]
@classmethod
def get_non_numeric_list(cls):
data_copy = copy.deepcopy(cls.data)
data_copy = data_copy.astype(str)
non_numeric_list = []
for col in data_copy.columns.values:
if pd.to_numeric(data_copy[col], errors="coerce").isnull().values.any():
non_numeric_list.append(col)
cls.non_numeric_list = non_numeric_list
return non_numeric_list
@classmethod
def get_data_type(cls):
columns_list = ["列名", "数据类型"]
data_type_dict = {}
for col in cls.data.columns.values:
data_type_dict[col] = cls.data[col].dtype.name
data_type_df = pd.DataFrame(columns=columns_list)
data_type_df["列名"] = [x for x in data_type_dict.keys()]
data_type_df["数据类型"] = [x for x in data_type_dict.values()]
return data_type_df
@classmethod
def change_data_type_to_float(cls):
data_copy = cls.data
for i, col in enumerate(data_copy.columns.values):
if i != 0:
data_copy[col] = data_copy[col].astype(float)
cls.data = data_copy
@classmethod
def get_non_standardized_data(cls):
not_standardized_data_list = []
for col in cls.data.columns.values:
if cls.data[col].dtype.name in ["int64", "float64"]:
if not np.array_equal(np.round(preprocessing.scale(cls.data[col]), decimals=2),
np.round(cls.data[col].values.round(2), decimals=2)):
not_standardized_data_list.append(col)
return not_standardized_data_list
@classmethod
def check_before_train(cls):
if cls.assign == "" or not cls.select_y_mark:
return False
for i, col in enumerate(cls.data.columns.values):
if i == 0:
if not (all(isinstance(x, str) for x in cls.data.iloc[:, 0]) or all(
isinstance(x, float) for x in cls.data.iloc[:, 0])):
return False
else:
if cls.data[col].dtype.name != "float64":
return False
return True
@classmethod
def standardize_data(cls, col_list: list):
for col in col_list:
cls.data[col] = preprocessing.scale(cls.data[col])
@classmethod
def select_as_y(cls, col: str):
cls.data = pd.concat([cls.data[col], cls.data.drop(col, axis=1)], axis=1)
cls.select_y_mark = True
@classmethod
def get_optimize_list(cls):
return ["无", "网格搜索", "贝叶斯优化"]
@classmethod
def get_optimize_name_mapping(cls):
return dict(zip(cls.get_optimize_list(), ["None", "grid_search", "bayes_search"]))
@classmethod
def get_linear_regression_model_list(cls):
return ["线性回归", "Lasso回归", "Ridge回归", "弹性网络回归"]
@classmethod
def get_naive_bayes_classifier_model_list(cls):
return ["多项式朴素贝叶斯分类", "高斯朴素贝叶斯分类", "补充朴素贝叶斯分类"]
@classmethod
def get_linear_regression_model_name_mapping(cls):
return dict(zip(cls.get_linear_regression_model_list(), ["LinearRegression", "Lasso", "Ridge", "ElasticNet"]))
@classmethod
def get_naive_bayes_classifier_model_name_mapping(cls):
return dict(zip(cls.get_naive_bayes_classifier_model_list(), ["MultinomialNB", "GaussianNB", "ComplementNB"]))
@classmethod
def train_model(cls, optimize, params_list, train_size, extra_components_list):
# 清除超参数的空值文本框
params_list_copy = []
for param in params_list:
if param:
params_list_copy.append(param)
params_list = params_list_copy
# 获取超参数优化方法英文名
optimize = cls.get_optimize_name_mapping()[optimize]
data_copy = cls.data
# 若为分类任务,再次对数据表第一列进行 数值型转字符型 操作,确保训练的成功进行
if cls.assign == MN.classification:
data_copy = cls.encode_label([cls.data.columns.values[0]], True)
# 分割数据集为训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(
data_copy.values[:, 1:],
data_copy.values[:, :1],
random_state=StaticValue.RANDOM_STATE,
train_size=train_size
)
container = Container(x_train, y_train, x_test, y_test, optimize)
# 各个模型的训练方法
# [模型]
if cls.cur_model == MN.linear_regressor:
linear_regression_model_type = extra_components_list[0]
cls.linear_regression_model_type = cls.get_linear_regression_model_name_mapping()[
linear_regression_model_type]
container = linear_regressor(container, params_list, cls.linear_regression_model_type)
elif cls.cur_model == MN.polynomial_regressor:
container = polynomial_regressor(container, params_list)
elif cls.cur_model == MN.logistic_classifier:
container = logistic_classifier(container, params_list)
elif cls.cur_model == MN.decision_tree_classifier:
container = decision_tree_classifier(container, params_list)
elif cls.cur_model == MN.random_forest_classifier:
container = random_forest_classifier(container, params_list)
elif cls.cur_model == MN.random_forest_regressor:
container = random_forest_regressor(container, params_list)
elif cls.cur_model == MN.xgboost_classifier:
container = xgboost_classifier(container, params_list)
elif cls.cur_model == MN.lightGBM_classifier:
container = lightGBM_classifier(container, params_list)
elif cls.cur_model == MN.gradient_boosting_regressor:
container = gradient_boosting_regressor(container, params_list)
elif cls.cur_model == MN.svm_classifier:
container = svm_classifier(container, params_list)
elif cls.cur_model == MN.svm_regressor:
container = svm_regressor(container, params_list)
elif cls.cur_model == MN.knn_classifier:
container = knn_classifier(container, params_list)
elif cls.cur_model == MN.knn_regressor:
container = knn_regressor(container, params_list)
elif cls.cur_model == MN.naive_bayes_classifier:
naive_bayes_classifier_model_type = extra_components_list[1]
cls.naive_bayes_classifier_model_type = cls.get_naive_bayes_classifier_model_name_mapping()[
naive_bayes_classifier_model_type]
container = naive_bayes_classifier(container, params_list, cls.naive_bayes_classifier_model_type)
# 模型Step 6:在这里添加新的模型训练方法
# (若有额外组件,需要根据获取顺序写 extra_components_list 的下标)
# (输入为Container(), 输出也为Container())
# (在对应类型的文件目录下的模型.py内写模型训练函数+模型超参数存储类)
cls.container_dict[cls.cur_model] = container
@classmethod
def get_model_container_status(cls):
return True if cls.cur_model != "" and cls.container_dict[cls.cur_model].get_status() == "trained" else False
@classmethod
def get_model_label(cls):
return str(cls.get_model_name_mapping()[cls.cur_model]) + "模型是否完成训练" if cls.cur_model != "" else ""
@classmethod
def check_select_model(cls):
return True if cls.cur_model != "" and cls.check_before_train() else False
@classmethod
def get_model_name(cls):
return [x for x in cls.container_dict.keys()]
@classmethod
# [模型]
def get_model_chinese_name(cls):
# 模型Step 11:在这里添加新的模型名称到列表
return ["线性回归", "多项式回归", "逻辑斯谛分类", "决策树分类", "随机森林分类", "随机森林回归", "XGBoost分类",
# "LightGBM分类",
"梯度提升回归", "支持向量机分类", "支持向量机回归", "K-最近邻分类", "K-最近邻回归", "朴素贝叶斯分类"]
@classmethod
def get_model_name_mapping(cls):
return dict(zip(cls.get_model_name(), cls.get_model_chinese_name()))
@classmethod
def get_model_name_mapping_reverse(cls):
return dict(zip(cls.get_model_chinese_name(), cls.get_model_name()))
@classmethod
def get_trained_model_list(cls):
trained_model_list = []
for model_name, container in cls.container_dict.items():
if container.get_status() == "trained":
trained_model_list.append(cls.get_model_name_mapping()[model_name])
return trained_model_list
@classmethod
def draw_plot(cls, select_model, color_list: list, label_list: list, name: str, x_label: str, y_label: str,
is_default: bool):
# [绘图]
if cls.visualize == MN.learning_curve:
return cls.draw_learning_curve_plot(select_model, color_list, label_list, name, x_label, y_label,
is_default)
elif cls.visualize == MN.shap_beeswarm:
return cls.draw_shap_beeswarm_plot(select_model, color_list, label_list, name, x_label, y_label, is_default)
elif cls.visualize == MN.data_fit:
return cls.draw_data_fit_plot(select_model, color_list, label_list, name, x_label, y_label, is_default)
elif cls.visualize == MN.waterfall:
return cls.draw_waterfall_plot(select_model, color_list, label_list, name, x_label, y_label, is_default)
elif cls.visualize == MN.force:
return cls.draw_force_plot(select_model, color_list, label_list, name, x_label, y_label, is_default)
elif cls.visualize == MN.dependence:
return cls.draw_dependence_plot(select_model, color_list, label_list, name, x_label, y_label, is_default)
elif cls.visualize == MN.data_distribution:
return cls.draw_data_distribution_plot(select_model, color_list, label_list, name, x_label, y_label,
is_default)
elif cls.visualize == MN.descriptive_indicators:
return cls.draw_descriptive_indicators_plot(select_model, color_list, label_list, name, x_label, y_label,
is_default)
elif cls.visualize == MN.heatmap:
return cls.draw_heatmap_plot(select_model, color_list, label_list, name, x_label, y_label, is_default)
# 绘图Step 9:在这里添加新的绘图函数
@classmethod
def draw_heatmap_plot(cls, select_model, color_list: list, label_list: list, name: str, x_label: str, y_label: str,
is_default: bool):
color_cur_list = [] if is_default else color_list
x_cur_label = "Indicators" if is_default else x_label
y_cur_label = "Value" if is_default else y_label
cur_name = "" if is_default else name
paint_object = PaintObject()
paint_object.set_color_cur_list(color_cur_list)
paint_object.set_x_cur_label(x_cur_label)
paint_object.set_y_cur_label(y_cur_label)
paint_object.set_name(cur_name)
if cls.check_col_list(select_model.get_heatmap_col()):
return cls.error_return_draw(paint_object)
df = Dataset.data
heatmap_col = select_model.get_heatmap_col()
covX = np.around(np.corrcoef(df[heatmap_col].T), decimals=3)
std_dev = np.sqrt(np.diag(covX))
pearson_matrix = covX / np.outer(std_dev, std_dev)
return draw_heat_map(pearson_matrix, heatmap_col, paint_object, select_model.get_heatmap_is_rotate())
@classmethod
def draw_descriptive_indicators_plot(cls, select_model, color_list: list, label_list: list, name: str, x_label: str,
y_label: str, is_default: bool):
color_cur_list = [StaticValue.COLORS[random.randint(0, 11)]] * 3 if is_default else color_list
x_cur_label = "Indicators" if is_default else x_label
y_cur_label = "Value" if is_default else y_label
cur_name = "" if is_default else name
paint_object = PaintObject()
paint_object.set_color_cur_list(color_cur_list)
paint_object.set_x_cur_label(x_cur_label)
paint_object.set_y_cur_label(y_cur_label)
paint_object.set_name(cur_name)
if cls.check_col_list(select_model.get_descriptive_indicators_col()):
return cls.error_return_draw(paint_object)
df = Dataset.data
descriptive_indicators_col = select_model.get_descriptive_indicators_col()
descriptive_indicators_df = pd.DataFrame(
index=list(descriptive_indicators_col),
columns=[
"Name",
"Min",
"Max",
"Avg",
"Standard Deviation",
"Standard Error",
"Upper Quartile",
"Median",
"Lower Quartile",
"Interquartile Distance",
"Kurtosis",
"Skewness",
"Coefficient of Variation"
]
)
for col in descriptive_indicators_col:
descriptive_indicators_df["Name"][col] = col
descriptive_indicators_df["Min"][col] = df[col].min()
descriptive_indicators_df["Max"][col] = df[col].max()
descriptive_indicators_df["Avg"][col] = df[col].mean()
descriptive_indicators_df["Standard Deviation"][col] = df[col].std()
descriptive_indicators_df["Standard Error"][col] = descriptive_indicators_df["Standard Deviation"][
col] / math.sqrt(len(df[col]))
descriptive_indicators_df["Upper Quartile"][col] = df[col].quantile(0.75)
descriptive_indicators_df["Median"][col] = df[col].quantile(0.5)
descriptive_indicators_df["Lower Quartile"][col] = df[col].quantile(0.25)
descriptive_indicators_df["Interquartile Distance"][col] = descriptive_indicators_df["Lower Quartile"][
col] - \
descriptive_indicators_df["Upper Quartile"][col]
descriptive_indicators_df["Kurtosis"][col] = df[col].kurt()
descriptive_indicators_df["Skewness"][col] = df[col].skew()
descriptive_indicators_df["Coefficient of Variation"][col] = \
descriptive_indicators_df["Standard Deviation"][col] / descriptive_indicators_df["Avg"][col]
cls.descriptive_indicators_df = descriptive_indicators_df
cur_df = df[descriptive_indicators_col].astype(float)
return draw_boxplot(cur_df, paint_object, select_model.get_descriptive_indicators_is_rotate())
@classmethod
def error_return_draw(cls, paint_object):
cur_plt = plt.Figure(figsize=(10, 8))
return cur_plt, paint_object
@classmethod
def draw_data_distribution_plot(cls, select_model, color_list: list, label_list: list, name: str, x_label: str,
y_label: str, is_default: bool):
cur_col = select_model.get_data_distribution_col()
color_cur_list = [StaticValue.COLORS[random.randint(0, 11)]] if is_default else color_list
x_cur_label = cur_col if is_default else x_label
y_cur_label = "Num" if is_default else y_label
cur_name = "" if is_default else name
paint_object = PaintObject()
paint_object.set_color_cur_list(color_cur_list)
paint_object.set_x_cur_label(x_cur_label)
paint_object.set_y_cur_label(y_cur_label)
paint_object.set_name(cur_name)
if cls.check_col_list(select_model.get_data_distribution_col()):
return cls.error_return_draw(paint_object)
counts_mapping = {}
for x in Dataset.data.loc[:, cur_col].values:
if x in counts_mapping.keys():
counts_mapping[x] += 1
else:
counts_mapping[x] = 1
sorting = sorted(counts_mapping.items(), reverse=True, key=lambda m: m[1])
nums = [x[1] for x in sorting]
labels = [x[0] for x in sorting]
if Dataset.check_data_distribution_type(cur_col) == "histogram":
return draw_histogram(nums, labels, paint_object, select_model.get_data_distribution_is_rotate())
else:
return cls.error_return_draw(paint_object)
@classmethod
def draw_dependence_plot(cls, select_model, color_list: list, label_list: list, name: str, x_label: str,
y_label: str, is_default: bool):
model_name = select_model.get_models()
paint_object = PaintObject()
if cls.check_string(model_name):
return cls.error_return_draw(paint_object)
model_name = cls.get_model_name_mapping_reverse()[model_name]
container = cls.container_dict[model_name]
# color_cur_list = Config.COLORS if is_default else color_list
# label_cur_list = [x for x in learning_curve_dict.keys()] if is_default else label_list
# x_cur_label = "Train Sizes" if is_default else x_label
# y_cur_label = "Accuracy" if is_default else y_label
cur_name = "" if is_default else name
# paint_object.set_color_cur_list(color_cur_list)
# paint_object.set_label_cur_list(label_cur_list)
# paint_object.set_x_cur_label(x_cur_label)
# paint_object.set_y_cur_label(y_cur_label)
paint_object.set_name(cur_name)
if cls.check_string(select_model.get_dependence_col()):
gr.Warning("请选择特征依赖图的相应列")
return cls.error_return_draw(paint_object)
return draw_dependence(container.get_model(), container.x_train, cls.data.columns.values.tolist()[1:],
select_model.get_dependence_col(), paint_object)
@classmethod
def draw_force_plot(cls, select_model, color_list: list, label_list: list, name: str, x_label: str, y_label: str,
is_default: bool):
model_name = select_model.get_models()
paint_object = PaintObject()
if cls.check_string(model_name):
return cls.error_return_draw(paint_object)
model_name = cls.get_model_name_mapping_reverse()[model_name]
container = cls.container_dict[model_name]
# color_cur_list = Config.COLORS if is_default else color_list
# label_cur_list = [x for x in learning_curve_dict.keys()] if is_default else label_list
# x_cur_label = "Train Sizes" if is_default else x_label
# y_cur_label = "Accuracy" if is_default else y_label
cur_name = "" if is_default else name
# paint_object.set_color_cur_list(color_cur_list)
# paint_object.set_label_cur_list(label_cur_list)
# paint_object.set_x_cur_label(x_cur_label)
# paint_object.set_y_cur_label(y_cur_label)
paint_object.set_name(cur_name)
return draw_force(container.get_model(), container.x_train, cls.data.columns.values.tolist()[1:],
select_model.get_force_number(), paint_object)
@classmethod
def draw_waterfall_plot(cls, select_model, color_list: list, label_list: list, name: str, x_label: str,
y_label: str, is_default: bool):
model_name = select_model.get_models()
paint_object = PaintObject()
if cls.check_string(model_name):
return cls.error_return_draw(paint_object)
model_name = cls.get_model_name_mapping_reverse()[model_name]
container = cls.container_dict[model_name]
# color_cur_list = Config.COLORS if is_default else color_list
# label_cur_list = [x for x in learning_curve_dict.keys()] if is_default else label_list
# x_cur_label = "Train Sizes" if is_default else x_label
# y_cur_label = "Accuracy" if is_default else y_label
cur_name = "" if is_default else name
# paint_object.set_color_cur_list(color_cur_list)
# paint_object.set_label_cur_list(label_cur_list)
# paint_object.set_x_cur_label(x_cur_label)
# paint_object.set_y_cur_label(y_cur_label)
paint_object.set_name(cur_name)
return draw_waterfall(container.get_model(), container.x_train, cls.data.columns.values.tolist()[1:],
select_model.get_waterfall_number(), paint_object)
@classmethod
def draw_learning_curve_plot(cls, select_model, color_list: list, label_list: list, name: str, x_label: str,
y_label: str, is_default: bool):
cur_dict = {}
model_list = select_model.get_models()
for model_name in model_list:
model_name = cls.get_model_name_mapping_reverse()[model_name]
cur_dict[model_name] = cls.container_dict[model_name].get_learning_curve_values()
color_cur_list = StaticValue.COLORS if is_default else color_list
if is_default:
label_cur_list = []
for x in cur_dict.keys():
label_cur_list.append("train " + str(x))
label_cur_list.append("validation " + str(x))
else:
label_cur_list = label_list
x_cur_label = "Train Sizes" if is_default else x_label
y_cur_label = "Accuracy" if is_default else y_label
cur_name = "" if is_default else name
paint_object = PaintObject()
paint_object.set_color_cur_list(color_cur_list)
paint_object.set_label_cur_list(label_cur_list)
paint_object.set_x_cur_label(x_cur_label)
paint_object.set_y_cur_label(y_cur_label)
paint_object.set_name(cur_name)
if cls.check_cur_dict(cur_dict):
return cls.error_return_draw(paint_object)
return draw_learning_curve_total(cur_dict, paint_object)
@classmethod
def draw_shap_beeswarm_plot(cls, select_model, color_list: list, label_list: list, name: str, x_label: str,
y_label: str, is_default: bool):
model_name = select_model.get_models()
paint_object = PaintObject()
if cls.check_string(model_name):
return cls.error_return_draw(paint_object)
model_name = cls.get_model_name_mapping_reverse()[model_name]
container = cls.container_dict[model_name]
# color_cur_list = Config.COLORS if is_default else color_list
# label_cur_list = [x for x in learning_curve_dict.keys()] if is_default else label_list
# x_cur_label = "Train Sizes" if is_default else x_label
# y_cur_label = "Accuracy" if is_default else y_label
cur_name = "" if is_default else name
# paint_object.set_color_cur_list(color_cur_list)
# paint_object.set_label_cur_list(label_cur_list)
# paint_object.set_x_cur_label(x_cur_label)
# paint_object.set_y_cur_label(y_cur_label)
paint_object.set_name(cur_name)
if cls.check_string(select_model.get_beeswarm_plot_type()):
gr.Warning("请选择特征蜂群图的图像类型")
return cls.error_return_draw(paint_object)
return draw_shap_beeswarm(container.get_model(), container.x_train, cls.data.columns.values.tolist()[1:],
select_model.get_beeswarm_plot_type(), paint_object)
@classmethod
def draw_data_fit_plot(cls, select_model, color_list: list, label_list: list, name: str, x_label: str, y_label: str,
is_default: bool):
cur_dict = {}
model_list = select_model.get_models()
for model_name in model_list:
model_name = cls.get_model_name_mapping_reverse()[model_name]
cur_dict[model_name] = cls.container_dict[model_name].get_data_fit_values()
color_cur_list = StaticValue.COLORS if is_default else color_list
if is_default:
label_cur_list = []
for x in cur_dict.keys():
label_cur_list.append("pred " + str(x))
label_cur_list.append("real data")
else:
label_cur_list = label_list
x_cur_label = "n value" if is_default else x_label
y_cur_label = "y value" if is_default else y_label
cur_name = "" if is_default else name
paint_object = PaintObject()
paint_object.set_color_cur_list(color_cur_list)
paint_object.set_label_cur_list(label_cur_list)
paint_object.set_x_cur_label(x_cur_label)
paint_object.set_y_cur_label(y_cur_label)
paint_object.set_name(cur_name)
if cls.check_cur_dict(cur_dict):
return cls.error_return_draw(paint_object)
return draw_data_fit_total(cur_dict, paint_object)
@classmethod
def get_shap_beeswarm_plot_type(cls):
return ["bar", "violin"]
@classmethod
def get_file(cls):
# [绘图]
if cls.visualize == MN.learning_curve:
return FilePath.png_base.format(FilePath.learning_curve_plot)
elif cls.visualize == MN.shap_beeswarm:
return FilePath.png_base.format(FilePath.shap_beeswarm_plot)
elif cls.visualize == MN.data_fit:
return FilePath.png_base.format(FilePath.data_fit_plot)
elif cls.visualize == MN.waterfall:
return FilePath.png_base.format(FilePath.waterfall_plot)
elif cls.visualize == MN.force:
return FilePath.png_base.format(FilePath.force_plot)
elif cls.visualize == MN.dependence:
return FilePath.png_base.format(FilePath.dependence_plot)
elif cls.visualize == MN.data_distribution:
return FilePath.png_base.format(FilePath.data_distribution_plot)
elif cls.visualize == MN.descriptive_indicators:
return FilePath.png_base.format(FilePath.descriptive_indicators_plot)
elif cls.visualize == MN.heatmap:
return FilePath.png_base.format(FilePath.heatmap_plot)
# 绘图Step 16:在这里添加新的绘图文件路径
@classmethod
def check_file(cls):
return os.path.exists(cls.get_file())
@classmethod
def after_get_file(cls):
return cls.get_file() if cls.check_file() else None
@classmethod
def get_model_list(cls):
model_list = []
for model_name in cls.container_dict.keys():
model_list.append(cls.get_model_name_mapping()[model_name])
return model_list
@classmethod
def select_as_model(cls, model_name: str):
cls.cur_model = cls.get_model_name_mapping_reverse()[model_name]
@classmethod
def get_model_mark(cls):
return True if cls.cur_model != "" else False
@classmethod
def get_linear_regression_mark(cls):
return True if cls.cur_model == MN.linear_regressor else False
@classmethod
def get_naive_bayes_classifier_mark(cls):
return True if cls.cur_model == MN.naive_bayes_classifier else False
@classmethod
def get_assign_list(cls):
return ["分类", "回归"]
@classmethod
def get_assign_mapping_reverse(cls):
return dict(zip(cls.get_assign_list(), [MN.classification, MN.regression]))
@classmethod
def choose_assign(cls, assign: str):
cls.assign = cls.get_assign_mapping_reverse()[assign]
data_copy = cls.data
if cls.assign == MN.classification:
gr.Info("分类任务请确保目标变量列(第一列)数值为字符型[有限个标签]")
data_copy.iloc[:, 0] = data_copy.iloc[:, 0].astype(str)
else:
gr.Info("回归任务请确保目标变量列(第一列)数值为数值型")
data_copy.iloc[:, 0] = data_copy.iloc[:, 0].astype(float)
cls.data = data_copy
cls.change_data_type_to_float()
@classmethod
def colorpickers_change(cls, paint_object):
cur_num = paint_object.get_color_cur_num()
true_list = [gr.ColorPicker(paint_object.get_color_cur_list()[i], visible=True, label=LN.colors[i]) for i in
range(cur_num)]
return true_list + [gr.ColorPicker(visible=False)] * (StaticValue.MAX_NUM - cur_num)
@classmethod
def get_model_train_input_params(cls):
EACH_ROW_NUM = 6 - 1
output_list = []
if cls.cur_model and cls.choose_optimize:
output_dict = ChooseModelParams.choose(cls.cur_model)
row_unit_num_list = []
row_len = len(output_dict.keys())
dict_keys_list = [x for x in output_dict.keys()]
for k, v in output_dict.items():
row_unit_num_list.append(len(v))
for x in v:
output_list.append(x)
return_list = []
cumulative_sum = 0
for j in range(row_len):
return_list.append(gr.Textbox(dict_keys_list[j], visible=cls.check_model_optimize_radio(), show_label=False, elem_classes="params_name"))
return_list.extend(
[gr.Textbox(output_list[k], visible=cls.check_model_optimize_radio(), show_label=False)
for k in range(cumulative_sum, cumulative_sum + row_unit_num_list[j])]
)
return_list.extend(
[gr.Textbox(visible=False)] * (EACH_ROW_NUM - row_unit_num_list[j])
)
cumulative_sum += row_unit_num_list[j]
return_list.extend([gr.Textbox(visible=False)] * (StaticValue.MAX_PARAMS_NUM - row_len - cumulative_sum))
return return_list
else:
return [gr.Textbox(visible=False)] * StaticValue.MAX_PARAMS_NUM
@classmethod
def color_textboxs_change(cls, paint_object):
cur_num = paint_object.get_color_cur_num()
true_list = [gr.Textbox(paint_object.get_color_cur_list()[i], visible=True, show_label=False) for i in range(cur_num)]
return true_list + [gr.Textbox(visible=False)] * (StaticValue.MAX_NUM - cur_num)
@classmethod
def labels_change(cls, paint_object):
cur_num = paint_object.get_label_cur_num()
true_list = [gr.Textbox(paint_object.get_label_cur_list()[i], visible=True, label=LN.labels[i]) for i in
range(cur_num)]
return true_list + [gr.Textbox(visible=False)] * (StaticValue.MAX_NUM - cur_num)
@classmethod
def get_model_train_metrics_dataframe(cls):
if cls.cur_model != "" and cls.get_model_container_status():
columns_list = ["指标", "数值"]
output_dict = cls.container_dict[cls.cur_model].get_info()["指标"]
output_df = pd.DataFrame(columns=columns_list)
output_df["指标"] = [x for x in output_dict.keys() if x in ChooseModelMetrics.choose(cls.cur_model)]
output_df["数值"] = [output_dict[x] for x in output_df["指标"]]
return output_df
@classmethod
def get_model_train_params_dataframe(cls):
if cls.cur_model != "" and cls.get_model_container_status():
columns_list = ["参数", "数值"]
output_dict = cls.container_dict[cls.cur_model].get_info()["参数"]
output_df = pd.DataFrame(columns=columns_list)
output_df["参数"] = [x for x in output_dict.keys() if x in ChooseModelParams.choose(cls.cur_model).keys()]
output_df["数值"] = [output_dict[x] for x in output_df["参数"]]
return output_df
@classmethod
def get_str_col_list(cls):
str_col_list = []
for col in cls.get_col_list():
if all(isinstance(x, str) for x in cls.data.loc[:, col]):
str_col_list.append(col)
return str_col_list
@classmethod
def get_float_col_list(cls):
float_col_list = []
for col in cls.get_col_list():
if all(isinstance(x, float) for x in cls.data.loc[:, col]):
float_col_list.append(col)
return float_col_list
@classmethod
def check_data_distribution_type(cls, col):
if all(isinstance(x, str) for x in cls.data.loc[:, col]):
return "histogram"
# elif all(isinstance(x, float) for x in cls.data.loc[:, col]):
# return "line_graph"
else:
gr.Warning("所选列的所有数据必须为字符型或浮点型")
@classmethod
def check_col_list(cls, col):
if not col:
gr.Warning("请选择所需列")
return True
return False
@classmethod
def check_train_model(cls, optimize, train_size):
if cls.cur_model == "":
gr.Warning("请选择所需训练的模型")
return True
if not optimize:
gr.Warning("请选择超参数优化方法")
return True
if not train_size:
gr.Warning("请输入训练集所占比例")
return True
if not (0 < train_size < 1):
gr.Warning("训练集所占比例必须是0到1之间的一个小数")
return True
return False
@classmethod
def check_train_model_other_related(cls, extra_components_list):
# [模型]
if cls.cur_model == MN.linear_regressor:
if not extra_components_list[0]:
gr.Warning("请选择线性回归对应的模型")
return True
elif cls.cur_model == MN.naive_bayes_classifier:
if not extra_components_list[1]:
gr.Warning("请选择朴素贝叶斯对应的模型")
return True
# 模型Step 3:在这里添加新的模型的额外组件的空白判断 (给出错误提示) (extra_components_list[]下标按传入的顺序即可)
return False
@classmethod
def check_cur_dict(cls, cur_dict):
if not cur_dict:
gr.Warning("请选择绘图所需的模型")
return True
return False
@classmethod
def check_string(cls, string):
if not string:
gr.Warning("请选择绘图所需的模型")
return True
return False
@classmethod
def add_index_into_df(cls, df: pd.DataFrame) -> pd.DataFrame:
if df.empty:
return df
index_df = pd.DataFrame([x for x in range(len(df))], columns=["[*index]"])
return pd.concat([index_df, df], axis=1)
@classmethod
def load_data(cls, sort):
type = ""
if sort == "Iris Dataset":
sk_data = load_iris()
type = "classification"
elif sort == "Wine Dataset":
sk_data = load_wine()
type = "classification"
elif sort == "Breast Cancer Dataset":
sk_data = load_breast_cancer()
type = "classification"
elif sort == "Diabetes Dataset":
sk_data = load_diabetes()
type = "regression"
elif sort == "California Housing Dataset":
df = pd.read_csv("./data/fetch_california_housing.csv")
return df
else:
sk_data = load_iris()
type = "classification"
if type == "classification":
target_data = sk_data.target.astype(str)
for i in range(len(sk_data.target_names)):
target_data = np.where(target_data == str(i), sk_data.target_names[i], target_data)
else:
target_data = sk_data.target
feature_names = sk_data.feature_names
sk_feature_names = ["target"] + feature_names.tolist() if isinstance(feature_names, np.ndarray) else [
"target"] + feature_names
sk_data = np.concatenate((target_data.reshape(-1, 1), sk_data.data), axis=1)
df = pd.DataFrame(data=sk_data, columns=sk_feature_names)
return df
@classmethod
def load_custom_data(cls, file):
if "xlsx" in file or "xls" in file:
return pd.read_excel(file)
elif "csv" in file:
return pd.read_csv(file)
def get_return_extra(is_visible, extra_gr_dict: dict = None):
if is_visible:
gr_dict = {
draw_file: gr.File(Dataset.after_get_file(), visible=Dataset.check_file()),
}
if extra_gr_dict:
gr_dict.update(extra_gr_dict)
return gr_dict
gr_dict = {
draw_plot: gr.Plot(visible=False),
draw_file: gr.File(visible=False),
}
gr_dict.update(dict(zip(colorpickers, [gr.ColorPicker(visible=False)] * StaticValue.MAX_NUM)))
gr_dict.update(dict(zip(color_textboxs, [gr.Textbox(visible=False)] * StaticValue.MAX_NUM)))
gr_dict.update(dict(zip(legend_labels_textboxs, [gr.Textbox(visible=False)] * StaticValue.MAX_NUM)))
gr_dict.update({title_name_textbox: gr.Textbox(visible=False)})
gr_dict.update({x_label_textbox: gr.Textbox(visible=False)})
gr_dict.update({y_label_textbox: gr.Textbox(visible=False)})
return gr_dict
def get_return(is_visible, extra_gr_dict: dict = None):
if is_visible:
gr_dict = {
display_dataset_dataframe: gr.Dataframe(Dataset.add_index_into_df(Dataset.data), type="pandas",
visible=True),
display_dataset: gr.File(Dataset.after_get_display_dataset_file(),
visible=Dataset.check_display_dataset_file()),
display_total_col_num_text: gr.Textbox(str(Dataset.get_total_col_num()), visible=True,
label=LN.display_total_col_num_text),
display_total_row_num_text: gr.Textbox(str(Dataset.get_total_row_num()), visible=True,
label=LN.display_total_row_num_text),
display_na_list_text: gr.Textbox(Dataset.get_na_list_str(), visible=True, label=LN.display_na_list_text),
del_all_na_col_button: gr.Button(LN.del_all_na_col_button, visible=True),
display_duplicate_num_text: gr.Textbox(str(Dataset.get_duplicate_num()), visible=True,
label=LN.display_duplicate_num_text),
del_duplicate_button: gr.Button(LN.del_duplicate_button, visible=True),
del_col_checkboxgroup: gr.Checkboxgroup(Dataset.get_col_list(), visible=True,
label=LN.del_col_checkboxgroup),
del_col_button: gr.Button(LN.del_col_button, visible=True),
remain_row_slider: gr.Slider(0, Dataset.get_max_num(), value=Dataset.get_total_row_num(), step=1,
visible=True, label=LN.remain_row_slider),
remain_row_button: gr.Button(LN.remain_row_button, visible=True),
encode_label_button: gr.Button(LN.encode_label_button, visible=True),
encode_label_checkboxgroup: gr.Checkboxgroup(Dataset.get_non_numeric_list(), visible=True,
label=LN.encode_label_checkboxgroup),
display_encode_label_dataframe: gr.Dataframe(visible=False),
data_type_dataframe: gr.Dataframe(Dataset.get_data_type(), visible=True),
change_data_type_to_float_button: gr.Button(LN.change_data_type_to_float_button, visible=True),
select_as_y_radio: gr.Radio(Dataset.get_col_list(), visible=True, label=LN.select_as_y_radio),
standardize_data_checkboxgroup: gr.Checkboxgroup(Dataset.get_non_standardized_data(), visible=True,
label=LN.standardize_data_checkboxgroup),
standardize_data_button: gr.Button(LN.standardize_data_button, visible=True),
choose_assign_radio: gr.Radio(Dataset.get_assign_list(), visible=True, label=LN.choose_assign_radio),
select_as_model_radio: gr.Radio(Dataset.get_model_list(), visible=Dataset.check_before_train(),
label=LN.select_as_model_radio),
model_optimize_radio: gr.Radio(Dataset.get_optimize_list(), visible=Dataset.check_before_train(),
label=LN.model_optimize_radio),
train_size_textbox: gr.Textbox(str(0.8), visible=Dataset.check_before_train(), label=LN.train_size_textbox),
model_train_button: gr.Button(LN.model_train_button, visible=Dataset.check_before_train()),
model_train_checkbox: gr.Checkbox(Dataset.get_model_container_status(),
visible=Dataset.check_select_model(), label=Dataset.get_model_label()),
model_train_params_dataframe: gr.Dataframe(Dataset.get_model_train_params_dataframe(), type="pandas",
visible=Dataset.get_model_container_status()),
model_train_metrics_dataframe: gr.Dataframe(Dataset.get_model_train_metrics_dataframe(), type="pandas",
visible=Dataset.get_model_container_status()),
draw_plot: gr.Plot(visible=False),
draw_file: gr.File(visible=False),
title_name_textbox: gr.Textbox(visible=False),
x_label_textbox: gr.Textbox(visible=False),
y_label_textbox: gr.Textbox(visible=False),
# [模型]
linear_regression_model_radio: gr.Radio(Dataset.get_linear_regression_model_list(),
visible=Dataset.get_linear_regression_mark(),
label=LN.linear_regression_model_radio),
naive_bayes_classification_model_radio: gr.Radio(Dataset.get_naive_bayes_classifier_model_list(),
visible=Dataset.get_naive_bayes_classifier_mark(),
label=LN.naive_bayes_classification_model_radio),
# 模型Step 8:在这里添加新的模型额外的组件+写入新的Dataset类方法的函数
# [绘图]
heatmap_checkboxgroup: gr.Checkboxgroup(Dataset.get_float_col_list(), visible=True,
label=LN.heatmap_checkboxgroup),
heatmap_is_rotate: gr.Checkbox(visible=True, label=LN.heatmap_is_rotate),
heatmap_button: gr.Button(LN.heatmap_button, visible=True),
descriptive_indicators_checkboxgroup: gr.Checkboxgroup(Dataset.get_float_col_list(), visible=True,
label=LN.descriptive_indicators_checkboxgroup),
data_distribution_radio: gr.Radio(Dataset.get_str_col_list(), visible=True,
label=LN.data_distribution_radio),
data_distribution_is_rotate: gr.Checkbox(visible=True, label=LN.data_distribution_is_rotate),
data_distribution_button: gr.Button(LN.data_distribution_button, visible=True),
descriptive_indicators_is_rotate: gr.Checkbox(visible=True, label=LN.descriptive_indicators_is_rotate),
descriptive_indicators_dataframe: gr.Dataframe(Dataset.get_descriptive_indicators_df(), type="pandas",
visible=Dataset.check_descriptive_indicators_df()),
descriptive_indicators_button: gr.Button(LN.descriptive_indicators_button, visible=True),
learning_curve_checkboxgroup: gr.Checkboxgroup(Dataset.get_trained_model_list(),
visible=Dataset.check_before_train(),
label=LN.learning_curve_checkboxgroup),
learning_curve_button: gr.Button(LN.learning_curve_button, visible=Dataset.check_before_train()),
shap_beeswarm_radio: gr.Radio(Dataset.get_trained_model_list(), visible=Dataset.check_before_train(),
label=LN.shap_beeswarm_radio),
shap_beeswarm_type: gr.Radio(Dataset.get_shap_beeswarm_plot_type(), visible=Dataset.check_before_train(),
label=LN.shap_beeswarm_type),
shap_beeswarm_button: gr.Button(LN.shap_beeswarm_button, visible=Dataset.check_before_train()),
data_fit_checkboxgroup: gr.Checkboxgroup(Dataset.get_trained_model_list(),
visible=Dataset.check_before_train(),
label=LN.data_fit_checkboxgroup),
data_fit_button: gr.Button(LN.data_fit_button, visible=Dataset.check_before_train()),
waterfall_radio: gr.Radio(Dataset.get_trained_model_list(), visible=Dataset.check_before_train(),
label=LN.waterfall_radio),
waterfall_number: gr.Slider(0, Dataset.get_total_row_num(), value=0, step=1,
visible=Dataset.check_before_train(), label=LN.waterfall_number),
waterfall_button: gr.Button(LN.waterfall_button, visible=Dataset.check_before_train()),
force_radio: gr.Radio(Dataset.get_trained_model_list(), visible=Dataset.check_before_train(),
label=LN.force_radio),
force_number: gr.Slider(0, Dataset.get_total_row_num(), value=0, step=1,
visible=Dataset.check_before_train(), label=LN.force_number),
force_button: gr.Button(LN.force_button, visible=Dataset.check_before_train()),
dependence_radio: gr.Radio(Dataset.get_trained_model_list(), visible=Dataset.check_before_train(),
label=LN.dependence_radio),
dependence_col: gr.Radio(Dataset.get_dependence_col(), visible=Dataset.check_before_train(),
label=LN.dependence_col),
dependence_button: gr.Button(LN.dependence_button, visible=Dataset.check_before_train()),
# 绘图Step 13:在这里添加新的绘图组件
}
gr_dict.update(dict(zip(colorpickers, [gr.ColorPicker(visible=False)] * StaticValue.MAX_NUM)))
gr_dict.update(dict(zip(color_textboxs, [gr.Textbox(visible=False)] * StaticValue.MAX_NUM)))
gr_dict.update(dict(zip(legend_labels_textboxs, [gr.Textbox(visible=False)] * StaticValue.MAX_NUM)))
gr_dict.update(dict(zip(model_train_params_textboxs, Dataset.get_model_train_input_params())))
if extra_gr_dict:
gr_dict.update(extra_gr_dict)
return gr_dict
gr_dict = {
choose_custom_dataset_file: gr.File(None, visible=True),
display_dataset_dataframe: gr.Dataframe(visible=False),
display_dataset: gr.File(visible=False),
display_total_col_num_text: gr.Textbox(visible=False),
display_total_row_num_text: gr.Textbox(visible=False),
display_na_list_text: gr.Textbox(visible=False),
del_all_na_col_button: gr.Button(visible=False),
display_duplicate_num_text: gr.Textbox(visible=False),
del_duplicate_button: gr.Button(visible=False),
del_col_checkboxgroup: gr.Checkboxgroup(visible=False),
del_col_button: gr.Button(visible=False),
remain_row_slider: gr.Slider(visible=False),
encode_label_button: gr.Button(visible=False),
display_encode_label_dataframe: gr.Dataframe(visible=False),
encode_label_checkboxgroup: gr.Checkboxgroup(visible=False),
data_type_dataframe: gr.Dataframe(visible=False),
change_data_type_to_float_button: gr.Button(visible=False),
standardize_data_checkboxgroup: gr.Checkboxgroup(visible=False),
standardize_data_button: gr.Button(visible=False),
select_as_y_radio: gr.Radio(visible=False),
train_size_textbox: gr.Textbox(visible=False),
model_optimize_radio: gr.Radio(visible=False),
model_train_button: gr.Button(visible=False),
model_train_checkbox: gr.Checkbox(visible=False),
model_train_metrics_dataframe: gr.Dataframe(visible=False),
model_train_params_dataframe: gr.Dataframe(visible=False),
select_as_model_radio: gr.Radio(visible=False),
choose_assign_radio: gr.Radio(visible=False),
draw_plot: gr.Plot(visible=False),
draw_file: gr.File(visible=False),
title_name_textbox: gr.Textbox(visible=False),
x_label_textbox: gr.Textbox(visible=False),
y_label_textbox: gr.Textbox(visible=False),
# [模型]
linear_regression_model_radio: gr.Radio(visible=False),
naive_bayes_classification_model_radio: gr.Radio(visible=False),
# 模型Step 9:在这里添加新的模型额外的组件 (不可见)
# [绘图]
heatmap_checkboxgroup: gr.Checkboxgroup(visible=False),
heatmap_is_rotate: gr.Checkbox(visible=False),
heatmap_button: gr.Button(visible=False),
data_distribution_radio: gr.Radio(visible=False),
data_distribution_is_rotate: gr.Checkbox(visible=False),
data_distribution_button: gr.Button(visible=False),
descriptive_indicators_checkboxgroup: gr.Checkboxgroup(visible=False),
descriptive_indicators_is_rotate: gr.Checkbox(visible=False),
descriptive_indicators_dataframe: gr.Dataframe(visible=False),
descriptive_indicators_button: gr.Button(visible=False),
learning_curve_checkboxgroup: gr.Checkboxgroup(visible=False),
learning_curve_button: gr.Button(visible=False),
shap_beeswarm_radio: gr.Radio(visible=False),
shap_beeswarm_type: gr.Radio(visible=False),
shap_beeswarm_button: gr.Button(visible=False),
data_fit_checkboxgroup: gr.Checkboxgroup(visible=False),
data_fit_button: gr.Button(visible=False),
waterfall_radio: gr.Radio(visible=False),
waterfall_number: gr.Slider(visible=False),
waterfall_button: gr.Button(visible=False),
force_radio: gr.Radio(visible=False),
force_number: gr.Slider(visible=False),
force_button: gr.Button(visible=False),
dependence_radio: gr.Radio(visible=False),
dependence_col: gr.Radio(visible=False),
dependence_button: gr.Button(visible=False),
# 绘图Step 14:在这里添加新的组件 (不可见)
}
gr_dict.update(dict(zip(colorpickers, [gr.ColorPicker(visible=False)] * StaticValue.MAX_NUM)))
gr_dict.update(dict(zip(color_textboxs, [gr.Textbox(visible=False)] * StaticValue.MAX_NUM)))
gr_dict.update(dict(zip(legend_labels_textboxs, [gr.Textbox(visible=False)] * StaticValue.MAX_NUM)))
gr_dict.update(dict(zip(model_train_params_textboxs, [gr.Textbox(visible=False)] * StaticValue.MAX_PARAMS_NUM)))
return gr_dict
# 选择任务类型(强制转换第1列)
def choose_assign(assign: str):
try:
Dataset.choose_assign(assign)
except ValueError:
gr.Warning("回归任务中目标变量列(第一列)数值不能为字符型数据")
return get_return(True)
return get_return(True)
# 数据模型
def select_as_model(model_name: str):
Dataset.select_as_model(model_name)
return get_return(True)
# [绘图]
# 绘图Step 7:在这里添加新的绘图监听事件函数
# 关系热力图监听事件主体函数
def heatmap_first_draw_plot(*inputs):
Dataset.visualize = MN.heatmap
return before_train_first_draw_plot(inputs)
# 描述指标图监听事件主体函数
def descriptive_indicators_first_draw_plot(*inputs):
Dataset.visualize = MN.descriptive_indicators
return before_train_first_draw_plot(inputs)
# 数据分布图监听事件主体函数
def data_distribution_first_draw_plot(*inputs):
Dataset.visualize = MN.data_distribution
return before_train_first_draw_plot(inputs)
# 依赖图监听事件主体函数
def dependence_first_draw_plot(*inputs):
Dataset.visualize = MN.dependence
return first_draw_plot(inputs)
# 力图监听事件主体函数
def force_first_draw_plot(*inputs):
Dataset.visualize = MN.force
return first_draw_plot(inputs)
# 瀑布图监听事件主体函数
def waterfall_first_draw_plot(*inputs):
Dataset.visualize = MN.waterfall
return first_draw_plot(inputs)
# 数据拟合图监听事件主体函数
def data_fit_first_draw_plot(*inputs):
Dataset.visualize = MN.data_fit
return first_draw_plot(inputs)
# 蜂群图监听事件主体函数
def shap_beeswarm_first_draw_plot(*inputs):
Dataset.visualize = MN.shap_beeswarm
return first_draw_plot(inputs)
# 学习曲线图监听事件主体函数
def learning_curve_first_draw_plot(*inputs):
Dataset.visualize = MN.learning_curve
return first_draw_plot(inputs)
def before_train_first_draw_plot(inputs):
select_model = SelectModel()
x_label = ""
y_label = ""
name = ""
color_list = []
label_list = []
# [绘图][无训练模型]
if Dataset.visualize == MN.data_distribution:
select_model.set_data_distribution_col(inputs[0])
select_model.set_data_distribution_is_rotate(inputs[1])
elif Dataset.visualize == MN.descriptive_indicators:
select_model.set_descriptive_indicators_is_rotate(inputs[0])
select_model.set_descriptive_indicators_col(inputs[1])
elif Dataset.visualize == MN.heatmap:
select_model.set_heatmap_col(inputs[0])
select_model.set_heatmap_is_rotate(inputs[1])
# 绘图Step 8:在这里添加新的绘图值设定 (通过类方法) (无训练模型的绘图方法)
cur_plt, paint_object = Dataset.draw_plot(select_model, color_list, label_list, name, x_label, y_label, True)
return first_draw_plot_with_non_first_draw_plot(cur_plt, paint_object)
def first_draw_plot(inputs):
select_model = SelectModel()
select_model.set_models(inputs[0])
x_label = ""
y_label = ""
name = ""
color_list = []
label_list = []
# [绘图][有训练模型]
if Dataset.visualize == MN.shap_beeswarm:
select_model.set_beeswarm_plot_type(inputs[1])
elif Dataset.visualize == MN.waterfall:
select_model.set_waterfall_number(inputs[1])
elif Dataset.visualize == MN.force:
select_model.set_force_number(inputs[1])
elif Dataset.visualize == MN.dependence:
select_model.set_dependence_col(inputs[1])
# 绘图Step 8:在这里添加新的绘图值设定 (通过类方法) (有训练模型的绘图方法)
cur_plt, paint_object = Dataset.draw_plot(select_model, color_list, label_list, name, x_label, y_label, True)
return first_draw_plot_with_non_first_draw_plot(cur_plt, paint_object)
# 可视化通用组件监听事件主体函数
def is_color_text_out_non_first_draw_plot(*inputs):
return non_first_draw_plot(inputs, True)
# 可视化通用组件监听事件主体函数
def not_color_text_out_non_first_draw_plot(*inputs):
return non_first_draw_plot(inputs, False)
def non_first_draw_plot(inputs, is_color_text):
name = inputs[0]
x_label = inputs[1]
y_label = inputs[2]
color_list = list(inputs[StaticValue.MAX_NUM + 3: 2 * StaticValue.MAX_NUM + 3]) \
if is_color_text else list(inputs[3: StaticValue.MAX_NUM + 3])
label_list = list(inputs[2 * StaticValue.MAX_NUM + 3: 3 * StaticValue.MAX_NUM + 3])
start_index = 3 * StaticValue.MAX_NUM + 3
select_model = SelectModel()
# 若输入的是颜色的十六进制,则判断输入是否合法
for color in color_list:
if len(color) != 7 or color[0] != "#":
gr.Warning("颜色的十六进制输入有误")
return get_return(True)
# [绘图]
if Dataset.visualize == MN.learning_curve:
select_model.set_models(inputs[start_index + 0])
select_model.set_beeswarm_plot_type(inputs[start_index + 1])
elif Dataset.visualize == MN.shap_beeswarm:
select_model.set_models(inputs[start_index + 2])
elif Dataset.visualize == MN.data_fit:
select_model.set_models(inputs[start_index + 3])
elif Dataset.visualize == MN.waterfall:
select_model.set_models(inputs[start_index + 4])
select_model.set_waterfall_number(inputs[start_index + 5])
elif Dataset.visualize == MN.force:
select_model.set_models(inputs[start_index + 6])
select_model.set_force_number(inputs[start_index + 7])
elif Dataset.visualize == MN.dependence:
select_model.set_models(inputs[start_index + 8])
select_model.set_dependence_col(inputs[start_index + 9])
elif Dataset.visualize == MN.data_distribution:
select_model.set_data_distribution_col(inputs[start_index + 10])
select_model.set_data_distribution_is_rotate(inputs[start_index + 11])
elif Dataset.visualize == MN.descriptive_indicators:
select_model.set_descriptive_indicators_is_rotate(inputs[start_index + 12])
select_model.set_descriptive_indicators_col(inputs[start_index + 13])
elif Dataset.visualize == MN.descriptive_indicators:
select_model.set_heatmap_col(inputs[start_index + 14])
select_model.set_heatmap_is_rotate(inputs[start_index + 15])
# 绘图Step 11:在这里添加新的出入参数赋值 (根据传入的组件,下标为 start_index+顺序)
else:
select_model.set_models(inputs[start_index])
cur_plt, paint_object = Dataset.draw_plot(select_model, color_list, label_list, name, x_label, y_label, False)
return first_draw_plot_with_non_first_draw_plot(cur_plt, paint_object)
def first_draw_plot_with_non_first_draw_plot(cur_plt, paint_object):
extra_gr_dict = {}
# [绘图]
if Dataset.visualize == MN.learning_curve:
cur_plt.savefig(FilePath.png_base.format(FilePath.learning_curve_plot), dpi=300)
extra_gr_dict.update({draw_plot: gr.Plot(cur_plt, visible=True, label=LN.learning_curve_plot)})
elif Dataset.visualize == MN.shap_beeswarm:
cur_plt.savefig(FilePath.png_base.format(FilePath.shap_beeswarm_plot), dpi=300)
extra_gr_dict.update({draw_plot: gr.Plot(cur_plt, visible=True, label=LN.shap_beeswarm_plot)})
elif Dataset.visualize == MN.data_fit:
cur_plt.savefig(FilePath.png_base.format(FilePath.data_fit_plot), dpi=300)
extra_gr_dict.update({draw_plot: gr.Plot(cur_plt, visible=True, label=LN.data_fit_plot)})
elif Dataset.visualize == MN.waterfall:
cur_plt.savefig(FilePath.png_base.format(FilePath.waterfall_plot), dpi=300)
extra_gr_dict.update({draw_plot: gr.Plot(cur_plt, visible=True, label=LN.waterfall_plot)})
elif Dataset.visualize == MN.force:
cur_plt.savefig(FilePath.png_base.format(FilePath.force_plot), dpi=300)
extra_gr_dict.update({draw_plot: gr.Plot(cur_plt, visible=True, label=LN.force_plot)})
elif Dataset.visualize == MN.dependence:
cur_plt.savefig(FilePath.png_base.format(FilePath.dependence_plot), dpi=300)
extra_gr_dict.update({draw_plot: gr.Plot(cur_plt, visible=True, label=LN.dependence_plot)})
elif Dataset.visualize == MN.data_distribution:
cur_plt.savefig(FilePath.png_base.format(FilePath.data_distribution_plot), dpi=300)
extra_gr_dict.update({draw_plot: gr.Plot(cur_plt, visible=True, label=LN.data_distribution_plot)})
elif Dataset.visualize == MN.descriptive_indicators:
cur_plt.savefig(FilePath.png_base.format(FilePath.descriptive_indicators_plot), dpi=300)
extra_gr_dict.update({draw_plot: gr.Plot(cur_plt, visible=True, label=LN.descriptive_indicators_plot)})
extra_gr_dict.update({descriptive_indicators_dataframe: gr.Dataframe(Dataset.get_descriptive_indicators_df(),
type="pandas",
visible=Dataset.check_descriptive_indicators_df())})
elif Dataset.visualize == MN.heatmap:
cur_plt.savefig(FilePath.png_base.format(FilePath.heatmap_plot), dpi=300)
extra_gr_dict.update({draw_plot: gr.Plot(cur_plt, visible=True, label=LN.heatmap_plot)})
# 绘图Step 10:在这里添加新的绘图方法
extra_gr_dict.update(dict(zip(colorpickers, Dataset.colorpickers_change(paint_object))))
extra_gr_dict.update(dict(zip(color_textboxs, Dataset.color_textboxs_change(paint_object))))
extra_gr_dict.update(dict(zip(legend_labels_textboxs, Dataset.labels_change(paint_object))))
extra_gr_dict.update(
{title_name_textbox: gr.Textbox(paint_object.get_name(), visible=True, label=LN.title_name_textbox)})
extra_gr_dict.update(
{x_label_textbox: gr.Textbox(paint_object.get_x_cur_label(), visible=True, label=LN.x_label_textbox)})
extra_gr_dict.update(
{y_label_textbox: gr.Textbox(paint_object.get_y_cur_label(), visible=True, label=LN.y_label_textbox)})
return get_return_extra(True, extra_gr_dict)
# 模型训练
def train_model(*input):
params_list = input[0: StaticValue.MAX_PARAMS_NUM]
optimize = input[StaticValue.MAX_PARAMS_NUM]
train_size = input[StaticValue.MAX_PARAMS_NUM+1]
extra_components_list = input[StaticValue.MAX_PARAMS_NUM+2:]
# 训练集分割比例有效判断
try:
train_size = float(train_size)
except Exception:
gr.Warning("训练集所占比例必须是小数")
return get_return(True)
# 模型选择和超参数优化组件的空白判断
if Dataset.check_train_model(optimize, train_size):
return get_return(True)
# 模型额外组件的空白判断
if Dataset.check_train_model_other_related(extra_components_list):
return get_return(True)
# 模型训练
Dataset.train_model(optimize, params_list, train_size, extra_components_list)
return get_return(True)
# 选择因变量
def select_as_y(col: str):
Dataset.select_as_y(col)
return get_return(True)
# 标准化数据
def standardize_data(col_list: list):
Dataset.standardize_data(col_list)
return get_return(True)
# 将所有数据强制转换为浮点型(除第1列之外)
def change_data_type_to_float():
try:
Dataset.change_data_type_to_float()
except ValueError:
gr.Warning("请先将数据源中的字符型数据转换为数值型 ([分类任务]除第一列以外)")
return get_return(True)
return get_return(True)
# 字符型列转数值型列
def encode_label(col_list: list):
Dataset.encode_label(col_list)
return get_return(True, {
display_encode_label_dataframe: gr.Dataframe(Dataset.get_str2int_mappings_df(), type="pandas", visible=True,
label=LN.display_encode_label_dataframe)})
# 删除所有重复的行
def del_duplicate():
Dataset.del_duplicate()
return get_return(True)
# 删除所有存在缺失值的列
def del_all_na_col():
Dataset.del_all_na_col()
return get_return(True)
# 保留行
def remain_row(num):
Dataset.remain_row(num)
return get_return(True)
# 删除所选列
def del_col(col_list: list):
Dataset.del_col(col_list)
return get_return(True)
# 选择数据源
def choose_dataset(file: str):
# 更改数据源会自动清空所有数据
Dataset.reset_containers()
if file == "自定义":
Dataset.clear()
return get_return(False)
df = Dataset.load_data(file)
Dataset.update(file, df)
return get_return(True, {choose_custom_dataset_file: gr.File(visible=False)})
# 选择用户上传的数据源
def choose_custom_dataset(file: str):
df = Dataset.load_custom_data(file)
Dataset.update(file, df)
return get_return(True, {choose_custom_dataset_file: gr.File(Dataset.file, visible=True)})
def select_model_optimize_radio(optimize):
optimize = Dataset.get_optimize_name_mapping()[optimize]
if optimize == "grid_search":
Dataset.choose_optimize = "grid_search"
elif optimize == "bayes_search":
Dataset.choose_optimize = "bayes_search"
elif optimize == "None":
Dataset.choose_optimize = "None"
return get_return(True)
def linear_regression_model_radio_change(model):
if model:
Dataset.linear_regression_model_type = Dataset.get_linear_regression_model_name_mapping()[model]
return get_return(True)
def naive_bayes_classification_model_radio_change(model):
if model:
Dataset.naive_bayes_classifier_model_type = Dataset.get_naive_bayes_classifier_model_name_mapping()[model]
return get_return(True)
# 主程序
# js: 使用的js代码
with gr.Blocks(js="./design/welcome.js", css="./design/custom.css") as demo:
'''
组件的数量、种类和排版
'''
with gr.Tab("机器学习"):
'''
数据预处理
'''
# 选择数据源
with gr.Accordion("数据源"):
with gr.Group():
# 刚进入程序时,仅"选择数据库"radio可见 (visible=True),其他组件默认为不可见 (visible=False)
choose_dataset_radio = gr.Radio(Dataset.get_dataset_list(), label=LN.choose_dataset_radio)
choose_custom_dataset_file = gr.File(visible=False)
# 显示数据表信息
with gr.Accordion("当前数据信息"):
display_dataset_dataframe = gr.Dataframe(visible=False)
display_dataset = gr.File(visible=False)
with gr.Row():
display_total_col_num_text = gr.Textbox(visible=False)
display_total_row_num_text = gr.Textbox(visible=False)
with gr.Column():
remain_row_slider = gr.Slider(visible=False)
remain_row_button = gr.Button(visible=False)
with gr.Row():
with gr.Column():
with gr.Row():
display_na_list_text = gr.Textbox(visible=False)
display_duplicate_num_text = gr.Textbox(visible=False)
with gr.Row():
del_all_na_col_button = gr.Button(visible=False)
del_duplicate_button = gr.Button(visible=False)
# 操作数据表
with gr.Accordion("数据处理"):
select_as_y_radio = gr.Radio(visible=False)
with gr.Row():
with gr.Column():
data_type_dataframe = gr.Dataframe(visible=False)
change_data_type_to_float_button = gr.Button(visible=False)
choose_assign_radio = gr.Radio(visible=False)
with gr.Column():
del_col_checkboxgroup = gr.Checkboxgroup(visible=False)
del_col_button = gr.Button(visible=False)
encode_label_checkboxgroup = gr.Checkboxgroup(visible=False)
encode_label_button = gr.Button(visible=False)
display_encode_label_dataframe = gr.Dataframe(visible=False)
standardize_data_checkboxgroup = gr.Checkboxgroup(visible=False)
standardize_data_button = gr.Button(visible=False)
# 数据模型
with gr.Accordion("数据模型"):
# [模型]
select_as_model_radio = gr.Radio(visible=False)
linear_regression_model_radio = gr.Radio(visible=False)
naive_bayes_classification_model_radio = gr.Radio(visible=False)
train_size_textbox = gr.Textbox(visible=False)
model_optimize_radio = gr.Radio(visible=False)
model_train_params_textboxs = []
with gr.Accordion("超参数列表"):
ONE_PIECE_RANGE = int(StaticValue.MAX_PARAMS_NUM / 10)
with gr.Row():
for i in range(0, ONE_PIECE_RANGE):
with gr.Row():
textbox = gr.Textbox(visible=False)
model_train_params_textboxs.append(textbox)
with gr.Row():
for i in range(ONE_PIECE_RANGE, 2 * ONE_PIECE_RANGE):
with gr.Row():
textbox = gr.Textbox(visible=False)
model_train_params_textboxs.append(textbox)
with gr.Row():
for i in range(2 * ONE_PIECE_RANGE, 3 * ONE_PIECE_RANGE):
with gr.Row():
textbox = gr.Textbox(visible=False)
model_train_params_textboxs.append(textbox)
with gr.Row():
for i in range(3 * ONE_PIECE_RANGE, 4 * ONE_PIECE_RANGE):
with gr.Row():
textbox = gr.Textbox(visible=False)
model_train_params_textboxs.append(textbox)
with gr.Row():
for i in range(4 * ONE_PIECE_RANGE, 5 * ONE_PIECE_RANGE):
with gr.Row():
textbox = gr.Textbox(visible=False)
model_train_params_textboxs.append(textbox)
with gr.Row():
for i in range(5 * ONE_PIECE_RANGE, 6 * ONE_PIECE_RANGE):
with gr.Row():
textbox = gr.Textbox(visible=False)
model_train_params_textboxs.append(textbox)
with gr.Row():
for i in range(6 * ONE_PIECE_RANGE, 7 * ONE_PIECE_RANGE):
with gr.Row():
textbox = gr.Textbox(visible=False)
model_train_params_textboxs.append(textbox)
with gr.Row():
for i in range(7 * ONE_PIECE_RANGE, 8 * ONE_PIECE_RANGE):
with gr.Row():
textbox = gr.Textbox(visible=False)
model_train_params_textboxs.append(textbox)
with gr.Row():
for i in range(8 * ONE_PIECE_RANGE, 9 * ONE_PIECE_RANGE):
with gr.Row():
textbox = gr.Textbox(visible=False)
model_train_params_textboxs.append(textbox)
with gr.Row():
for i in range(9 * ONE_PIECE_RANGE, 10 * ONE_PIECE_RANGE):
with gr.Row():
textbox = gr.Textbox(visible=False)
model_train_params_textboxs.append(textbox)
model_train_button = gr.Button(visible=False)
model_train_checkbox = gr.Checkbox(visible=False)
model_train_params_dataframe = gr.Dataframe(visible=False)
model_train_metrics_dataframe = gr.Dataframe(visible=False)
# 模型Step 1:在此处添加新的模型相关组件 (初始化)
# 可视化
with gr.Accordion("数据可视化"):
# [绘图]
with gr.Tab("数据分布图"):
data_distribution_radio = gr.Radio(visible=False)
data_distribution_is_rotate = gr.Checkbox(visible=False)
data_distribution_button = gr.Button(visible=False)
with gr.Tab("箱线统计图"):
descriptive_indicators_checkboxgroup = gr.Checkboxgroup(visible=False)
descriptive_indicators_is_rotate = gr.Checkbox(visible=False)
descriptive_indicators_button = gr.Button(visible=False)
descriptive_indicators_dataframe = gr.Dataframe(visible=False)
with gr.Tab("系数热力图"):
heatmap_checkboxgroup = gr.Checkboxgroup(visible=False)
heatmap_is_rotate = gr.Checkbox(visible=False)
heatmap_button = gr.Button(visible=False)
# with gr.Tab("主成分分析"):
# pca_button = gr.Button(visible=False)
# pca_replace_data_button = gr.Button(visible=False)
with gr.Tab("学习曲线图"):
learning_curve_checkboxgroup = gr.Checkboxgroup(visible=False)
learning_curve_button = gr.Button(visible=False)
with gr.Tab("数据拟合图"):
data_fit_checkboxgroup = gr.Checkboxgroup(visible=False)
data_fit_button = gr.Button(visible=False)
with gr.Tab("特征蜂群图"):
shap_beeswarm_radio = gr.Radio(visible=False)
shap_beeswarm_type = gr.Radio(visible=False)
shap_beeswarm_button = gr.Button(visible=False)
with gr.Tab("特征瀑布图"):
waterfall_radio = gr.Radio(visible=False)
waterfall_number = gr.Slider(visible=False)
waterfall_button = gr.Button(visible=False)
with gr.Tab("特征力图"):
force_radio = gr.Radio(visible=False)
force_number = gr.Slider(visible=False)
force_button = gr.Button(visible=False)
with gr.Tab("特征依赖图"):
dependence_radio = gr.Radio(visible=False)
dependence_col = gr.Radio(visible=False)
dependence_button = gr.Button(visible=False)
# 绘图Step 1:在这里添加新的绘图相关组件 (初始化)
# 通用可视化组件
legend_labels_textboxs = []
with gr.Accordion("图例"):
with gr.Row():
for i in range(StaticValue.MAX_NUM):
with gr.Row():
label = gr.Textbox(visible=False)
legend_labels_textboxs.append(label)
with gr.Accordion("坐标轴"):
with gr.Row():
title_name_textbox = gr.Textbox(visible=False)
x_label_textbox = gr.Textbox(visible=False)
y_label_textbox = gr.Textbox(visible=False)
colorpickers = []
color_textboxs = []
with gr.Accordion("颜色"):
with gr.Row():
for i in range(StaticValue.MAX_NUM):
with gr.Row():
colorpicker = gr.ColorPicker(visible=False)
colorpickers.append(colorpicker)
color_textbox = gr.Textbox(visible=False)
color_textboxs.append(color_textbox)
draw_plot = gr.Plot(visible=False)
draw_file = gr.File(visible=False)
with gr.Tab("文字说明"):
notes = gr.Markdown(Dataset.get_notes(), visible=True)
'''
监听事件函数
'''
# 模型训练传入的组件 (训练模型)
def get_train_model_input():
return model_train_params_textboxs + [
# [模型]
model_optimize_radio,
train_size_textbox,
linear_regression_model_radio,
naive_bayes_classification_model_radio
# 模型Step 2:在这里添加新的模型额外组件
]
# 模型基础绘制传入的组件 (图例+标题+x标签+y标签+颜色)
def get_draw_general_input():
return [
# [绘图]
title_name_textbox,
x_label_textbox,
y_label_textbox
] + colorpickers + \
color_textboxs + \
legend_labels_textboxs + [
learning_curve_checkboxgroup,
shap_beeswarm_radio,
shap_beeswarm_type,
data_fit_checkboxgroup,
waterfall_radio,
waterfall_number,
force_radio,
force_number,
dependence_radio,
dependence_col,
data_distribution_radio,
data_distribution_is_rotate,
descriptive_indicators_is_rotate,
descriptive_indicators_checkboxgroup,
heatmap_checkboxgroup, heatmap_is_rotate
# 绘图Step 2:在这里添加新的绘图组件
]
# 获取组件监听事件函数的输出
def get_outputs():
gr_set = {
choose_custom_dataset_file,
display_dataset_dataframe,
display_total_col_num_text,
display_total_row_num_text,
display_na_list_text,
del_all_na_col_button,
display_duplicate_num_text,
del_duplicate_button,
del_col_checkboxgroup,
del_col_button,
remain_row_slider,
remain_row_button,
encode_label_button,
display_encode_label_dataframe,
encode_label_checkboxgroup,
data_type_dataframe,
change_data_type_to_float_button,
standardize_data_checkboxgroup,
standardize_data_button,
select_as_y_radio,
train_size_textbox,
model_optimize_radio,
model_train_button,
model_train_checkbox,
model_train_params_dataframe,
model_train_metrics_dataframe,
select_as_model_radio,
choose_assign_radio,
display_dataset,
draw_plot,
draw_file,
title_name_textbox,
x_label_textbox,
y_label_textbox,
# [模型]
linear_regression_model_radio,
naive_bayes_classification_model_radio,
# 模型Step 7:在这里添加额外的模型组件
# [绘图]
heatmap_is_rotate,
heatmap_checkboxgroup,
heatmap_button,
data_distribution_radio,
data_distribution_is_rotate,
data_distribution_button,
descriptive_indicators_checkboxgroup,
descriptive_indicators_is_rotate,
descriptive_indicators_dataframe,
descriptive_indicators_button,
learning_curve_checkboxgroup,
learning_curve_button,
shap_beeswarm_radio,
shap_beeswarm_type,
shap_beeswarm_button,
data_fit_checkboxgroup,
data_fit_button,
waterfall_radio,
waterfall_number,
waterfall_button,
force_radio,
force_number,
force_button,
dependence_radio,
dependence_col,
dependence_button,
# 绘图Step 12:在这里添加新的绘图组件
}
gr_set.update(set(colorpickers))
gr_set.update(set(color_textboxs))
gr_set.update(set(legend_labels_textboxs))
gr_set.update(set(model_train_params_textboxs))
return gr_set
# 选择数据源
choose_dataset_radio.change(
fn=choose_dataset,
inputs=[choose_dataset_radio],
outputs=get_outputs()
)
choose_custom_dataset_file.upload(
fn=choose_custom_dataset,
inputs=[choose_custom_dataset_file],
outputs=get_outputs()
)
# 操作数据表
# 删除所选列
del_col_button.click(
fn=del_col,
inputs=[del_col_checkboxgroup],
outputs=get_outputs()
)
# 保留行
remain_row_button.click(
fn=remain_row,
inputs=[remain_row_slider],
outputs=get_outputs()
)
# 删除所有存在缺失值的列
del_all_na_col_button.click(
fn=del_all_na_col,
outputs=get_outputs()
)
# 删除所有重复的行
del_duplicate_button.click(
fn=del_duplicate,
outputs=get_outputs()
)
# 字符型列转数值型列
encode_label_button.click(
fn=encode_label,
inputs=[encode_label_checkboxgroup],
outputs=get_outputs()
)
# 将所有数据强制转换为浮点型(除第1列之外)
change_data_type_to_float_button.click(
fn=change_data_type_to_float,
outputs=get_outputs()
)
# 标准化数据
standardize_data_button.click(
fn=standardize_data,
inputs=[standardize_data_checkboxgroup],
outputs=get_outputs()
)
# 选择因变量
select_as_y_radio.change(
fn=select_as_y,
inputs=[select_as_y_radio],
outputs=get_outputs()
)
# 选择任务类型(强制转换第1列)
choose_assign_radio.change(
fn=choose_assign,
inputs=[choose_assign_radio],
outputs=get_outputs()
)
# 数据模型
select_as_model_radio.change(
fn=select_as_model,
inputs=[select_as_model_radio],
outputs=get_outputs()
)
# [模型]
linear_regression_model_radio.change(
fn=linear_regression_model_radio_change,
inputs=[linear_regression_model_radio],
outputs=get_outputs()
)
naive_bayes_classification_model_radio.change(
fn=naive_bayes_classification_model_radio_change,
inputs=[naive_bayes_classification_model_radio],
outputs=get_outputs()
)
# 模型Step 16:在这里添加新的模型额外组件监听事件
# 选择超参数优化方法
model_optimize_radio.select(
fn=select_model_optimize_radio,
inputs=[model_optimize_radio],
outputs=get_outputs()
)
# 模型训练
model_train_button.click(
fn=train_model,
inputs=get_train_model_input(),
outputs=get_outputs()
)
# 可视化
# [绘图]
data_distribution_button.click(
fn=data_distribution_first_draw_plot,
inputs=[
data_distribution_radio,
data_distribution_is_rotate
],
outputs=get_outputs()
)
descriptive_indicators_button.click(
fn=descriptive_indicators_first_draw_plot,
inputs=[
descriptive_indicators_is_rotate,
descriptive_indicators_checkboxgroup
],
outputs=get_outputs()
)
heatmap_button.click(
fn=heatmap_first_draw_plot,
inputs=[
heatmap_checkboxgroup,
heatmap_is_rotate
],
outputs=get_outputs()
)
learning_curve_button.click(
fn=learning_curve_first_draw_plot,
inputs=[
learning_curve_checkboxgroup
],
outputs=get_outputs()
)
shap_beeswarm_button.click(
fn=shap_beeswarm_first_draw_plot,
inputs=[
shap_beeswarm_radio,
shap_beeswarm_type
],
outputs=get_outputs()
)
data_fit_button.click(
fn=data_fit_first_draw_plot,
inputs=[
data_fit_checkboxgroup
],
outputs=get_outputs()
)
waterfall_button.click(
fn=waterfall_first_draw_plot,
inputs=[
waterfall_radio,
waterfall_number
],
outputs=get_outputs()
)
force_button.click(
fn=force_first_draw_plot,
inputs=[
force_radio,
force_number
],
outputs=get_outputs()
)
dependence_button.click(
fn=dependence_first_draw_plot,
inputs=[
dependence_radio,
dependence_col
],
outputs=get_outputs()
)
# 绘图Step 3:在这里添加新的绘图监听事件
# 可视化通用
title_name_textbox.blur(
fn=not_color_text_out_non_first_draw_plot,
inputs=get_draw_general_input(),
outputs=get_outputs()
)
x_label_textbox.blur(
fn=not_color_text_out_non_first_draw_plot,
inputs=get_draw_general_input(),
outputs=get_outputs()
)
y_label_textbox.blur(
fn=not_color_text_out_non_first_draw_plot,
inputs=get_draw_general_input(),
outputs=get_outputs()
)
for i in range(StaticValue.MAX_NUM):
colorpickers[i].blur(
fn=not_color_text_out_non_first_draw_plot,
inputs=get_draw_general_input(),
outputs=get_outputs()
)
color_textboxs[i].blur(
fn=is_color_text_out_non_first_draw_plot,
inputs=get_draw_general_input(),
outputs=get_outputs()
)
legend_labels_textboxs[i].blur(
fn=not_color_text_out_non_first_draw_plot,
inputs=get_draw_general_input(),
outputs=get_outputs()
)
# 运行入口
if __name__ == "__main__":
# 启动程序
demo.launch()
|