File size: 8,683 Bytes
8d94a86
 
928d3e1
 
8d94a86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# 全局静态变量值存储类
class StaticValue:
    # SHAP抽样数量
    SAMPLE_NUM = 20
    # 超参数文本框的最大组件数量
    MAX_PARAMS_NUM = 60
    # 颜色和标签显示的最大组件数量
    MAX_NUM = 20
    # 随机种子 (数据集切分+模型训练)
    RANDOM_STATE = 123

    # 参数类型
    INT = "int"
    FLOAT = "float"
    BOOL = "bool"
    STR = "str"

    # 画图颜色组重复次数
    COLOR_ITER_NUM = 3

    # 颜色组
    COLORS = [
                 "#ca5353",
                 "#c874a5",
                 "#b674c8",
                 "#8274c8",
                 "#748dc8",
                 "#74acc8",
                 "#74c8b7",
                 "#74c88d",
                 "#a6c874",
                 "#e0e27e",
                 "#df9b77",
                 "#404040",
                 "#999999",
                 "#d4d4d4"
             ] * COLOR_ITER_NUM

    COLORS_0 = [
                   "#8074C8",
                   "#7895C1",
                   "#A8CBDF",
                   "#992224",
                   "#B54764",
                   "#E3625D",
                   "#EF8B67",
                   "#F0C284"
               ] * COLOR_ITER_NUM

    COLORS_1 = [
                   "#4A5F7E",
                   "#719AAC",
                   "#72B063",
                   "#94C6CD",
                   "#B8DBB3",
                   "#E29135"
               ] * COLOR_ITER_NUM

    COLORS_2 = [
                   "#4485C7",
                   "#D4562E",
                   "#DBB428",
                   "#682487",
                   "#84BA42",
                   "#7ABBDB",
                   "#A51C36"
               ] * COLOR_ITER_NUM

    COLORS_3 = [
                   "#8074C8",
                   "#7895C1",
                   "#A8CBDF",
                   "#F5EBAE",
                   "#F0C284",
                   "#EF8B67",
                   "#E3625D",
                   "#B54764"
               ] * COLOR_ITER_NUM

    COLORS_4 = [
                   "#979998",
                   "#C69287",
                   "#E79A90",
                   "#EFBC91",
                   "#E4CD87",
                   "#FAE5BB",
                   "#DDDDDF"
               ] * COLOR_ITER_NUM

    COLORS_5 = [
                   "#91CCC0",
                   "#7FABD1",
                   "#F7AC53",
                   "#EC6E66",
                   "#B5CE4E",
                   "#BD7795",
                   "#7C7979"
               ] * COLOR_ITER_NUM

    COLORS_6 = [
                   "#E9687A",
                   "#F58F7A",
                   "#FDE2D8",
                   "#CFCFD0",
                   "#B6B3D6"
               ] * COLOR_ITER_NUM


# 文件路径相关静态变量存储类
class FilePath:
    png_base = "./buffer/{}.png"
    excel_base = "./buffer/{}.xlsx"

    # [绘图]
    display_dataset = "current_excel_data"

    data_distribution_plot = "data_distribution_plot"
    descriptive_indicators_plot = "descriptive_indicators_plot"
    heatmap_plot = "heatmap_plot"
    learning_curve_plot = "learning_curve_plot"
    shap_beeswarm_plot = "shap_beeswarm_plot"
    data_fit_plot = "data_fit_plot"
    waterfall_plot = "waterfall_plot"
    force_plot = "force_plot"
    dependence_plot = "dependence_plot"
    # 绘图Step 15:在这里添加新的绘图方法名称


# 模型名称静态变量存储类
class MN:  # ModelName
    classification = "classification"
    regression = "regression"

    # [模型]
    linear_regressor = "linear regressor"
    polynomial_regressor = "polynomial regressor"
    logistic_classifier = "logistic classifier"
    decision_tree_classifier = "decision tree classifier"
    random_forest_classifier = "random forest classifier"
    random_forest_regressor = "random forest regressor"
    xgboost_classifier = "xgboost classifier"
    lightGBM_classifier = "lightGBM classifier"
    gradient_boosting_regressor = "gradient boosting regressor"
    svm_classifier = "svm classifier"
    svm_regressor = "svm regressor"
    knn_classifier = "knn classifier"
    knn_regressor = "knn regressor"
    naive_bayes_classifier = "naive bayes classifier"
    # 模型Step 4:在这里添加新的模型名称

    # [绘图]
    data_distribution = "data_distribution"
    descriptive_indicators = "descriptive_indicators"
    heatmap = "heatmap"
    learning_curve = "learning_curve"
    shap_beeswarm = "shap_beeswarm"
    data_fit = "data_fit"
    waterfall = "waterfall"
    force = "force"
    dependence = "dependence"
    # 绘图Step 4:在这里添加新的绘图方法名称


# 组件标签名称静态变量存储类
class LN:  # LabelName
    choose_dataset_radio = "选择所需数据源 [必选]"
    display_total_col_num_text = "总列数"
    display_total_row_num_text = "总行数"
    display_na_list_text = "存在缺失值的列"
    del_all_na_col_button = "删除所有存在缺失值的列 [可选]"
    display_duplicate_num_text = "重复的行数"
    del_col_checkboxgroup = "选择所需删除的列"
    del_col_button = "删除 [可选]"
    remain_row_slider = "保留的行数"
    remain_row_button = "保留 [可选]"
    del_duplicate_button = "删除所有重复行 [可选]"
    encode_label_checkboxgroup = "选择所需标签编码的字符型数值列"
    display_encode_label_dataframe = "标签编码信息"
    encode_label_button = "字符型转数值型 [可选]"
    change_data_type_to_float_button = "将所有数据强制转换为浮点型(除第1列以外)[必选]"
    standardize_data_checkboxgroup = "选择所需标准化的列"
    standardize_data_button = "标准化 [可选]"
    select_as_y_radio = "选择因变量 [必选]"
    choose_assign_radio = "选择任务类型(同时会根据任务类型将第1列数据强制转换)[必选]"
    train_size_textbox = "分割出的训练集所占比例"
    model_optimize_radio = "选择超参数优化方法"
    model_train_input_params_dataframe = "超参数列表"
    model_train_button = "训练"
    model_train_params_dataframe = "训练后的模型参数"
    model_train_metrics_dataframe = "训练后的模型指标"
    select_as_model_radio = "选择所需训练的模型"

    # [模型]
    linear_regression_model_radio = "选择线性回归的模型"
    naive_bayes_classification_model_radio = "选择朴素贝叶斯分类的模型"
    # 模型Step 5:在这里添加新的模型额外组件名称

    title_name_textbox = "标题"
    x_label_textbox = "x 轴名称"
    y_label_textbox = "y 轴名称"
    colors = ["颜色 {}".format(i) for i in range(StaticValue.MAX_NUM)]
    labels = ["图例 {}".format(i) for i in range(StaticValue.MAX_NUM)]

    # [绘图]
    heatmap_is_rotate = "x轴标签是否旋转"
    heatmap_checkboxgroup = "选择所需绘制系数热力图的列"
    heatmap_button = "绘制系数热力图"
    data_distribution_radio = "选择所需绘制数据分布图的列"
    data_distribution_is_rotate = "x轴标签是否旋转"
    data_distribution_button = "绘制数据分布图"
    descriptive_indicators_checkboxgroup = "选择所需绘制箱线统计图的列"
    descriptive_indicators_is_rotate = "x轴标签是否旋转"
    descriptive_indicators_button = "绘制箱线统计图"
    learning_curve_checkboxgroup = "选择所需绘制学习曲线图的模型"
    learning_curve_button = "绘制学习曲线图"
    shap_beeswarm_radio = "选择所需绘制特征蜂群图的模型"
    shap_beeswarm_type = "选择图像类型"
    shap_beeswarm_button = "绘制特征蜂群图"
    data_fit_checkboxgroup = "选择所需绘制数据拟合图的模型"
    data_fit_button = "绘制数据拟合图"
    waterfall_radio = "选择所需绘制特征瀑布图的模型"
    waterfall_number = "输入相关特征的变量索引"
    waterfall_button = "绘制特征瀑布图"
    force_radio = "选择所需绘制特征力图的模型"
    force_number = "输入相关特征的变量索引"
    force_button = "绘制特征力图"
    dependence_radio = "选择所需绘制特征依赖图的模型"
    dependence_col = "选择相应的列"
    dependence_button = "绘制特征依赖图"
    # 绘图Step 5:在这里添加新的绘图方法相关组件名称

    data_distribution_plot = "数据分布图"
    descriptive_indicators_plot = "箱线统计图"
    heatmap_plot = "系数热力图"
    learning_curve_plot = "学习曲线图"
    shap_beeswarm_plot = "特征蜂群图"
    data_fit_plot = "数据拟合图"
    waterfall_plot = "特征瀑布图"
    force_plot = "特征力图"
    dependence_plot = "特征依赖图"
    # 绘图Step 6:在这里添加新的绘图方法名称