LLH
2024/02/20/14:15
10c7c36
raw
history blame
2.96 kB
from sklearn.model_selection import learning_curve
from sklearn.naive_bayes import *
import numpy as np
from static.new_class import Container
from static.process import grid_search, bayes_search
from visualization.draw_line_graph import draw_line_graph
from visualization.draw_scatter_line_graph import draw_scatter_line_graph
from metrics.calculate_classification_metrics import calculate_classification_metrics
from metrics.calculate_regression_metrics import calculate_regression_metrics
class NaiveBayesClassifierParams:
@classmethod
def get_params(cls, sort):
if sort == "MultinomialNB":
return {
"alpha": [0.1, 0.5, 1.0, 2.0]
}
elif sort == "GaussianNB":
return {}
elif sort == "ComplementNB":
return {
"alpha": [0.1, 0.5, 1, 10],
"fit_prior": [True, False],
"norm": [True, False]
}
# 朴素贝叶斯分类
def naive_bayes_classification(container: Container, model=None):
x_train = container.x_train
y_train = container.y_train
x_test = container.x_test
y_test = container.y_test
hyper_params_optimize = container.hyper_params_optimize
info = {}
if model == "MultinomialNB":
naive_bayes_model = MultinomialNB()
params = NaiveBayesClassifierParams.get_params(model)
elif model == "GaussianNB":
naive_bayes_model = GaussianNB()
params = NaiveBayesClassifierParams.get_params(model)
elif model == "ComplementNB":
naive_bayes_model = ComplementNB()
params = NaiveBayesClassifierParams.get_params(model)
else:
naive_bayes_model = GaussianNB()
params = NaiveBayesClassifierParams.get_params(model)
if hyper_params_optimize == "grid_search":
best_model = grid_search(params, naive_bayes_model, x_train, y_train)
elif hyper_params_optimize == "bayes_search":
best_model = bayes_search(params, naive_bayes_model, x_train, y_train)
else:
best_model = naive_bayes_model
best_model.fit(x_train, y_train)
info["参数"] = best_model.get_params()
y_pred = best_model.predict(x_test)
# y_pred = best_model.predict(x_test).reshape(-1, 1)
container.set_y_pred(y_pred)
train_sizes, train_scores, test_scores = learning_curve(best_model, x_train, y_train, cv=5)
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
container.set_learning_curve_values(train_sizes, train_scores_mean, train_scores_std, test_scores_mean,
test_scores_std)
info["指标"] = calculate_classification_metrics(y_pred, y_test)
container.set_info(info)
container.set_status("trained")
container.set_model(best_model)
return container