Spaces:
Sleeping
Sleeping
from sklearn.model_selection import learning_curve | |
from sklearn.naive_bayes import * | |
import numpy as np | |
from static.new_class import Container | |
from static.process import grid_search, bayes_search | |
from visualization.draw_line_graph import draw_line_graph | |
from visualization.draw_scatter_line_graph import draw_scatter_line_graph | |
from metrics.calculate_classification_metrics import calculate_classification_metrics | |
from metrics.calculate_regression_metrics import calculate_regression_metrics | |
class NaiveBayesClassifierParams: | |
def get_params(cls, sort): | |
if sort == "MultinomialNB": | |
return { | |
"alpha": [0.1, 0.5, 1.0, 2.0] | |
} | |
elif sort == "GaussianNB": | |
return {} | |
elif sort == "ComplementNB": | |
return { | |
"alpha": [0.1, 0.5, 1, 10], | |
"fit_prior": [True, False], | |
"norm": [True, False] | |
} | |
# 朴素贝叶斯分类 | |
def naive_bayes_classification(container: Container, model=None): | |
x_train = container.x_train | |
y_train = container.y_train | |
x_test = container.x_test | |
y_test = container.y_test | |
hyper_params_optimize = container.hyper_params_optimize | |
info = {} | |
if model == "MultinomialNB": | |
naive_bayes_model = MultinomialNB() | |
params = NaiveBayesClassifierParams.get_params(model) | |
elif model == "GaussianNB": | |
naive_bayes_model = GaussianNB() | |
params = NaiveBayesClassifierParams.get_params(model) | |
elif model == "ComplementNB": | |
naive_bayes_model = ComplementNB() | |
params = NaiveBayesClassifierParams.get_params(model) | |
else: | |
naive_bayes_model = GaussianNB() | |
params = NaiveBayesClassifierParams.get_params(model) | |
if hyper_params_optimize == "grid_search": | |
best_model = grid_search(params, naive_bayes_model, x_train, y_train) | |
elif hyper_params_optimize == "bayes_search": | |
best_model = bayes_search(params, naive_bayes_model, x_train, y_train) | |
else: | |
best_model = naive_bayes_model | |
best_model.fit(x_train, y_train) | |
info["参数"] = best_model.get_params() | |
y_pred = best_model.predict(x_test) | |
# y_pred = best_model.predict(x_test).reshape(-1, 1) | |
container.set_y_pred(y_pred) | |
train_sizes, train_scores, test_scores = learning_curve(best_model, x_train, y_train, cv=5) | |
train_scores_mean = np.mean(train_scores, axis=1) | |
train_scores_std = np.std(train_scores, axis=1) | |
test_scores_mean = np.mean(test_scores, axis=1) | |
test_scores_std = np.std(test_scores, axis=1) | |
container.set_learning_curve_values(train_sizes, train_scores_mean, train_scores_std, test_scores_mean, | |
test_scores_std) | |
info["指标"] = calculate_classification_metrics(y_pred, y_test) | |
container.set_info(info) | |
container.set_status("trained") | |
container.set_model(best_model) | |
return container | |