Spaces:
Sleeping
Sleeping
import numpy as np | |
from sklearn.metrics import * | |
from sklearn.preprocessing import label_binarize | |
from visualization.draw_line_graph import draw_line_graph | |
class ClassificationMetrics: | |
def get_metrics(cls): | |
return ["Accuracy", "Precision", "Recall", "F1-score"] | |
def calculate_classification_metrics(pred_data, real_data): | |
info = {} | |
real_data = np.round(real_data, 0).astype(int) | |
pred_data = np.round(pred_data, 0).astype(int) | |
cur_confusion_matrix = confusion_matrix(real_data[:, 0], pred_data) | |
info["Confusion matrix"] = cur_confusion_matrix | |
info["Accuracy"] = np.sum(cur_confusion_matrix.diagonal()) / np.sum(cur_confusion_matrix) | |
info["Precision"] = cur_confusion_matrix.diagonal() / np.sum(cur_confusion_matrix, axis=1) | |
info["Recall"] = cur_confusion_matrix.diagonal() / np.sum(cur_confusion_matrix, axis=0) | |
info["F1-score"] = np.mean(2 * np.multiply(info["Precision"], info["Recall"]) / (info["Precision"] + info["Recall"])) | |
return info | |
max_class = max(real_data)[0] | |
min_class = min(real_data)[0] | |
pred_data_ = label_binarize(pred_data, classes=range(min_class, max_class+1)) | |
real_data_ = label_binarize(real_data, classes=range(min_class, max_class+1)) | |
for i in range(max_class - min_class): | |
fpr, tpr, thresholds = roc_curve(real_data_[:, i], pred_data_[:, i]) | |
# draw_line_graph(fpr, tpr, "ROC curve with AUC={:.2f}".format(auc(fpr, tpr))) | |