LLH
2024/03/07/16:46
8d94a86
raw
history blame
1.61 kB
def get_values_from_container_class(container):
return container.x_train, container.y_train, container.x_test, container.y_test, container.hyper_params_optimize
def transform_params_list(params_class, params_list, model=None):
input_params_keys = []
input_params_values = []
inner_value_list = []
keys = params_class.get_params(model).keys() if model else params_class.get_params().keys()
for i, param in enumerate(params_list):
if param in keys:
input_params_keys.append(param)
if i != 0:
input_params_values.append(inner_value_list)
inner_value_list = []
else:
inner_value_list.append(param)
else:
input_params_values.append(inner_value_list)
input_params = dict(zip(input_params_keys, input_params_values))
for k, v in input_params.items():
if k in keys:
value_type = params_class.get_params_type(model)[k] if model else params_class.get_params_type()[k]
try:
if value_type == "int":
input_params[k] = [int(x) for x in input_params[k]]
elif value_type == "float":
input_params[k] = [float(x) for x in input_params[k]]
elif value_type == "bool":
input_params[k] = [x == "True" for x in input_params[k]]
elif value_type == "str":
input_params[k] = [str(x) for x in input_params[k]]
except Exception:
input_params[k] = [str(x) for x in input_params[k]]
return input_params