Spaces:
Sleeping
Sleeping
import numpy as np | |
from sklearn.metrics import * | |
class RegressionMetrics: | |
def get_metrics(cls): | |
return ["MAE", "MSE", "RSME", "R-Sqaure", "Adjusted R-Square"] | |
def calculate_regression_metrics(pred_data, real_data): | |
info = {} | |
info["MAE"] = mean_absolute_error(real_data, pred_data) | |
# mae = mean_absolute_error(real_data, pred_data) | |
info["MSE"] = mean_squared_error(real_data, pred_data) | |
# mse = mean_squared_error(real_data, pred_data) | |
info["RSME"] = np.sqrt(info["MSE"]) | |
# rsme = np.sqrt(info["MSE of "+model_name]) | |
info["R-Sqaure"] = r2_score(real_data, pred_data) | |
# r2 = r2_score(real_data, pred_data) | |
if isinstance(max(real_data), np.ndarray): | |
info["Adjusted R-Square"] = 1 - (1 - info["R-Sqaure"]) * (len(pred_data)-1) / (len(pred_data)-max(real_data)[0]-1) | |
# ar2 = 1 - (1 - info["R-Sqaure of "+model_name]) * (len(pred_data)-1) / (len(pred_data)-max(real_data)[0]-1) | |
else: | |
info["Adjusted R-Square"] = 1 - (1 - info["R-Sqaure"]) * (len(pred_data) - 1) / (len(pred_data) - max(real_data) - 1) | |
# ar2 = 1 - (1 - info["R-Sqaure of " + model_name]) * (len(pred_data) - 1) / (len(pred_data) - max(real_data) - 1) | |
return info | |