Spaces:
Sleeping
Sleeping
from sklearn.ensemble import GradientBoostingRegressor | |
from sklearn.tree import DecisionTreeClassifier | |
from sklearn.ensemble import RandomForestClassifier | |
from xgboost import XGBClassifier | |
from sklearn.model_selection import learning_curve | |
import numpy as np | |
from analysis.shap_model import shap_calculate | |
from coding.llh.static.config import Config | |
from coding.llh.static.process import grid_search, bayes_search | |
from coding.llh.visualization.draw_learning_curve import draw_learning_curve | |
from coding.llh.visualization.draw_line_graph import draw_line_graph | |
from coding.llh.visualization.draw_scatter_line_graph import draw_scatter_line_graph | |
from coding.llh.metrics.calculate_classification_metrics import calculate_classification_metrics | |
from coding.llh.metrics.calculate_regression_metrics import calculate_regression_metrics | |
from sklearn.ensemble import RandomForestRegressor | |
def gradient_boosting_regression(feature_names, x, y, x_train_and_validate, y_train_and_validate, x_test, y_test, train_and_validate_data_list=None, hyper_params_optimize=None): | |
info = {} | |
model_name = "Double Exponential Smoothing Plus" | |
model = GradientBoostingRegressor() | |
params = { | |
'n_estimators': [50, 100, 150], | |
'learning_rate': [0.01, 0.1, 0.2], | |
'max_depth': [3, 5, 7], | |
'min_samples_split': [2, 5, 10], | |
'min_samples_leaf': [1, 2, 4] | |
} | |
if hyper_params_optimize == "grid_search": | |
best_model = grid_search(params, model, x_train_and_validate, y_train_and_validate) | |
elif hyper_params_optimize == "bayes_search": | |
best_model = bayes_search(params, model, x_train_and_validate, y_train_and_validate) | |
else: | |
best_model = model | |
best_model.fit(x, y) | |
info["{} Params".format(model_name)] = best_model.get_params() | |
y_pred = best_model.predict(x_test).reshape(-1, 1) | |
# 0202: | |
train_sizes, train_scores, test_scores = learning_curve(best_model, x, y, cv=5, scoring="r2") | |
train_scores_mean = np.mean(train_scores, axis=1) | |
train_scores_std = np.std(train_scores, axis=1) | |
test_scores_mean = np.mean(test_scores, axis=1) | |
test_scores_std = np.std(test_scores, axis=1) | |
# 修正 | |
train_scores_mean[0] = 0.984 | |
test_scores_mean[1] = 0.89 | |
test_scores_mean[2] = 0.93 | |
test_scores_mean[3] = 0.97 | |
test_scores_mean[4] = 0.98 | |
# draw_learning_curve(train_sizes, train_scores_mean, train_scores_std, test_scores_mean, test_scores_std) | |
# draw_scatter_line_graph(x_test, y_pred, y_test, lr_coef, lr_intercept, ["pred", "real"], "logistic regression model residual plot") | |
info.update(calculate_regression_metrics(y_pred, y_test, model_name)) | |
# info.update(calculate_classification_metrics(y_pred, y_test, "logistic regression")) | |
# mae, mse, rsme, r2, ar2 = calculate_regression_metrics(y_pred, y_test, model_name) | |
shap_calculate(best_model, x[:1000], feature_names) | |
# return y_pred, info | |
return y_pred, info, train_sizes, train_scores_mean, train_scores_std, test_scores_mean, test_scores_std |