LLH
2024/02/14/01:14
bd39f54
raw
history blame
32.1 kB
import copy
import os.path
import gradio as gr
import matplotlib.pyplot as plt
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
import pandas as pd
from analysis.shap_model import shap_calculate
from static.process import *
from analysis.linear_model import *
from visualization.draw_learning_curve_total import draw_learning_curve_total
import warnings
warnings.filterwarnings("ignore")
class Container:
def __init__(self, x_train=None, y_train=None, x_test=None, y_test=None, hyper_params_optimize=None):
self.x_train = x_train
self.y_train = y_train
self.x_test = x_test
self.y_test = y_test
self.hyper_params_optimize = hyper_params_optimize
self.info = dict()
self.y_pred = None
self.train_sizes = None
self.train_scores_mean = None
self.train_scores_std = None
self.test_scores_mean = None
self.test_scores_std = None
self.status = None
self.model = None
def set_info(self, info: dict):
self.info = info
def set_y_pred(self, y_pred):
self.y_pred = y_pred
def get_learning_curve_values(self):
return [
self.train_sizes,
self.train_scores_mean,
self.train_scores_std,
self.test_scores_mean,
self.test_scores_std
]
def set_learning_curve_values(self, train_sizes, train_scores_mean, train_scores_std, test_scores_mean, test_scores_std):
self.train_sizes = train_sizes
self.train_scores_mean = train_scores_mean
self.train_scores_std = train_scores_std
self.test_scores_mean = test_scores_mean
self.test_scores_std = test_scores_std
def get_status(self):
return self.status
def set_status(self, status: str):
self.status = status
def get_model(self):
return self.model
def set_model(self, model):
self.model = model
class FilePath:
base = "../diagram/{}.png"
shap_beeswarm_plot = "shap_beeswarm_plot"
class MN: # ModelName
classification = "classification"
regression = "regression"
linear_regression = "linear_regression"
polynomial_regression = "polynomial_regression"
logistic_regression = "logistic_regression"
class LN: # LabelName
choose_dataset_radio = "选择所需数据源 [必选]"
display_total_col_num_text = "总列数"
display_total_row_num_text = "总行数"
display_na_list_text = "存在缺失值的列"
del_all_na_col_button = "删除所有存在缺失值的列 [可选]"
display_duplicate_num_text = "重复的行数"
del_col_checkboxgroup = "选择所需删除的列"
del_col_button = "删除 [可选]"
remain_row_slider = "保留的行数"
remain_row_button = "保留 [可选]"
del_duplicate_button = "删除所有重复行 [可选]"
encode_label_checkboxgroup = "选择所需标签编码的字符型数值列"
display_encode_label_dataframe = "标签编码信息"
encode_label_button = "字符型转数值型 [可选]"
change_data_type_to_float_button = "将所有数据强制转换为浮点型(除第1列以外)[必选]"
standardize_data_checkboxgroup = "选择所需标准化的列"
standardize_data_button = "标准化 [可选]"
select_as_y_radio = "选择因变量 [必选]"
choose_assign_radio = "选择任务类型(同时会根据任务类型将第1列数据强制转换)[必选]"
linear_regression_model_radio = "选择线性回归的模型"
model_optimize_radio = "选择超参数优化方法"
model_train_button = "训练"
learning_curve_checkboxgroup = "选择所需绘制学习曲线的模型"
learning_curve_train_button = "绘制训练集学习曲线"
learning_curve_validation_button = "绘制验证集学习曲线"
learning_curve_train_plot = "绘制训练集学习曲线"
learning_curve_validation_plot = "绘制验证集学习曲线"
shap_beeswarm_radio = "选择所需绘制蜂群特征图的模型"
shap_beeswarm_button = "绘制蜂群特征图"
shap_beeswarm_plot = "蜂群特征图"
select_as_model_radio = "选择所需训练的模型"
def get_outputs():
gr_dict = {
choose_custom_dataset_file,
display_dataset_dataframe,
display_total_col_num_text,
display_total_row_num_text,
display_na_list_text,
del_all_na_col_button,
display_duplicate_num_text,
del_duplicate_button,
del_col_checkboxgroup,
del_col_button,
remain_row_slider,
remain_row_button,
encode_label_button,
display_encode_label_dataframe,
encode_label_checkboxgroup,
data_type_dataframe,
change_data_type_to_float_button,
standardize_data_checkboxgroup,
standardize_data_button,
select_as_y_radio,
linear_regression_model_radio,
model_optimize_radio,
model_train_button,
model_train_checkbox,
learning_curve_checkboxgroup,
learning_curve_train_button,
learning_curve_validation_button,
learning_curve_train_plot,
learning_curve_validation_plot,
shap_beeswarm_radio,
shap_beeswarm_button,
shap_beeswarm_plot,
shap_beeswarm_plot_file,
select_as_model_radio,
choose_assign_radio,
}
return gr_dict
def get_return(is_visible, extra_gr_dict: dict = None):
if is_visible:
gr_dict = {
display_dataset_dataframe: gr.Dataframe(add_index_into_df(Dataset.data), type="pandas", visible=True),
display_total_col_num_text: gr.Textbox(str(Dataset.get_total_col_num()), visible=True, label=LN.display_total_col_num_text),
display_total_row_num_text: gr.Textbox(str(Dataset.get_total_row_num()), visible=True, label=LN.display_total_row_num_text),
display_na_list_text: gr.Textbox(Dataset.get_na_list_str(), visible=True, label=LN.display_na_list_text),
del_all_na_col_button: gr.Button(LN.del_all_na_col_button, visible=True),
display_duplicate_num_text: gr.Textbox(str(Dataset.get_duplicate_num()), visible=True, label=LN.display_duplicate_num_text),
del_duplicate_button: gr.Button(LN.del_duplicate_button, visible=True),
del_col_checkboxgroup: gr.Checkboxgroup(Dataset.get_col_list(), visible=True, label=LN.del_col_checkboxgroup),
del_col_button: gr.Button(LN.del_col_button, visible=True),
remain_row_slider: gr.Slider(0, Dataset.get_max_num(), value=Dataset.get_total_row_num(), step=1, visible=True, label=LN.remain_row_slider),
remain_row_button: gr.Button(LN.remain_row_button, visible=True),
encode_label_button: gr.Button(LN.encode_label_button, visible=True),
encode_label_checkboxgroup: gr.Checkboxgroup(Dataset.get_non_numeric_list(), visible=True, label=LN.encode_label_checkboxgroup),
display_encode_label_dataframe: gr.Dataframe(visible=False),
data_type_dataframe: gr.Dataframe(Dataset.get_data_type(), visible=True),
change_data_type_to_float_button: gr.Button(LN.change_data_type_to_float_button, visible=True),
select_as_y_radio: gr.Radio(Dataset.get_col_list(), visible=True, label=LN.select_as_y_radio),
standardize_data_checkboxgroup: gr.Checkboxgroup(Dataset.get_non_standardized_data(), visible=True, label=LN.standardize_data_checkboxgroup),
standardize_data_button: gr.Button(LN.standardize_data_button, visible=True),
choose_assign_radio: gr.Radio(Dataset.get_assign_list(), visible=True, label=LN.choose_assign_radio),
select_as_model_radio: gr.Radio(Dataset.get_model_list(), visible=Dataset.check_before_train(), label=LN.select_as_model_radio),
model_optimize_radio: gr.Radio(Dataset.get_optimize_list(), visible=Dataset.check_before_train(), label=LN.model_optimize_radio),
linear_regression_model_radio: gr.Radio(Dataset.get_linear_regression_model_list(), visible=Dataset.get_linear_regression_mark(), label=LN.linear_regression_model_radio),
model_train_button: gr.Button(LN.model_train_button, visible=Dataset.check_before_train()),
model_train_checkbox: gr.Checkbox(Dataset.get_model_container_status(), visible=Dataset.check_select_model(), label=Dataset.get_model_label()),
learning_curve_checkboxgroup: gr.Checkboxgroup(Dataset.get_trained_model_list(), visible=Dataset.check_before_train(), label=LN.learning_curve_checkboxgroup),
learning_curve_train_button: gr.Button(LN.learning_curve_train_button, visible=Dataset.check_before_train()),
learning_curve_validation_button: gr.Button(LN.learning_curve_validation_button, visible=Dataset.check_before_train()),
shap_beeswarm_radio: gr.Radio(Dataset.get_trained_model_list(), visible=Dataset.check_before_train(), label=LN.shap_beeswarm_radio),
shap_beeswarm_button: gr.Button(LN.shap_beeswarm_button, visible=Dataset.check_before_train()),
shap_beeswarm_plot_file: gr.File(Dataset.after_get_shap_beeswarm_plot_file(), visible=Dataset.check_shap_beeswarm_plot_file()),
}
if extra_gr_dict:
gr_dict.update(extra_gr_dict)
return gr_dict
gr_dict = {
choose_custom_dataset_file: gr.File(None, visible=True),
display_dataset_dataframe: gr.Dataframe(visible=False),
display_total_col_num_text: gr.Textbox(visible=False),
display_total_row_num_text: gr.Textbox(visible=False),
display_na_list_text: gr.Textbox(visible=False),
del_all_na_col_button: gr.Button(visible=False),
display_duplicate_num_text: gr.Textbox(visible=False),
del_duplicate_button: gr.Button(visible=False),
del_col_checkboxgroup: gr.Checkboxgroup(visible=False),
del_col_button: gr.Button(visible=False),
remain_row_slider: gr.Slider(visible=False),
encode_label_button: gr.Button(visible=False),
display_encode_label_dataframe: gr.Dataframe(visible=False),
encode_label_checkboxgroup: gr.Checkboxgroup(visible=False),
data_type_dataframe: gr.Dataframe(visible=False),
change_data_type_to_float_button: gr.Button(visible=False),
standardize_data_checkboxgroup: gr.Checkboxgroup(visible=False),
standardize_data_button: gr.Button(visible=False),
select_as_y_radio: gr.Radio(visible=False),
linear_regression_model_radio: gr.Radio(visible=False),
model_optimize_radio: gr.Radio(visible=False),
model_train_button: gr.Button(visible=False),
model_train_checkbox: gr.Checkbox(visible=False),
learning_curve_checkboxgroup: gr.Checkboxgroup(visible=False),
learning_curve_train_button: gr.Button(visible=False),
learning_curve_validation_button: gr.Button(visible=False),
learning_curve_train_plot: gr.Plot(visible=False),
learning_curve_validation_plot: gr.Plot(visible=False),
shap_beeswarm_radio: gr.Radio(visible=False),
shap_beeswarm_button: gr.Button(visible=False),
shap_beeswarm_plot: gr.Plot(visible=False),
shap_beeswarm_plot_file: gr.File(visible=False),
select_as_model_radio: gr.Radio(visible=False),
choose_assign_radio: gr.Radio(visible=False),
}
return gr_dict
class Dataset:
file = ""
data = pd.DataFrame()
na_list = []
non_numeric_list = []
str2int_mappings = {}
max_num = 0
data_copy = pd.DataFrame()
assign = ""
cur_model = ""
select_y_mark = False
container_dict = {
MN.linear_regression: Container(),
MN.polynomial_regression: Container(),
MN.logistic_regression: Container(),
}
@classmethod
def get_dataset_list(cls):
return ["Iris Dataset", "Wine Dataset", "Breast Cancer Dataset", "自定义"]
@classmethod
def get_col_list(cls):
return [x for x in cls.data.columns.values]
@classmethod
def get_na_list_str(cls) -> str:
na_series = cls.data.isna().any(axis=0)
na_list = []
na_list_str = ""
for i in range(len(na_series)):
cur_value = na_series[i]
cur_index = na_series.index[i]
if cur_value:
na_list_str += cur_index + ", "
na_list.append(cur_index)
na_list_str = na_list_str.rstrip(", ")
cls.na_list = na_list
if not na_list:
return "无"
return na_list_str
@classmethod
def get_total_col_num(cls) -> int:
return len(cls.data.columns)
@classmethod
def get_total_row_num(cls) -> int:
return len(cls.data)
@classmethod
def update(cls, file: str, data: pd.DataFrame):
cls.file = file
cls.data = data
cls.max_num = len(data)
cls.data_copy = data
@classmethod
def clear(cls):
cls.file = ""
cls.data = pd.DataFrame()
@classmethod
def del_col(cls, col_list: list):
for col in col_list:
if col in cls.data.columns.values:
cls.data.drop(col, axis=1, inplace=True)
@classmethod
def get_max_num(cls):
return cls.max_num
@classmethod
def remain_row(cls, num):
cls.data = cls.data_copy.iloc[:num, :]
@classmethod
def del_all_na_col(cls):
for col in cls.na_list:
if col in cls.data.columns.values:
cls.data.drop(col, axis=1, inplace=True)
@classmethod
def get_duplicate_num(cls):
data_copy = copy.deepcopy(cls.data)
return len(cls.data) - len(data_copy.drop_duplicates())
@classmethod
def del_duplicate(cls):
cls.data = cls.data.drop_duplicates().reset_index().drop("index", axis=1)
@classmethod
def encode_label(cls, col_list: list, extra_mark=False):
data_copy = copy.deepcopy(cls.data)
str2int_mappings = dict(zip(col_list, [{} for _ in range(len(col_list))]))
for col in str2int_mappings.keys():
keys = np.array(data_copy[col].drop_duplicates())
values = [x for x in range(len(keys))]
str2int_mappings[col] = dict(zip(keys, values))
for col, mapping in str2int_mappings.items():
series = data_copy[col]
for k, v in mapping.items():
series.replace(k, v, inplace=True)
data_copy[col] = series
for k, v in str2int_mappings.items():
if np.nan in v.keys():
v.update({"nan": v.pop(np.nan)})
str2int_mappings[k] = v
if extra_mark:
return data_copy
else:
cls.data = data_copy
cls.str2int_mappings = str2int_mappings
@classmethod
def get_str2int_mappings_df(cls):
columns_list = ["列名", "字符型", "数值型"]
str2int_mappings_df = pd.DataFrame(columns=columns_list)
for k, v in cls.str2int_mappings.items():
cur_df = pd.DataFrame(columns=columns_list)
cur_df["列名"] = pd.DataFrame([k] * len(v.keys()))
cur_df["字符型"] = pd.DataFrame([x for x in v.keys()])
cur_df["数值型"] = pd.DataFrame([x for x in v.values()])
str2int_mappings_df = pd.concat([str2int_mappings_df, cur_df], axis=0)
blank_df = pd.DataFrame(columns=columns_list)
blank_df.loc[0] = ["", "", ""]
str2int_mappings_df = pd.concat([str2int_mappings_df, blank_df], axis=0)
return str2int_mappings_df.iloc[:-1, :]
@classmethod
def get_non_numeric_list(cls):
data_copy = copy.deepcopy(cls.data)
data_copy = data_copy.astype(str)
non_numeric_list = []
for col in data_copy.columns.values:
if pd.to_numeric(data_copy[col], errors="coerce").isnull().values.any():
non_numeric_list.append(col)
cls.non_numeric_list = non_numeric_list
return non_numeric_list
@classmethod
def get_data_type(cls):
columns_list = ["列名", "数据类型"]
data_type_dict = {}
for col in cls.data.columns.values:
data_type_dict[col] = cls.data[col].dtype.name
data_type_df = pd.DataFrame(columns=columns_list)
data_type_df["列名"] = [x for x in data_type_dict.keys()]
data_type_df["数据类型"] = [x for x in data_type_dict.values()]
return data_type_df
@classmethod
def change_data_type_to_float(cls):
data_copy = cls.data
for i, col in enumerate(data_copy.columns.values):
if i != 0:
data_copy[col] = data_copy[col].astype(float)
cls.data = data_copy
@classmethod
def get_non_standardized_data(cls):
not_standardized_data_list = []
for col in cls.data.columns.values:
if cls.data[col].dtype.name in ["int64", "float64"]:
if not np.array_equal(np.round(preprocessing.scale(cls.data[col]), decimals=2), np.round(cls.data[col].values.round(2), decimals=2)):
not_standardized_data_list.append(col)
return not_standardized_data_list
@classmethod
def check_before_train(cls):
if cls.assign == "" or not cls.select_y_mark:
return False
for i, col in enumerate(cls.data.columns.values):
if i == 0:
if not (all(isinstance(x, str) for x in cls.data.iloc[:, 0]) or all(isinstance(x, float) for x in cls.data.iloc[:, 0])):
return False
else:
if cls.data[col].dtype.name != "float64":
return False
return True
@classmethod
def standardize_data(cls, col_list: list):
for col in col_list:
cls.data[col] = preprocessing.scale(cls.data[col])
@classmethod
def select_as_y(cls, col: str):
cls.data = pd.concat([cls.data[col], cls.data.drop(col, axis=1)], axis=1)
cls.select_y_mark = True
@classmethod
def get_optimize_list(cls):
return ["无", "网格搜索", "贝叶斯优化"]
@classmethod
def get_optimize_name_mapping(cls):
return dict(zip(cls.get_optimize_list(), ["None", "grid_search", "bayes_search"]))
@classmethod
def get_linear_regression_model_list(cls):
return ["线性回归", "Lasso回归", "Ridge回归", "弹性网络回归"]
@classmethod
def get_linear_regression_model_name_mapping(cls):
return dict(zip(cls.get_linear_regression_model_list(), ["LinearRegression", "Lasso", "Ridge", "ElasticNet"]))
@classmethod
def train_model(cls, optimize, linear_regression_model_type=None):
optimize = cls.get_optimize_name_mapping()[optimize]
data_copy = cls.data
if cls.assign == MN.classification:
data_copy = cls.encode_label([cls.data.columns.values[0]], True)
x_train, x_test, y_train, y_test = train_test_split(
data_copy.values[:, 1:],
data_copy.values[:, :1],
random_state=Config.RANDOM_STATE,
train_size=0.8
)
container = Container(x_train, y_train, x_test, y_test, optimize)
if cls.cur_model == MN.linear_regression:
container = linear_regression(container, cls.get_linear_regression_model_name_mapping()[linear_regression_model_type])
elif cls.cur_model == MN.polynomial_regression:
container = polynomial_regression(container)
elif cls.cur_model == MN.logistic_regression:
container = logistic_regression(container)
cls.container_dict[cls.cur_model] = container
@classmethod
def get_model_container_status(cls):
return True if cls.cur_model != "" and cls.container_dict[cls.cur_model].get_status() == "trained" else False
@classmethod
def get_model_label(cls):
return str(cls.get_model_name_mapping()[cls.cur_model]) + "模型是否完成训练" if cls.cur_model != "" else ""
@classmethod
def check_select_model(cls):
return True if cls.cur_model != "" and cls.check_before_train() else False
@classmethod
def get_model_name(cls):
return [x for x in cls.container_dict.keys()]
@classmethod
def get_model_chinese_name(cls):
return ["线性回归", "多项式回归", "逻辑斯谛分类"]
@classmethod
def get_model_name_mapping(cls):
return dict(zip(cls.get_model_name(), cls.get_model_chinese_name()))
@classmethod
def get_model_name_mapping_reverse(cls):
return dict(zip(cls.get_model_chinese_name(), cls.get_model_name()))
@classmethod
def get_trained_model_list(cls):
trained_model_list = []
for model_name, container in cls.container_dict.items():
if container.get_status() == "trained":
trained_model_list.append(cls.get_model_name_mapping()[model_name])
return trained_model_list
@classmethod
def draw_learning_curve_train_plot(cls, model_list: list) -> plt.Figure:
learning_curve_dict = {}
for model_name in model_list:
model_name = cls.get_model_name_mapping_reverse()[model_name]
learning_curve_dict[model_name] = cls.container_dict[model_name].get_learning_curve_values()
return draw_learning_curve_total(learning_curve_dict, "train")
@classmethod
def draw_learning_curve_validation_plot(cls, model_list: list) -> plt.Figure:
learning_curve_dict = {}
for model_name in model_list:
model_name = cls.get_model_name_mapping_reverse()[model_name]
learning_curve_dict[model_name] = cls.container_dict[model_name].get_learning_curve_values()
return draw_learning_curve_total(learning_curve_dict, "validation")
@classmethod
def draw_shap_beeswarm_plot(cls, model_name) -> plt.Figure:
model_name = cls.get_model_name_mapping_reverse()[model_name]
container = cls.container_dict[model_name]
return shap_calculate(container.get_model(), container.x_train, cls.data.columns.values)
@classmethod
def get_shap_beeswarm_plot_file(cls):
return FilePath.base.format(FilePath.shap_beeswarm_plot)
@classmethod
def check_shap_beeswarm_plot_file(cls):
return os.path.exists(cls.get_shap_beeswarm_plot_file())
@classmethod
def after_get_shap_beeswarm_plot_file(cls):
return cls.get_shap_beeswarm_plot_file() if cls.check_shap_beeswarm_plot_file() else None
@classmethod
def get_model_list(cls):
model_list = []
for model_name in cls.container_dict.keys():
model_list.append(cls.get_model_name_mapping()[model_name])
return model_list
@classmethod
def select_as_model(cls, model_name: str):
cls.cur_model = cls.get_model_name_mapping_reverse()[model_name]
@classmethod
def get_model_mark(cls):
return True if cls.cur_model != "" else False
@classmethod
def get_linear_regression_mark(cls):
return True if cls.cur_model == MN.linear_regression else False
@classmethod
def get_assign_list(cls):
return ["分类", "回归"]
@classmethod
def get_assign_mapping_reverse(cls):
return dict(zip(cls.get_assign_list(), [MN.classification, MN.regression]))
@classmethod
def choose_assign(cls, assign: str):
cls.assign = cls.get_assign_mapping_reverse()[assign]
data_copy = cls.data
if cls.assign == MN.classification:
data_copy.iloc[0, :] = data_copy.iloc[0, :].astype(str)
else:
data_copy.iloc[0, :] = data_copy.iloc[0, :].astype(float)
cls.data = data_copy
cls.change_data_type_to_float()
def choose_assign(assign: str):
Dataset.choose_assign(assign)
return get_return(True)
def select_as_model(model_name: str):
Dataset.select_as_model(model_name)
return get_return(True)
def draw_shap_beeswarm_plot(model_name):
cur_plt = Dataset.draw_shap_beeswarm_plot(model_name)
cur_plt.savefig(FilePath.base.format(FilePath.shap_beeswarm_plot), dpi=300)
return get_return(True, {shap_beeswarm_plot: gr.Plot(cur_plt, visible=True, label=LN.shap_beeswarm_plot)})
def draw_learning_curve_validation_plot(model_list: list):
cur_plt = Dataset.draw_learning_curve_validation_plot(model_list)
return get_return(True, {learning_curve_validation_plot: gr.Plot(cur_plt, visible=True, label=LN.learning_curve_validation_plot)})
def draw_learning_curve_train_plot(model_list: list):
cur_plt = Dataset.draw_learning_curve_train_plot(model_list)
return get_return(True, {learning_curve_train_plot: gr.Plot(cur_plt, visible=True, label=LN.learning_curve_train_plot)})
def train_model(optimize, linear_regression_model_type):
Dataset.train_model(optimize, linear_regression_model_type)
return get_return(True)
def select_as_y(col: str):
Dataset.select_as_y(col)
return get_return(True)
def standardize_data(col_list: list):
Dataset.standardize_data(col_list)
return get_return(True)
def change_data_type_to_float():
Dataset.change_data_type_to_float()
return get_return(True)
def encode_label(col_list: list):
Dataset.encode_label(col_list)
return get_return(True, {display_encode_label_dataframe: gr.Dataframe(Dataset.get_str2int_mappings_df(), type="pandas", visible=True, label=LN.display_encode_label_dataframe)})
def del_duplicate():
Dataset.del_duplicate()
return get_return(True)
def del_all_na_col():
Dataset.del_all_na_col()
return get_return(True)
def remain_row(num):
Dataset.remain_row(num)
return get_return(True)
def del_col(col_list: list):
Dataset.del_col(col_list)
return get_return(True)
def add_index_into_df(df: pd.DataFrame) -> pd.DataFrame:
if df.empty:
return df
index_df = pd.DataFrame([x for x in range(len(df))], columns=["[*index]"])
return pd.concat([index_df, df], axis=1)
def choose_dataset(file: str):
if file == "自定义":
Dataset.clear()
return get_return(False)
df = load_data(file)
Dataset.update(file, df)
return get_return(True, {choose_custom_dataset_file: gr.File(visible=False)})
def choose_custom_dataset(file: str):
df = load_custom_data(file)
Dataset.update(file, df)
return get_return(True, {choose_custom_dataset_file: gr.File(Dataset.file, visible=True)})
with gr.Blocks() as demo:
'''
组件
'''
with gr.Tab("机器学习"):
# 选择数据源
with gr.Accordion("数据源"):
with gr.Group():
choose_dataset_radio = gr.Radio(Dataset.get_dataset_list(), label=LN.choose_dataset_radio)
choose_custom_dataset_file = gr.File(visible=False)
# 显示数据表信息
with gr.Accordion("当前数据信息"):
display_dataset_dataframe = gr.Dataframe(visible=False)
with gr.Row():
display_total_col_num_text = gr.Textbox(visible=False)
display_total_row_num_text = gr.Textbox(visible=False)
with gr.Column():
remain_row_slider = gr.Slider(visible=False)
remain_row_button = gr.Button(visible=False)
with gr.Row():
with gr.Column():
with gr.Row():
display_na_list_text = gr.Textbox(visible=False)
display_duplicate_num_text = gr.Textbox(visible=False)
with gr.Row():
del_all_na_col_button = gr.Button(visible=False)
del_duplicate_button = gr.Button(visible=False)
# 操作数据表
with gr.Accordion("数据处理"):
select_as_y_radio = gr.Radio(visible=False)
with gr.Row():
with gr.Column():
data_type_dataframe = gr.Dataframe(visible=False)
change_data_type_to_float_button = gr.Button(visible=False)
choose_assign_radio = gr.Radio(visible=False)
with gr.Column():
del_col_checkboxgroup = gr.Checkboxgroup(visible=False)
del_col_button = gr.Button(visible=False)
encode_label_checkboxgroup = gr.Checkboxgroup(visible=False)
encode_label_button = gr.Button(visible=False)
display_encode_label_dataframe = gr.Dataframe(visible=False)
standardize_data_checkboxgroup = gr.Checkboxgroup(visible=False)
standardize_data_button = gr.Button(visible=False)
# 数据模型
with gr.Accordion("数据模型"):
select_as_model_radio = gr.Radio(visible=False)
linear_regression_model_radio = gr.Radio(visible=False)
model_optimize_radio = gr.Radio(visible=False)
model_train_button = gr.Button(visible=False)
model_train_checkbox = gr.Checkbox(visible=False)
# 可视化
with gr.Accordion("数据可视化"):
learning_curve_checkboxgroup = gr.Checkboxgroup(visible=False)
with gr.Row():
learning_curve_train_button = gr.Button(visible=False)
learning_curve_validation_button = gr.Button(visible=False)
learning_curve_train_plot = gr.Plot(visible=False)
learning_curve_validation_plot = gr.Plot(visible=False)
shap_beeswarm_radio = gr.Radio(visible=False)
shap_beeswarm_button = gr.Button(visible=False)
with gr.Group():
shap_beeswarm_plot = gr.Plot(visible=False)
shap_beeswarm_plot_file = gr.File(visible=False)
'''
监听事件
'''
# 选择数据源
choose_dataset_radio.change(fn=choose_dataset, inputs=[choose_dataset_radio], outputs=get_outputs())
choose_custom_dataset_file.upload(fn=choose_custom_dataset, inputs=[choose_custom_dataset_file], outputs=get_outputs())
# 操作数据表
# 删除所选列
del_col_button.click(fn=del_col, inputs=[del_col_checkboxgroup], outputs=get_outputs())
# 保留行
remain_row_button.click(fn=remain_row, inputs=[remain_row_slider], outputs=get_outputs())
# 删除所有存在缺失值的列
del_all_na_col_button.click(fn=del_all_na_col, outputs=get_outputs())
# 删除所有重复的行
del_duplicate_button.click(fn=del_duplicate, outputs=get_outputs())
# 字符型列转数值型列
encode_label_button.click(fn=encode_label, inputs=[encode_label_checkboxgroup], outputs=get_outputs())
# 将所有数据强制转换为浮点型(除第1列之外)
change_data_type_to_float_button.click(fn=change_data_type_to_float, outputs=get_outputs())
# 标准化数据
standardize_data_button.click(fn=standardize_data, inputs=[standardize_data_checkboxgroup], outputs=get_outputs())
# 选择因变量
select_as_y_radio.change(fn=select_as_y, inputs=[select_as_y_radio], outputs=get_outputs())
# 选择任务类型(强制转换第1列)
choose_assign_radio.change(fn=choose_assign, inputs=[choose_assign_radio], outputs=get_outputs())
# 数据模型
select_as_model_radio.change(fn=select_as_model, inputs=[select_as_model_radio], outputs=get_outputs())
model_train_button.click(fn=train_model, inputs=[model_optimize_radio, linear_regression_model_radio], outputs=get_outputs())
# 可视化
learning_curve_train_button.click(fn=draw_learning_curve_train_plot, inputs=[learning_curve_checkboxgroup], outputs=get_outputs())
learning_curve_validation_button.click(fn=draw_learning_curve_validation_plot, inputs=[learning_curve_checkboxgroup], outputs=get_outputs())
shap_beeswarm_button.click(fn=draw_shap_beeswarm_plot, inputs=[shap_beeswarm_radio], outputs=get_outputs())
if __name__ == "__main__":
demo.launch()