Spaces:
Sleeping
Sleeping
LLH
commited on
Commit
·
4b04dd5
1
Parent(s):
9636812
2024/03/09/18:30
Browse files- app.py +30 -26
- classes/static_custom_class.py +5 -0
app.py
CHANGED
@@ -356,7 +356,7 @@ class Dataset:
|
|
356 |
|
357 |
@classmethod
|
358 |
def check_model_optimize_radio(cls):
|
359 |
-
if cls.cur_model and cls.choose_optimize !=
|
360 |
if cls.cur_model == MN.linear_regressor:
|
361 |
if cls.linear_regression_model_type:
|
362 |
return True
|
@@ -640,8 +640,8 @@ class Dataset:
|
|
640 |
|
641 |
@classmethod
|
642 |
def get_optimize_name_mapping(cls):
|
643 |
-
# return dict(zip(cls.get_optimize_list(), [
|
644 |
-
return dict(zip(cls.get_optimize_list(), [
|
645 |
|
646 |
@classmethod
|
647 |
def get_linear_regression_model_list(cls):
|
@@ -1214,10 +1214,9 @@ class Dataset:
|
|
1214 |
def get_model_train_input_params(cls):
|
1215 |
EACH_ROW_NUM = 6
|
1216 |
output_list = []
|
1217 |
-
|
1218 |
if cls.check_model_optimize_radio():
|
1219 |
output_dict = ChooseModelParams.choose(cls.cur_model)
|
1220 |
-
print("output_dict: {}".format(str(output_dict)))
|
1221 |
row_unit_num_list = []
|
1222 |
row_len = len(output_dict.keys())
|
1223 |
dict_keys_list = [x for x in output_dict.keys()]
|
@@ -1226,9 +1225,7 @@ class Dataset:
|
|
1226 |
row_unit_num_list.append(len(v))
|
1227 |
for x in v:
|
1228 |
output_list.append(x)
|
1229 |
-
|
1230 |
-
print("row_len: {}".format(str(row_len)))
|
1231 |
-
print("dict_keys_list: {}".format(str(dict_keys_list)))
|
1232 |
return_list = []
|
1233 |
cumulative_sum = 0
|
1234 |
for j in range(row_len):
|
@@ -1240,7 +1237,7 @@ class Dataset:
|
|
1240 |
return_list.extend(
|
1241 |
[gr.Textbox("", visible=False)] * (EACH_ROW_NUM - 1 - row_unit_num_list[j])
|
1242 |
)
|
1243 |
-
|
1244 |
cumulative_sum += row_unit_num_list[j]
|
1245 |
|
1246 |
return_list.extend(["", gr.Textbox(visible=False)] * (StaticValue.MAX_PARAMS_NUM - EACH_ROW_NUM * row_len))
|
@@ -2005,12 +2002,12 @@ def choose_custom_dataset(file: str):
|
|
2005 |
def select_model_optimize_radio(optimize):
|
2006 |
optimize = Dataset.get_optimize_name_mapping()[optimize]
|
2007 |
|
2008 |
-
if optimize ==
|
2009 |
-
Dataset.choose_optimize =
|
2010 |
-
elif optimize ==
|
2011 |
-
Dataset.choose_optimize =
|
2012 |
-
elif optimize ==
|
2013 |
-
Dataset.choose_optimize =
|
2014 |
|
2015 |
return get_return(True)
|
2016 |
|
@@ -2446,17 +2443,24 @@ with gr.Blocks(js="./design/welcome.js", css="./design/custom.css") as demo:
|
|
2446 |
|
2447 |
# 数据模型
|
2448 |
# !有BUG
|
2449 |
-
|
2450 |
-
|
2451 |
-
|
2452 |
-
|
2453 |
-
|
2454 |
-
|
2455 |
-
|
2456 |
-
|
2457 |
-
|
2458 |
-
|
2459 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2460 |
|
2461 |
# [模型]
|
2462 |
linear_regression_model_radio.change(
|
|
|
356 |
|
357 |
@classmethod
|
358 |
def check_model_optimize_radio(cls):
|
359 |
+
if cls.cur_model and cls.choose_optimize != MN.none and cls.choose_optimize:
|
360 |
if cls.cur_model == MN.linear_regressor:
|
361 |
if cls.linear_regression_model_type:
|
362 |
return True
|
|
|
640 |
|
641 |
@classmethod
|
642 |
def get_optimize_name_mapping(cls):
|
643 |
+
# return dict(zip(cls.get_optimize_list(), [MN.none, MN.grid_search, MN.bayes_search]))
|
644 |
+
return dict(zip(cls.get_optimize_list(), [MN.none, MN.grid_search]))
|
645 |
|
646 |
@classmethod
|
647 |
def get_linear_regression_model_list(cls):
|
|
|
1214 |
def get_model_train_input_params(cls):
|
1215 |
EACH_ROW_NUM = 6
|
1216 |
output_list = []
|
1217 |
+
|
1218 |
if cls.check_model_optimize_radio():
|
1219 |
output_dict = ChooseModelParams.choose(cls.cur_model)
|
|
|
1220 |
row_unit_num_list = []
|
1221 |
row_len = len(output_dict.keys())
|
1222 |
dict_keys_list = [x for x in output_dict.keys()]
|
|
|
1225 |
row_unit_num_list.append(len(v))
|
1226 |
for x in v:
|
1227 |
output_list.append(x)
|
1228 |
+
|
|
|
|
|
1229 |
return_list = []
|
1230 |
cumulative_sum = 0
|
1231 |
for j in range(row_len):
|
|
|
1237 |
return_list.extend(
|
1238 |
[gr.Textbox("", visible=False)] * (EACH_ROW_NUM - 1 - row_unit_num_list[j])
|
1239 |
)
|
1240 |
+
|
1241 |
cumulative_sum += row_unit_num_list[j]
|
1242 |
|
1243 |
return_list.extend(["", gr.Textbox(visible=False)] * (StaticValue.MAX_PARAMS_NUM - EACH_ROW_NUM * row_len))
|
|
|
2002 |
def select_model_optimize_radio(optimize):
|
2003 |
optimize = Dataset.get_optimize_name_mapping()[optimize]
|
2004 |
|
2005 |
+
if optimize == MN.grid_search:
|
2006 |
+
Dataset.choose_optimize = MN.grid_search
|
2007 |
+
elif optimize == MN.bayes_search:
|
2008 |
+
Dataset.choose_optimize = MN.bayes_search
|
2009 |
+
elif optimize == MN.none:
|
2010 |
+
Dataset.choose_optimize = MN.none
|
2011 |
|
2012 |
return get_return(True)
|
2013 |
|
|
|
2443 |
|
2444 |
# 数据模型
|
2445 |
# !有BUG
|
2446 |
+
if Dataset.choose_optimize and Dataset.choose_optimize != MN.none:
|
2447 |
+
select_as_model_radio.change(
|
2448 |
+
fn=select_as_model,
|
2449 |
+
inputs=[select_as_model_radio],
|
2450 |
+
outputs=get_outputs()
|
2451 |
+
).then(
|
2452 |
+
fn=reset_select_model_optimize_radio_part_1,
|
2453 |
+
outputs=get_outputs()
|
2454 |
+
).then(
|
2455 |
+
fn=reset_select_model_optimize_radio_part_2,
|
2456 |
+
outputs=get_outputs()
|
2457 |
+
)
|
2458 |
+
else:
|
2459 |
+
select_as_model_radio.change(
|
2460 |
+
fn=select_as_model,
|
2461 |
+
inputs=[select_as_model_radio],
|
2462 |
+
outputs=get_outputs()
|
2463 |
+
)
|
2464 |
|
2465 |
# [模型]
|
2466 |
linear_regression_model_radio.change(
|
classes/static_custom_class.py
CHANGED
@@ -148,6 +148,11 @@ class MN: # ModelName
|
|
148 |
naive_bayes_classifier = "naive bayes classifier"
|
149 |
# 模型Step 4:在这里添加新的模型名称
|
150 |
|
|
|
|
|
|
|
|
|
|
|
151 |
# [绘图]
|
152 |
data_distribution = "data_distribution"
|
153 |
descriptive_indicators = "descriptive_indicators"
|
|
|
148 |
naive_bayes_classifier = "naive bayes classifier"
|
149 |
# 模型Step 4:在这里添加新的模型名称
|
150 |
|
151 |
+
none = "None"
|
152 |
+
grid_search = "grid_search"
|
153 |
+
bayes_search = "bayes_search"
|
154 |
+
|
155 |
+
|
156 |
# [绘图]
|
157 |
data_distribution = "data_distribution"
|
158 |
descriptive_indicators = "descriptive_indicators"
|