Spaces:
Sleeping
Sleeping
LLH
commited on
Commit
·
91078c3
1
Parent(s):
0f20053
2024/03/09/17:30
Browse files
app.py
CHANGED
@@ -1213,11 +1213,12 @@ class Dataset:
|
|
1213 |
|
1214 |
@classmethod
|
1215 |
def get_model_train_input_params(cls):
|
1216 |
-
EACH_ROW_NUM = 6
|
1217 |
output_list = []
|
1218 |
-
|
1219 |
if cls.check_model_optimize_radio():
|
1220 |
output_dict = ChooseModelParams.choose(cls.cur_model)
|
|
|
1221 |
row_unit_num_list = []
|
1222 |
row_len = len(output_dict.keys())
|
1223 |
dict_keys_list = [x for x in output_dict.keys()]
|
@@ -1226,22 +1227,25 @@ class Dataset:
|
|
1226 |
row_unit_num_list.append(len(v))
|
1227 |
for x in v:
|
1228 |
output_list.append(x)
|
1229 |
-
|
|
|
|
|
1230 |
return_list = []
|
1231 |
cumulative_sum = 0
|
1232 |
for j in range(row_len):
|
|
|
1233 |
return_list.append(gr.Textbox(dict_keys_list[j], visible=cls.check_model_optimize_radio(), show_label=False, elem_classes="params_name"))
|
1234 |
return_list.extend(
|
1235 |
[gr.Textbox(output_list[k], visible=cls.check_model_optimize_radio(), show_label=False)
|
1236 |
for k in range(cumulative_sum, cumulative_sum + row_unit_num_list[j])]
|
1237 |
)
|
1238 |
return_list.extend(
|
1239 |
-
[gr.Textbox("", visible=False)] * (EACH_ROW_NUM - row_unit_num_list[j])
|
1240 |
)
|
1241 |
|
1242 |
cumulative_sum += row_unit_num_list[j]
|
1243 |
|
1244 |
-
return_list.extend(["", gr.Textbox(visible=False)] * (StaticValue.MAX_PARAMS_NUM -
|
1245 |
|
1246 |
return return_list
|
1247 |
|
@@ -1486,7 +1490,7 @@ def get_return(is_visible, extra_gr_dict: dict = None):
|
|
1486 |
|
1487 |
select_as_model_radio: gr.Radio(Dataset.get_model_list(), visible=Dataset.check_before_train(),
|
1488 |
label=LN.select_as_model_radio),
|
1489 |
-
model_optimize_radio: gr.Radio(Dataset.get_optimize_list(),
|
1490 |
label=LN.model_optimize_radio),
|
1491 |
train_size_textbox: gr.Textbox(str(0.8), visible=Dataset.check_before_train(), label=LN.train_size_textbox),
|
1492 |
model_train_button: gr.Button(LN.model_train_button, visible=Dataset.check_before_train()),
|
|
|
1213 |
|
1214 |
@classmethod
|
1215 |
def get_model_train_input_params(cls):
|
1216 |
+
EACH_ROW_NUM = 6
|
1217 |
output_list = []
|
1218 |
+
print(cls.cur_model)
|
1219 |
if cls.check_model_optimize_radio():
|
1220 |
output_dict = ChooseModelParams.choose(cls.cur_model)
|
1221 |
+
print("output_dict: {}".format(str(output_dict)))
|
1222 |
row_unit_num_list = []
|
1223 |
row_len = len(output_dict.keys())
|
1224 |
dict_keys_list = [x for x in output_dict.keys()]
|
|
|
1227 |
row_unit_num_list.append(len(v))
|
1228 |
for x in v:
|
1229 |
output_list.append(x)
|
1230 |
+
print("output_list: {}".format(str(output_list)))
|
1231 |
+
print("row_len: {}".format(str(row_len)))
|
1232 |
+
print("dict_keys_list: {}".format(str(dict_keys_list)))
|
1233 |
return_list = []
|
1234 |
cumulative_sum = 0
|
1235 |
for j in range(row_len):
|
1236 |
+
print("cumulative_sum: {}".format(str(cumulative_sum)))
|
1237 |
return_list.append(gr.Textbox(dict_keys_list[j], visible=cls.check_model_optimize_radio(), show_label=False, elem_classes="params_name"))
|
1238 |
return_list.extend(
|
1239 |
[gr.Textbox(output_list[k], visible=cls.check_model_optimize_radio(), show_label=False)
|
1240 |
for k in range(cumulative_sum, cumulative_sum + row_unit_num_list[j])]
|
1241 |
)
|
1242 |
return_list.extend(
|
1243 |
+
[gr.Textbox("", visible=False)] * (EACH_ROW_NUM - 1 - row_unit_num_list[j])
|
1244 |
)
|
1245 |
|
1246 |
cumulative_sum += row_unit_num_list[j]
|
1247 |
|
1248 |
+
return_list.extend(["", gr.Textbox(visible=False)] * (StaticValue.MAX_PARAMS_NUM - EACH_ROW_NUM * row_len))
|
1249 |
|
1250 |
return return_list
|
1251 |
|
|
|
1490 |
|
1491 |
select_as_model_radio: gr.Radio(Dataset.get_model_list(), visible=Dataset.check_before_train(),
|
1492 |
label=LN.select_as_model_radio),
|
1493 |
+
model_optimize_radio: gr.Radio(Dataset.get_optimize_list(), visible=Dataset.check_before_train(),
|
1494 |
label=LN.model_optimize_radio),
|
1495 |
train_size_textbox: gr.Textbox(str(0.8), visible=Dataset.check_before_train(), label=LN.train_size_textbox),
|
1496 |
model_train_button: gr.Button(LN.model_train_button, visible=Dataset.check_before_train()),
|