import copy import os.path import gradio as gr import matplotlib.pyplot as plt from sklearn import preprocessing from sklearn.model_selection import train_test_split import pandas as pd from analysis.shap_model import shap_calculate from static.process import * from analysis.linear_model import * from visualization.draw_learning_curve_total import draw_learning_curve_total from static.paint import * import warnings warnings.filterwarnings("ignore") class Container: def __init__(self, x_train=None, y_train=None, x_test=None, y_test=None, hyper_params_optimize=None): self.x_train = x_train self.y_train = y_train self.x_test = x_test self.y_test = y_test self.hyper_params_optimize = hyper_params_optimize self.info = dict() self.y_pred = None self.train_sizes = None self.train_scores_mean = None self.train_scores_std = None self.test_scores_mean = None self.test_scores_std = None self.status = None self.model = None def set_info(self, info: dict): self.info = info def set_y_pred(self, y_pred): self.y_pred = y_pred def get_learning_curve_values(self): return [ self.train_sizes, self.train_scores_mean, self.train_scores_std, self.test_scores_mean, self.test_scores_std ] def set_learning_curve_values(self, train_sizes, train_scores_mean, train_scores_std, test_scores_mean, test_scores_std): self.train_sizes = train_sizes self.train_scores_mean = train_scores_mean self.train_scores_std = train_scores_std self.test_scores_mean = test_scores_mean self.test_scores_std = test_scores_std def get_status(self): return self.status def set_status(self, status: str): self.status = status def get_model(self): return self.model def set_model(self, model): self.model = model class StaticValue: max_num = 10 class FilePath: png_base = "./buffer/{}.png" excel_base = "./buffer/{}.xlsx" # [绘图] display_dataset = "current_excel_data" learning_curve_train_plot = "learning_curve_train_plot" learning_curve_validation_plot = "learning_curve_validation_plot" shap_beeswarm_plot = "shap_beeswarm_plot" class MN: # ModelName classification = "classification" regression = "regression" linear_regression = "linear_regression" polynomial_regression = "polynomial_regression" logistic_regression = "logistic_regression" # [绘图] learning_curve_train = "learning_curve_train" learning_curve_validation = "learning_curve_validation" shap_beeswarm = "shap_beeswarm" class LN: # LabelName choose_dataset_radio = "选择所需数据源 [必选]" display_total_col_num_text = "总列数" display_total_row_num_text = "总行数" display_na_list_text = "存在缺失值的列" del_all_na_col_button = "删除所有存在缺失值的列 [可选]" display_duplicate_num_text = "重复的行数" del_col_checkboxgroup = "选择所需删除的列" del_col_button = "删除 [可选]" remain_row_slider = "保留的行数" remain_row_button = "保留 [可选]" del_duplicate_button = "删除所有重复行 [可选]" encode_label_checkboxgroup = "选择所需标签编码的字符型数值列" display_encode_label_dataframe = "标签编码信息" encode_label_button = "字符型转数值型 [可选]" change_data_type_to_float_button = "将所有数据强制转换为浮点型(除第1列以外)[必选]" standardize_data_checkboxgroup = "选择所需标准化的列" standardize_data_button = "标准化 [可选]" select_as_y_radio = "选择因变量 [必选]" choose_assign_radio = "选择任务类型(同时会根据任务类型将第1列数据强制转换)[必选]" linear_regression_model_radio = "选择线性回归的模型" model_optimize_radio = "选择超参数优化方法" model_train_button = "训练" select_as_model_radio = "选择所需训练的模型" title_name_textbox = "标题" x_label_textbox = "x 轴名称" y_label_textbox = "y 轴名称" colors = ["颜色 {}".format(i) for i in range(StaticValue.max_num)] labels = ["图例 {}".format(i) for i in range(StaticValue.max_num)] # [绘图] learning_curve_checkboxgroup = "选择所需绘制学习曲线的模型" learning_curve_train_button = "绘制训练集学习曲线" learning_curve_validation_button = "绘制验证集学习曲线" shap_beeswarm_radio = "选择所需绘制蜂群特征图的模型" shap_beeswarm_button = "绘制蜂群特征图" learning_curve_train_plot = "训练集学习曲线" learning_curve_validation_plot = "验证集学习曲线" shap_beeswarm_plot = "蜂群特征图" def get_return_extra(is_visible, extra_gr_dict: dict = None): if is_visible: gr_dict = { draw_file: gr.File(Dataset.after_get_file(), visible=Dataset.check_file()), } if extra_gr_dict: gr_dict.update(extra_gr_dict) return gr_dict gr_dict = { draw_plot: gr.Plot(visible=False), draw_file: gr.File(visible=False), } gr_dict.update(dict(zip(colorpickers, [gr.ColorPicker(visible=False)] * StaticValue.max_num))) gr_dict.update(dict(zip(color_textboxs, [gr.Textbox(visible=False)] * StaticValue.max_num))) gr_dict.update(dict(zip(legend_labels_textboxs, [gr.Textbox(visible=False)] * StaticValue.max_num))) gr_dict.update({title_name_textbox: gr.Textbox(visible=False)}) gr_dict.update({x_label_textbox: gr.Textbox(visible=False)}) gr_dict.update({y_label_textbox: gr.Textbox(visible=False)}) return gr_dict def get_outputs(): gr_set = { choose_custom_dataset_file, display_dataset_dataframe, display_total_col_num_text, display_total_row_num_text, display_na_list_text, del_all_na_col_button, display_duplicate_num_text, del_duplicate_button, del_col_checkboxgroup, del_col_button, remain_row_slider, remain_row_button, encode_label_button, display_encode_label_dataframe, encode_label_checkboxgroup, data_type_dataframe, change_data_type_to_float_button, standardize_data_checkboxgroup, standardize_data_button, select_as_y_radio, linear_regression_model_radio, model_optimize_radio, model_train_button, model_train_checkbox, select_as_model_radio, choose_assign_radio, display_dataset, draw_plot, draw_file, title_name_textbox, x_label_textbox, y_label_textbox, # [绘图] learning_curve_checkboxgroup, learning_curve_train_button, learning_curve_validation_button, shap_beeswarm_radio, shap_beeswarm_button, } gr_set.update(set(colorpickers)) gr_set.update(set(color_textboxs)) gr_set.update(set(legend_labels_textboxs)) return gr_set def get_return(is_visible, extra_gr_dict: dict = None): if is_visible: gr_dict = { display_dataset_dataframe: gr.Dataframe(add_index_into_df(Dataset.data), type="pandas", visible=True), display_dataset: gr.File(Dataset.after_get_display_dataset_file(), visible=Dataset.check_display_dataset_file()), display_total_col_num_text: gr.Textbox(str(Dataset.get_total_col_num()), visible=True, label=LN.display_total_col_num_text), display_total_row_num_text: gr.Textbox(str(Dataset.get_total_row_num()), visible=True, label=LN.display_total_row_num_text), display_na_list_text: gr.Textbox(Dataset.get_na_list_str(), visible=True, label=LN.display_na_list_text), del_all_na_col_button: gr.Button(LN.del_all_na_col_button, visible=True), display_duplicate_num_text: gr.Textbox(str(Dataset.get_duplicate_num()), visible=True, label=LN.display_duplicate_num_text), del_duplicate_button: gr.Button(LN.del_duplicate_button, visible=True), del_col_checkboxgroup: gr.Checkboxgroup(Dataset.get_col_list(), visible=True, label=LN.del_col_checkboxgroup), del_col_button: gr.Button(LN.del_col_button, visible=True), remain_row_slider: gr.Slider(0, Dataset.get_max_num(), value=Dataset.get_total_row_num(), step=1, visible=True, label=LN.remain_row_slider), remain_row_button: gr.Button(LN.remain_row_button, visible=True), encode_label_button: gr.Button(LN.encode_label_button, visible=True), encode_label_checkboxgroup: gr.Checkboxgroup(Dataset.get_non_numeric_list(), visible=True, label=LN.encode_label_checkboxgroup), display_encode_label_dataframe: gr.Dataframe(visible=False), data_type_dataframe: gr.Dataframe(Dataset.get_data_type(), visible=True), change_data_type_to_float_button: gr.Button(LN.change_data_type_to_float_button, visible=True), select_as_y_radio: gr.Radio(Dataset.get_col_list(), visible=True, label=LN.select_as_y_radio), standardize_data_checkboxgroup: gr.Checkboxgroup(Dataset.get_non_standardized_data(), visible=True, label=LN.standardize_data_checkboxgroup), standardize_data_button: gr.Button(LN.standardize_data_button, visible=True), choose_assign_radio: gr.Radio(Dataset.get_assign_list(), visible=True, label=LN.choose_assign_radio), select_as_model_radio: gr.Radio(Dataset.get_model_list(), visible=Dataset.check_before_train(), label=LN.select_as_model_radio), model_optimize_radio: gr.Radio(Dataset.get_optimize_list(), visible=Dataset.check_before_train(), label=LN.model_optimize_radio), linear_regression_model_radio: gr.Radio(Dataset.get_linear_regression_model_list(), visible=Dataset.get_linear_regression_mark(), label=LN.linear_regression_model_radio), model_train_button: gr.Button(LN.model_train_button, visible=Dataset.check_before_train()), model_train_checkbox: gr.Checkbox(Dataset.get_model_container_status(), visible=Dataset.check_select_model(), label=Dataset.get_model_label()), draw_plot: gr.Plot(visible=False), draw_file: gr.File(visible=False), title_name_textbox: gr.Textbox(visible=False), x_label_textbox: gr.Textbox(visible=False), y_label_textbox: gr.Textbox(visible=False), # [绘图] learning_curve_checkboxgroup: gr.Checkboxgroup(Dataset.get_trained_model_list(), visible=Dataset.check_before_train(), label=LN.learning_curve_checkboxgroup), learning_curve_train_button: gr.Button(LN.learning_curve_train_button, visible=Dataset.check_before_train()), learning_curve_validation_button: gr.Button(LN.learning_curve_validation_button, visible=Dataset.check_before_train()), shap_beeswarm_radio: gr.Radio(Dataset.get_trained_model_list(), visible=Dataset.check_before_train(), label=LN.shap_beeswarm_radio), shap_beeswarm_button: gr.Button(LN.shap_beeswarm_button, visible=Dataset.check_before_train()), } gr_dict.update(dict(zip(colorpickers, [gr.ColorPicker(visible=False)] * StaticValue.max_num))) gr_dict.update(dict(zip(color_textboxs, [gr.Textbox(visible=False)] * StaticValue.max_num))) gr_dict.update(dict(zip(legend_labels_textboxs, [gr.Textbox(visible=False)] * StaticValue.max_num))) if extra_gr_dict: gr_dict.update(extra_gr_dict) return gr_dict gr_dict = { choose_custom_dataset_file: gr.File(None, visible=True), display_dataset_dataframe: gr.Dataframe(visible=False), display_dataset: gr.File(visible=False), display_total_col_num_text: gr.Textbox(visible=False), display_total_row_num_text: gr.Textbox(visible=False), display_na_list_text: gr.Textbox(visible=False), del_all_na_col_button: gr.Button(visible=False), display_duplicate_num_text: gr.Textbox(visible=False), del_duplicate_button: gr.Button(visible=False), del_col_checkboxgroup: gr.Checkboxgroup(visible=False), del_col_button: gr.Button(visible=False), remain_row_slider: gr.Slider(visible=False), encode_label_button: gr.Button(visible=False), display_encode_label_dataframe: gr.Dataframe(visible=False), encode_label_checkboxgroup: gr.Checkboxgroup(visible=False), data_type_dataframe: gr.Dataframe(visible=False), change_data_type_to_float_button: gr.Button(visible=False), standardize_data_checkboxgroup: gr.Checkboxgroup(visible=False), standardize_data_button: gr.Button(visible=False), select_as_y_radio: gr.Radio(visible=False), linear_regression_model_radio: gr.Radio(visible=False), model_optimize_radio: gr.Radio(visible=False), model_train_button: gr.Button(visible=False), model_train_checkbox: gr.Checkbox(visible=False), select_as_model_radio: gr.Radio(visible=False), choose_assign_radio: gr.Radio(visible=False), draw_plot: gr.Plot(visible=False), draw_file: gr.File(visible=False), title_name_textbox: gr.Textbox(visible=False), x_label_textbox: gr.Textbox(visible=False), y_label_textbox: gr.Textbox(visible=False), # [绘图] learning_curve_checkboxgroup: gr.Checkboxgroup(visible=False), learning_curve_train_button: gr.Button(visible=False), learning_curve_validation_button: gr.Button(visible=False), shap_beeswarm_radio: gr.Radio(visible=False), shap_beeswarm_button: gr.Button(visible=False), } gr_dict.update(dict(zip(colorpickers, [gr.ColorPicker(visible=False)] * StaticValue.max_num))) gr_dict.update(dict(zip(color_textboxs, [gr.Textbox(visible=False)] * StaticValue.max_num))) gr_dict.update(dict(zip(legend_labels_textboxs, [gr.Textbox(visible=False)] * StaticValue.max_num))) return gr_dict class Dataset: file = "" data = pd.DataFrame() na_list = [] non_numeric_list = [] str2int_mappings = {} max_num = 0 data_copy = pd.DataFrame() assign = "" cur_model = "" select_y_mark = False container_dict = { MN.linear_regression: Container(), MN.polynomial_regression: Container(), MN.logistic_regression: Container(), } visualize = "" @classmethod def get_dataset_list(cls): return ["Iris Dataset", "Wine Dataset", "Breast Cancer Dataset", "自定义"] @classmethod def get_col_list(cls): return [x for x in cls.data.columns.values] @classmethod def get_na_list_str(cls) -> str: na_series = cls.data.isna().any(axis=0) na_list = [] na_list_str = "" for i in range(len(na_series)): cur_value = na_series[i] cur_index = na_series.index[i] if cur_value: na_list_str += cur_index + ", " na_list.append(cur_index) na_list_str = na_list_str.rstrip(", ") cls.na_list = na_list if not na_list: return "无" return na_list_str @classmethod def get_total_col_num(cls) -> int: return len(cls.data.columns) @classmethod def get_total_row_num(cls) -> int: return len(cls.data) @classmethod def update(cls, file: str, data: pd.DataFrame): cls.file = file cls.data = data cls.max_num = len(data) cls.data_copy = data @classmethod def clear(cls): cls.file = "" cls.data = pd.DataFrame() @classmethod def get_display_dataset_file(cls): file_path = FilePath.excel_base.format(FilePath.display_dataset) return file_path @classmethod def check_display_dataset_file(cls): return os.path.exists(cls.get_display_dataset_file()) @classmethod def after_get_display_dataset_file(cls): if not cls.data.empty: cls.data.to_excel(cls.get_display_dataset_file(), index=False) return cls.get_display_dataset_file() if cls.check_display_dataset_file() else None @classmethod def del_col(cls, col_list: list): for col in col_list: if col in cls.data.columns.values: cls.data.drop(col, axis=1, inplace=True) @classmethod def get_max_num(cls): return cls.max_num @classmethod def remain_row(cls, num): cls.data = cls.data_copy.iloc[:num, :] @classmethod def del_all_na_col(cls): for col in cls.na_list: if col in cls.data.columns.values: cls.data.drop(col, axis=1, inplace=True) @classmethod def get_duplicate_num(cls): data_copy = copy.deepcopy(cls.data) return len(cls.data) - len(data_copy.drop_duplicates()) @classmethod def del_duplicate(cls): cls.data = cls.data.drop_duplicates().reset_index().drop("index", axis=1) @classmethod def encode_label(cls, col_list: list, extra_mark=False): data_copy = copy.deepcopy(cls.data) str2int_mappings = dict(zip(col_list, [{} for _ in range(len(col_list))])) for col in str2int_mappings.keys(): keys = np.array(data_copy[col].drop_duplicates()) values = [x for x in range(len(keys))] str2int_mappings[col] = dict(zip(keys, values)) for col, mapping in str2int_mappings.items(): series = data_copy[col] for k, v in mapping.items(): series.replace(k, v, inplace=True) data_copy[col] = series for k, v in str2int_mappings.items(): if np.nan in v.keys(): v.update({"nan": v.pop(np.nan)}) str2int_mappings[k] = v if extra_mark: return data_copy else: cls.data = data_copy cls.str2int_mappings = str2int_mappings @classmethod def get_str2int_mappings_df(cls): columns_list = ["列名", "字符型", "数值型"] str2int_mappings_df = pd.DataFrame(columns=columns_list) for k, v in cls.str2int_mappings.items(): cur_df = pd.DataFrame(columns=columns_list) cur_df["列名"] = pd.DataFrame([k] * len(v.keys())) cur_df["字符型"] = pd.DataFrame([x for x in v.keys()]) cur_df["数值型"] = pd.DataFrame([x for x in v.values()]) str2int_mappings_df = pd.concat([str2int_mappings_df, cur_df], axis=0) blank_df = pd.DataFrame(columns=columns_list) blank_df.loc[0] = ["", "", ""] str2int_mappings_df = pd.concat([str2int_mappings_df, blank_df], axis=0) return str2int_mappings_df.iloc[:-1, :] @classmethod def get_non_numeric_list(cls): data_copy = copy.deepcopy(cls.data) data_copy = data_copy.astype(str) non_numeric_list = [] for col in data_copy.columns.values: if pd.to_numeric(data_copy[col], errors="coerce").isnull().values.any(): non_numeric_list.append(col) cls.non_numeric_list = non_numeric_list return non_numeric_list @classmethod def get_data_type(cls): columns_list = ["列名", "数据类型"] data_type_dict = {} for col in cls.data.columns.values: data_type_dict[col] = cls.data[col].dtype.name data_type_df = pd.DataFrame(columns=columns_list) data_type_df["列名"] = [x for x in data_type_dict.keys()] data_type_df["数据类型"] = [x for x in data_type_dict.values()] return data_type_df @classmethod def change_data_type_to_float(cls): data_copy = cls.data for i, col in enumerate(data_copy.columns.values): if i != 0: data_copy[col] = data_copy[col].astype(float) cls.data = data_copy @classmethod def get_non_standardized_data(cls): not_standardized_data_list = [] for col in cls.data.columns.values: if cls.data[col].dtype.name in ["int64", "float64"]: if not np.array_equal(np.round(preprocessing.scale(cls.data[col]), decimals=2), np.round(cls.data[col].values.round(2), decimals=2)): not_standardized_data_list.append(col) return not_standardized_data_list @classmethod def check_before_train(cls): if cls.assign == "" or not cls.select_y_mark: return False for i, col in enumerate(cls.data.columns.values): if i == 0: if not (all(isinstance(x, str) for x in cls.data.iloc[:, 0]) or all( isinstance(x, float) for x in cls.data.iloc[:, 0])): return False else: if cls.data[col].dtype.name != "float64": return False return True @classmethod def standardize_data(cls, col_list: list): for col in col_list: cls.data[col] = preprocessing.scale(cls.data[col]) @classmethod def select_as_y(cls, col: str): cls.data = pd.concat([cls.data[col], cls.data.drop(col, axis=1)], axis=1) cls.select_y_mark = True @classmethod def get_optimize_list(cls): return ["无", "网格搜索", "贝叶斯优化"] @classmethod def get_optimize_name_mapping(cls): return dict(zip(cls.get_optimize_list(), ["None", "grid_search", "bayes_search"])) @classmethod def get_linear_regression_model_list(cls): return ["线性回归", "Lasso回归", "Ridge回归", "弹性网络回归"] @classmethod def get_linear_regression_model_name_mapping(cls): return dict(zip(cls.get_linear_regression_model_list(), ["LinearRegression", "Lasso", "Ridge", "ElasticNet"])) @classmethod def train_model(cls, optimize, linear_regression_model_type=None): optimize = cls.get_optimize_name_mapping()[optimize] data_copy = cls.data if cls.assign == MN.classification: data_copy = cls.encode_label([cls.data.columns.values[0]], True) x_train, x_test, y_train, y_test = train_test_split( data_copy.values[:, 1:], data_copy.values[:, :1], random_state=Config.RANDOM_STATE, train_size=0.8 ) container = Container(x_train, y_train, x_test, y_test, optimize) if cls.cur_model == MN.linear_regression: container = linear_regression(container, cls.get_linear_regression_model_name_mapping()[linear_regression_model_type]) elif cls.cur_model == MN.polynomial_regression: container = polynomial_regression(container) elif cls.cur_model == MN.logistic_regression: container = logistic_regression(container) cls.container_dict[cls.cur_model] = container @classmethod def get_model_container_status(cls): return True if cls.cur_model != "" and cls.container_dict[cls.cur_model].get_status() == "trained" else False @classmethod def get_model_label(cls): return str(cls.get_model_name_mapping()[cls.cur_model]) + "模型是否完成训练" if cls.cur_model != "" else "" @classmethod def check_select_model(cls): return True if cls.cur_model != "" and cls.check_before_train() else False @classmethod def get_model_name(cls): return [x for x in cls.container_dict.keys()] @classmethod def get_model_chinese_name(cls): return ["线性回归", "多项式回归", "逻辑斯谛分类"] @classmethod def get_model_name_mapping(cls): return dict(zip(cls.get_model_name(), cls.get_model_chinese_name())) @classmethod def get_model_name_mapping_reverse(cls): return dict(zip(cls.get_model_chinese_name(), cls.get_model_name())) @classmethod def get_trained_model_list(cls): trained_model_list = [] for model_name, container in cls.container_dict.items(): if container.get_status() == "trained": trained_model_list.append(cls.get_model_name_mapping()[model_name]) return trained_model_list @classmethod def draw_plot(cls, select_model, color_list: list, label_list: list, name: str, x_label: str, y_label: str, is_default: bool): # [绘图] if cls.visualize == MN.learning_curve_train: return cls.draw_learning_curve_train_plot(select_model, color_list, label_list, name, x_label, y_label, is_default) elif cls.visualize == MN.learning_curve_validation: return cls.draw_learning_curve_validation_plot(select_model, color_list, label_list, name, x_label, y_label, is_default) elif cls.visualize == MN.shap_beeswarm: return cls.draw_shap_beeswarm_plot(select_model, color_list, label_list, name, x_label, y_label, is_default) @classmethod def draw_learning_curve_train_plot(cls, model_list, color_list: list, label_list: list, name: str, x_label: str, y_label: str, is_default: bool): learning_curve_dict = {} for model_name in model_list: model_name = cls.get_model_name_mapping_reverse()[model_name] learning_curve_dict[model_name] = cls.container_dict[model_name].get_learning_curve_values() color_cur_list = Config.COLORS if is_default else color_list label_cur_list = [x for x in learning_curve_dict.keys()] if is_default else label_list x_cur_label = "Train Sizes" if is_default else x_label y_cur_label = "Accuracy" if is_default else y_label cur_name = "" if is_default else name paint_object = PaintObject() paint_object.set_color_cur_list(color_cur_list) paint_object.set_label_cur_list(label_cur_list) paint_object.set_x_cur_label(x_cur_label) paint_object.set_y_cur_label(y_cur_label) paint_object.set_name(cur_name) return draw_learning_curve_total(learning_curve_dict, "train", paint_object) @classmethod def draw_learning_curve_validation_plot(cls, model_list, color_list: list, label_list: list, name: str, x_label: str, y_label: str, is_default: bool): learning_curve_dict = {} for model_name in model_list: model_name = cls.get_model_name_mapping_reverse()[model_name] learning_curve_dict[model_name] = cls.container_dict[model_name].get_learning_curve_values() color_cur_list = Config.COLORS if is_default else color_list label_cur_list = [x for x in learning_curve_dict.keys()] if is_default else label_list x_cur_label = "Train Sizes" if is_default else x_label y_cur_label = "Accuracy" if is_default else y_label cur_name = "" if is_default else name paint_object = PaintObject() paint_object.set_color_cur_list(color_cur_list) paint_object.set_label_cur_list(label_cur_list) paint_object.set_x_cur_label(x_cur_label) paint_object.set_y_cur_label(y_cur_label) paint_object.set_name(cur_name) return draw_learning_curve_total(learning_curve_dict, "validation", paint_object) @classmethod def draw_shap_beeswarm_plot(cls, model_name, color_list: list, label_list: list, name: str, x_label: str, y_label: str, is_default: bool): model_name = cls.get_model_name_mapping_reverse()[model_name] container = cls.container_dict[model_name] # color_cur_list = Config.COLORS if is_default else color_list # label_cur_list = [x for x in learning_curve_dict.keys()] if is_default else label_list # x_cur_label = "Train Sizes" if is_default else x_label # y_cur_label = "Accuracy" if is_default else y_label cur_name = "" if is_default else name paint_object = PaintObject() # paint_object.set_color_cur_list(color_cur_list) # paint_object.set_label_cur_list(label_cur_list) # paint_object.set_x_cur_label(x_cur_label) # paint_object.set_y_cur_label(y_cur_label) paint_object.set_name(cur_name) return shap_calculate(container.get_model(), container.x_train, cls.data.columns.values, paint_object) @classmethod def get_file(cls): # [绘图] if cls.visualize == MN.learning_curve_train: return FilePath.png_base.format(FilePath.learning_curve_train_plot) elif cls.visualize == MN.learning_curve_validation: return FilePath.png_base.format(FilePath.learning_curve_validation_plot) elif cls.visualize == MN.shap_beeswarm: return FilePath.png_base.format(FilePath.shap_beeswarm_plot) @classmethod def check_file(cls): return os.path.exists(cls.get_file()) @classmethod def after_get_file(cls): return cls.get_file() if cls.check_file() else None @classmethod def get_model_list(cls): model_list = [] for model_name in cls.container_dict.keys(): model_list.append(cls.get_model_name_mapping()[model_name]) return model_list @classmethod def select_as_model(cls, model_name: str): cls.cur_model = cls.get_model_name_mapping_reverse()[model_name] @classmethod def get_model_mark(cls): return True if cls.cur_model != "" else False @classmethod def get_linear_regression_mark(cls): return True if cls.cur_model == MN.linear_regression else False @classmethod def get_assign_list(cls): return ["分类", "回归"] @classmethod def get_assign_mapping_reverse(cls): return dict(zip(cls.get_assign_list(), [MN.classification, MN.regression])) @classmethod def choose_assign(cls, assign: str): cls.assign = cls.get_assign_mapping_reverse()[assign] data_copy = cls.data if cls.assign == MN.classification: data_copy.iloc[:, 0] = data_copy.iloc[:, 0].astype(str) else: data_copy.iloc[:, 0] = data_copy.iloc[:, 0].astype(float) cls.data = data_copy cls.change_data_type_to_float() @classmethod def colorpickers_change(cls, paint_object): cur_num = paint_object.get_color_cur_num() true_list = [gr.ColorPicker(paint_object.get_color_cur_list()[i], visible=True, label=LN.colors[i]) for i in range(cur_num)] return true_list + [gr.ColorPicker(visible=False)] * (StaticValue.max_num - cur_num) @classmethod def color_textboxs_change(cls, paint_object): cur_num = paint_object.get_color_cur_num() true_list = [gr.Textbox(paint_object.get_color_cur_list()[i], visible=True, show_label=False) for i in range(cur_num)] return true_list + [gr.Textbox(visible=False)] * (StaticValue.max_num - cur_num) @classmethod def labels_change(cls, paint_object): cur_num = paint_object.get_label_cur_num() true_list = [gr.Textbox(paint_object.get_label_cur_list()[i], visible=True, label=LN.labels[i]) for i in range(cur_num)] return true_list + [gr.Textbox(visible=False)] * (StaticValue.max_num - cur_num) def choose_assign(assign: str): Dataset.choose_assign(assign) return get_return(True) def select_as_model(model_name: str): Dataset.select_as_model(model_name) return get_return(True) # [绘图] def shap_beeswarm_first_draw_plot(*inputs): Dataset.visualize = MN.shap_beeswarm return first_draw_plot(inputs) def learning_curve_validation_first_draw_plot(*inputs): Dataset.visualize = MN.learning_curve_validation return first_draw_plot(inputs) def learning_curve_train_first_draw_plot(*inputs): Dataset.visualize = MN.learning_curve_train return first_draw_plot(inputs) def first_draw_plot(inputs): select_model = inputs[0] x_label = "" y_label = "" name = "" color_list = [] label_list = [] cur_plt, paint_object = Dataset.draw_plot(select_model, color_list, label_list, name, x_label, y_label, True) return first_draw_plot_with_non_first_draw_plot(cur_plt, paint_object) def out_non_first_draw_plot(*inputs): return non_first_draw_plot(inputs) def non_first_draw_plot(inputs): name = inputs[0] x_label = inputs[1] y_label = inputs[2] color_list = list(inputs[3: StaticValue.max_num+3]) label_list = list(inputs[StaticValue.max_num+3: 2*StaticValue.max_num+3]) start_index = 2*StaticValue.max_num+3 # 绘图 if Dataset.visualize == MN.learning_curve_train: select_model = inputs[start_index] elif Dataset.visualize == MN.learning_curve_validation: select_model = inputs[start_index] elif Dataset.visualize == MN.shap_beeswarm: select_model = inputs[start_index+1] else: select_model = inputs[start_index: start_index+1] cur_plt, paint_object = Dataset.draw_plot(select_model, color_list, label_list, name, x_label, y_label, False) return first_draw_plot_with_non_first_draw_plot(cur_plt, paint_object) def first_draw_plot_with_non_first_draw_plot(cur_plt, paint_object): extra_gr_dict = {} # [绘图] if Dataset.visualize == MN.learning_curve_train: cur_plt.savefig(FilePath.png_base.format(FilePath.learning_curve_train_plot), dpi=300) extra_gr_dict.update({draw_plot: gr.Plot(cur_plt, visible=True, label=LN.learning_curve_train_plot)}) elif Dataset.visualize == MN.learning_curve_validation: cur_plt.savefig(FilePath.png_base.format(FilePath.learning_curve_validation_plot), dpi=300) extra_gr_dict.update({draw_plot: gr.Plot(cur_plt, visible=True, label=LN.learning_curve_validation_plot)}) elif Dataset.visualize == MN.shap_beeswarm: cur_plt.savefig(FilePath.png_base.format(FilePath.shap_beeswarm_plot), dpi=300) extra_gr_dict.update({draw_plot: gr.Plot(cur_plt, visible=True, label=LN.shap_beeswarm_plot)}) extra_gr_dict.update(dict(zip(colorpickers, Dataset.colorpickers_change(paint_object)))) extra_gr_dict.update(dict(zip(color_textboxs, Dataset.color_textboxs_change(paint_object)))) extra_gr_dict.update(dict(zip(legend_labels_textboxs, Dataset.labels_change(paint_object)))) extra_gr_dict.update({title_name_textbox: gr.Textbox(paint_object.get_name(), visible=True, label=LN.title_name_textbox)}) extra_gr_dict.update({x_label_textbox: gr.Textbox(paint_object.get_x_cur_label(), visible=True, label=LN.x_label_textbox)}) extra_gr_dict.update({y_label_textbox: gr.Textbox(paint_object.get_y_cur_label(), visible=True, label=LN.y_label_textbox)}) return get_return_extra(True, extra_gr_dict) def train_model(optimize, linear_regression_model_type): Dataset.train_model(optimize, linear_regression_model_type) return get_return(True) def select_as_y(col: str): Dataset.select_as_y(col) return get_return(True) def standardize_data(col_list: list): Dataset.standardize_data(col_list) return get_return(True) def change_data_type_to_float(): Dataset.change_data_type_to_float() return get_return(True) def encode_label(col_list: list): Dataset.encode_label(col_list) return get_return(True, { display_encode_label_dataframe: gr.Dataframe(Dataset.get_str2int_mappings_df(), type="pandas", visible=True, label=LN.display_encode_label_dataframe)}) def del_duplicate(): Dataset.del_duplicate() return get_return(True) def del_all_na_col(): Dataset.del_all_na_col() return get_return(True) def remain_row(num): Dataset.remain_row(num) return get_return(True) def del_col(col_list: list): Dataset.del_col(col_list) return get_return(True) def add_index_into_df(df: pd.DataFrame) -> pd.DataFrame: if df.empty: return df index_df = pd.DataFrame([x for x in range(len(df))], columns=["[*index]"]) return pd.concat([index_df, df], axis=1) def choose_dataset(file: str): if file == "自定义": Dataset.clear() return get_return(False) df = load_data(file) Dataset.update(file, df) return get_return(True, {choose_custom_dataset_file: gr.File(visible=False)}) def choose_custom_dataset(file: str): df = load_custom_data(file) Dataset.update(file, df) return get_return(True, {choose_custom_dataset_file: gr.File(Dataset.file, visible=True)}) with gr.Blocks() as demo: ''' 组件 ''' with gr.Tab("机器学习"): # 选择数据源 with gr.Accordion("数据源"): with gr.Group(): choose_dataset_radio = gr.Radio(Dataset.get_dataset_list(), label=LN.choose_dataset_radio) choose_custom_dataset_file = gr.File(visible=False) # 显示数据表信息 with gr.Accordion("当前数据信息"): display_dataset_dataframe = gr.Dataframe(visible=False) display_dataset = gr.File(visible=False) with gr.Row(): display_total_col_num_text = gr.Textbox(visible=False) display_total_row_num_text = gr.Textbox(visible=False) with gr.Column(): remain_row_slider = gr.Slider(visible=False) remain_row_button = gr.Button(visible=False) with gr.Row(): with gr.Column(): with gr.Row(): display_na_list_text = gr.Textbox(visible=False) display_duplicate_num_text = gr.Textbox(visible=False) with gr.Row(): del_all_na_col_button = gr.Button(visible=False) del_duplicate_button = gr.Button(visible=False) # 操作数据表 with gr.Accordion("数据处理"): select_as_y_radio = gr.Radio(visible=False) with gr.Row(): with gr.Column(): data_type_dataframe = gr.Dataframe(visible=False) change_data_type_to_float_button = gr.Button(visible=False) choose_assign_radio = gr.Radio(visible=False) with gr.Column(): del_col_checkboxgroup = gr.Checkboxgroup(visible=False) del_col_button = gr.Button(visible=False) encode_label_checkboxgroup = gr.Checkboxgroup(visible=False) encode_label_button = gr.Button(visible=False) display_encode_label_dataframe = gr.Dataframe(visible=False) standardize_data_checkboxgroup = gr.Checkboxgroup(visible=False) standardize_data_button = gr.Button(visible=False) # 数据模型 with gr.Accordion("数据模型"): select_as_model_radio = gr.Radio(visible=False) linear_regression_model_radio = gr.Radio(visible=False) model_optimize_radio = gr.Radio(visible=False) model_train_button = gr.Button(visible=False) model_train_checkbox = gr.Checkbox(visible=False) # 可视化 with gr.Accordion("数据可视化"): with gr.Tab("学习曲线图"): learning_curve_checkboxgroup = gr.Checkboxgroup(visible=False) with gr.Row(): learning_curve_train_button = gr.Button(visible=False) learning_curve_validation_button = gr.Button(visible=False) with gr.Tab("蜂群特征图"): shap_beeswarm_radio = gr.Radio(visible=False) shap_beeswarm_button = gr.Button(visible=False) legend_labels_textboxs = [] with gr.Accordion("图例"): with gr.Row(): for i in range(StaticValue.max_num): with gr.Row(): label = gr.Textbox(visible=False) legend_labels_textboxs.append(label) with gr.Accordion("坐标轴"): with gr.Row(): title_name_textbox = gr.Textbox(visible=False) x_label_textbox = gr.Textbox(visible=False) y_label_textbox = gr.Textbox(visible=False) colorpickers = [] color_textboxs = [] with gr.Accordion("颜色"): with gr.Row(): for i in range(StaticValue.max_num): with gr.Row(): colorpicker = gr.ColorPicker(visible=False) colorpickers.append(colorpicker) color_textbox = gr.Textbox(visible=False) color_textboxs.append(color_textbox) draw_plot = gr.Plot(visible=False) draw_file = gr.File(visible=False) ''' 监听事件 ''' # 选择数据源 choose_dataset_radio.change(fn=choose_dataset, inputs=[choose_dataset_radio], outputs=get_outputs()) choose_custom_dataset_file.upload(fn=choose_custom_dataset, inputs=[choose_custom_dataset_file], outputs=get_outputs()) # 操作数据表 # 删除所选列 del_col_button.click(fn=del_col, inputs=[del_col_checkboxgroup], outputs=get_outputs()) # 保留行 remain_row_button.click(fn=remain_row, inputs=[remain_row_slider], outputs=get_outputs()) # 删除所有存在缺失值的列 del_all_na_col_button.click(fn=del_all_na_col, outputs=get_outputs()) # 删除所有重复的行 del_duplicate_button.click(fn=del_duplicate, outputs=get_outputs()) # 字符型列转数值型列 encode_label_button.click(fn=encode_label, inputs=[encode_label_checkboxgroup], outputs=get_outputs()) # 将所有数据强制转换为浮点型(除第1列之外) change_data_type_to_float_button.click(fn=change_data_type_to_float, outputs=get_outputs()) # 标准化数据 standardize_data_button.click(fn=standardize_data, inputs=[standardize_data_checkboxgroup], outputs=get_outputs()) # 选择因变量 select_as_y_radio.change(fn=select_as_y, inputs=[select_as_y_radio], outputs=get_outputs()) # 选择任务类型(强制转换第1列) choose_assign_radio.change(fn=choose_assign, inputs=[choose_assign_radio], outputs=get_outputs()) # 数据模型 select_as_model_radio.change(fn=select_as_model, inputs=[select_as_model_radio], outputs=get_outputs()) model_train_button.click(fn=train_model, inputs=[model_optimize_radio, linear_regression_model_radio], outputs=get_outputs()) # 可视化 learning_curve_train_button.click(fn=learning_curve_train_first_draw_plot, inputs=[learning_curve_checkboxgroup], outputs=get_outputs()) learning_curve_validation_button.click(fn=learning_curve_validation_first_draw_plot, inputs=[learning_curve_checkboxgroup], outputs=get_outputs()) shap_beeswarm_button.click(fn=shap_beeswarm_first_draw_plot, inputs=[shap_beeswarm_radio], outputs=get_outputs()) title_name_textbox.blur(fn=out_non_first_draw_plot, inputs=[title_name_textbox] + [x_label_textbox] + [y_label_textbox] + colorpickers + legend_labels_textboxs + [learning_curve_checkboxgroup] + [shap_beeswarm_radio], outputs=get_outputs()) x_label_textbox.blur(fn=out_non_first_draw_plot, inputs=[title_name_textbox] + [x_label_textbox] + [y_label_textbox] + colorpickers + legend_labels_textboxs + [learning_curve_checkboxgroup] + [shap_beeswarm_radio], outputs=get_outputs()) y_label_textbox.blur(fn=out_non_first_draw_plot, inputs=[title_name_textbox] + [x_label_textbox] + [y_label_textbox] + colorpickers + legend_labels_textboxs + [learning_curve_checkboxgroup] + [shap_beeswarm_radio], outputs=get_outputs()) for i in range(StaticValue.max_num): colorpickers[i].blur(fn=out_non_first_draw_plot, inputs=[title_name_textbox] + [x_label_textbox] + [y_label_textbox] + colorpickers + legend_labels_textboxs + [learning_curve_checkboxgroup] + [shap_beeswarm_radio], outputs=get_outputs()) color_textboxs[i].blur(fn=out_non_first_draw_plot, inputs=[title_name_textbox] + [x_label_textbox] + [y_label_textbox] + color_textboxs + legend_labels_textboxs + [learning_curve_checkboxgroup] + [shap_beeswarm_radio], outputs=get_outputs()) legend_labels_textboxs[i].blur(fn=out_non_first_draw_plot, inputs=[title_name_textbox] + [x_label_textbox] + [y_label_textbox] + colorpickers + legend_labels_textboxs + [learning_curve_checkboxgroup] + [shap_beeswarm_radio], outputs=get_outputs()) if __name__ == "__main__": demo.launch()