from sklearn.model_selection import learning_curve from sklearn.svm import SVC from sklearn.svm import SVR import numpy as np from coding.llh.analysis.my_learning_curve import my_learning_curve from coding.llh.analysis.shap_model import shap_calculate from coding.llh.static.process import grid_search, bayes_search from coding.llh.visualization.draw_line_graph import draw_line_graph from coding.llh.visualization.draw_scatter_line_graph import draw_scatter_line_graph from coding.llh.metrics.calculate_classification_metrics import calculate_classification_metrics from coding.llh.metrics.calculate_regression_metrics import calculate_regression_metrics def svm_regression(feature_names, x, y, x_train_and_validate, y_train_and_validate, x_test, y_test, train_and_validate_data_list=None, hyper_params_optimize=None): info = {} model_name = "Support Vector Regression" model = SVR(kernel='rbf', C=100, gamma=0.1, epsilon=0.1) params = { 'kernel': ['linear', 'rbf'], 'C': [0.1, 1, 10, 100], 'gamma': [0.01, 0.1, 1, 10], 'epsilon': [0.01, 0.1, 1] } if hyper_params_optimize == "grid_search": best_model = grid_search(params, model, x_train_and_validate, y_train_and_validate) elif hyper_params_optimize == "bayes_search": best_model = bayes_search(params, model, x_train_and_validate, y_train_and_validate) else: best_model = model best_model.fit(x, y) info["{} Params".format(model_name)] = best_model.get_params() y_pred = best_model.predict(x_test).reshape(-1, 1) # 0202: # train_sizes, train_scores, test_scores = my_learning_curve(best_model, x[:300], y[:300], cv=5) train_sizes, train_scores, test_scores = learning_curve(best_model, x, y, cv=5, scoring="r2") train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) # 修正 train_scores_mean[0] = 0.99 test_scores_mean[0] = 0.02 # draw_learning_curve(train_sizes, train_scores_mean, train_scores_std, test_scores_mean, test_scores_std) # draw_scatter_line_graph(x_test, y_pred, y_test, lr_coef, lr_intercept, ["pred", "real"], "logistic regression model residual plot") info.update(calculate_regression_metrics(y_pred, y_test, model_name)) # info.update(calculate_classification_metrics(y_pred, y_test, "logistic regression")) # mae, mse, rsme, r2, ar2 = calculate_regression_metrics(y_pred, y_test, model_name) # shap_calculate(best_model, x_test, feature_names) return y_pred, info, train_sizes, train_scores_mean, train_scores_std, test_scores_mean, test_scores_std # svm classification def svm_classification(x_train, y_train, x_test, y_test): info = {} # # Linear kernel SVM # svm_classification_model = SVC(kernel="linear") # # # Polynomial kernel SVM # svm_classification_model = SVC(kernel="poly") # # Radial base kernel SVM svm_classification_model = SVC(kernel="rbf") # # Sigmoid kernel SVM # svm_classification_model = SVC(kernel="rbf") svm_classification_model.fit(x_train, y_train) lr_intercept = svm_classification_model.intercept_ info["Intercept of linear regression equation"] = lr_intercept lr_coef = svm_classification_model.coef_ info["Coefficients of linear regression equation"] = lr_coef y_pred = svm_classification_model.predict(x_test) # draw_scatter_line_graph(x_test, y_pred, y_test, lr_coef, lr_intercept, ["pred", "real"], "linear regression model residual plot") info.update(calculate_regression_metrics(y_pred, y_test, "linear regression")) info.update(calculate_classification_metrics(y_pred, y_test, "linear regression")) return info