import numpy as np from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import Lasso from sklearn.linear_model import Ridge from sklearn.linear_model import ElasticNet from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline from sklearn.model_selection import learning_curve from static.process import grid_search, bayes_search from metrics.calculate_classification_metrics import calculate_classification_metrics from metrics.calculate_regression_metrics import calculate_regression_metrics from app import Container # 线性回归 def linear_regression(container: Container, model=None): x_train = container.x_train y_train = container.y_train x_test = container.x_test y_test = container.y_test hyper_params_optimize = container.hyper_params_optimize info = {} if model == "Lasso": linear_regression_model = Lasso(alpha=0.1) params = { "fit_intercept": [True, False], "alpha": [0.001, 0.01, 0.1, 1.0, 10.0] } elif model == "Ridge": linear_regression_model = Ridge(alpha=0.1) params = { "fit_intercept": [True, False], "alpha": [0.001, 0.01, 0.1, 1.0, 10.0] } elif model == "ElasticNet": linear_regression_model = ElasticNet(alpha=0.1) params = { "fit_intercept": [True, False], "alpha": [0.001, 0.01, 0.1, 1.0, 10.0] } else: linear_regression_model = LinearRegression() params = { "fit_intercept": [True, False] } if hyper_params_optimize == "grid_search": best_model = grid_search(params, linear_regression_model, x_train, y_train) elif hyper_params_optimize == "bayes_search": best_model = bayes_search(params, linear_regression_model, x_train, y_train) else: best_model = linear_regression_model best_model.fit(x_train, y_train) info["linear regression Params"] = best_model.get_params() lr_intercept = best_model.intercept_ info["Intercept of linear regression equation"] = lr_intercept lr_coef = best_model.coef_ info["Coefficients of linear regression equation"] = lr_coef y_pred = best_model.predict(x_test) container.set_y_pred(y_pred) train_sizes, train_scores, test_scores = learning_curve(best_model, x_train, y_train, cv=5) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) container.set_learning_curve_values(train_sizes, train_scores_mean, train_scores_std, test_scores_mean, test_scores_std) info.update(calculate_regression_metrics(y_pred, y_test, "linear regression")) container.set_info(info) container.set_status("trained") container.set_model(best_model) return container # 多项式回归 def polynomial_regression(container: Container): x_train = container.x_train y_train = container.y_train x_test = container.x_test y_test = container.y_test hyper_params_optimize = container.hyper_params_optimize info = {} polynomial_features = PolynomialFeatures(degree=2) linear_regression_model = LinearRegression() polynomial_regression_model = Pipeline([("polynomial_features", polynomial_features), ("linear_regression_model", linear_regression_model)]) params = { "polynomial_features__degree": [2, 3], "linear_regression_model__fit_intercept": [True, False] } if hyper_params_optimize == "grid_search": best_model = grid_search(params, polynomial_regression_model, x_train, y_train) elif hyper_params_optimize == "bayes_search": best_model = bayes_search(params, polynomial_regression_model, x_train, y_train) else: best_model = polynomial_regression_model best_model.fit(x_train, y_train) info["polynomial regression Params"] = best_model.get_params() feature_names = best_model["polynomial_features"].get_feature_names_out() info["Feature names of polynomial regression"] = feature_names lr_intercept = best_model["linear_regression_model"].intercept_ info["Intercept of polynomial regression equation"] = lr_intercept lr_coef = best_model["linear_regression_model"].coef_ info["Coefficients of polynomial regression equation"] = lr_coef x_test_ = best_model["polynomial_features"].fit_transform(x_test) y_pred = best_model["linear_regression_model"].predict(x_test_) container.set_y_pred(y_pred) train_sizes, train_scores, test_scores = learning_curve(best_model, x_train, y_train, cv=5) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) container.set_learning_curve_values(train_sizes, train_scores_mean, train_scores_std, test_scores_mean, test_scores_std) info.update(calculate_regression_metrics(y_pred, y_test, "polynomial regression")) container.set_info(info) container.set_status("trained") container.set_model(best_model) return container # 逻辑斯谛回归 def logistic_regression(container: Container): x_train = container.x_train y_train = container.y_train x_test = container.x_test y_test = container.y_test hyper_params_optimize = container.hyper_params_optimize info = {} logistic_regression_model = LogisticRegression() params = { "C": [0.001, 0.01, 0.1, 1.0, 10.0], "max_iter": [100, 200, 300], "solver": ["liblinear", "lbfgs", "newton-cg", "sag", "saga"] } if hyper_params_optimize == "grid_search": best_model = grid_search(params, logistic_regression_model, x_train, y_train) elif hyper_params_optimize == "bayes_search": best_model = bayes_search(params, logistic_regression_model, x_train, y_train) else: best_model = logistic_regression_model best_model.fit(x_train, y_train) info["logistic regression Params"] = best_model.get_params() lr_intercept = best_model.intercept_ info["Intercept of logistic regression equation"] = lr_intercept.tolist() lr_coef = best_model.coef_ info["Coefficients of logistic regression equation"] = lr_coef.tolist() y_pred = best_model.predict(x_test) container.set_y_pred(y_pred) train_sizes, train_scores, test_scores = learning_curve(best_model, x_train, y_train, cv=5) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) container.set_learning_curve_values(train_sizes, train_scores_mean, train_scores_std, test_scores_mean, test_scores_std) info.update(calculate_classification_metrics(y_pred, y_test, "logistic regression")) container.set_info(info) container.set_status("trained") container.set_model(best_model) return container