import numpy as np from sklearn.metrics import * from sklearn.preprocessing import label_binarize from visualization.draw_line_graph import draw_line_graph def calculate_classification_metrics(pred_data, real_data, model_name): info = {} real_data = np.round(real_data, 0).astype(int) pred_data = np.round(pred_data, 0).astype(int) cur_confusion_matrix = confusion_matrix(real_data[:, 0], pred_data) info["Confusion matrix of "+model_name] = cur_confusion_matrix info["Accuracy of "+model_name] = np.sum(cur_confusion_matrix.diagonal()) / np.sum(cur_confusion_matrix) info["Precision of "+model_name] = cur_confusion_matrix.diagonal() / np.sum(cur_confusion_matrix, axis=1) info["Recall of "+model_name] = cur_confusion_matrix.diagonal() / np.sum(cur_confusion_matrix, axis=0) info["F1-score of "+model_name] = np.mean(2 * np.multiply(info["Precision of "+model_name], info["Recall of "+model_name]) / \ (info["Precision of "+model_name] + info["Recall of "+model_name])) max_class = max(real_data)[0] min_class = min(real_data)[0] pred_data_ = label_binarize(pred_data, classes=range(min_class, max_class+1)) real_data_ = label_binarize(real_data, classes=range(min_class, max_class+1)) for i in range(max_class - min_class): fpr, tpr, thresholds = roc_curve(real_data_[:, i], pred_data_[:, i]) # draw_line_graph(fpr, tpr, "ROC curve with AUC={:.2f}".format(auc(fpr, tpr))) info["AUC of "+model_name] = roc_auc_score(real_data_, pred_data_) return info