import numpy as np from sklearn.ensemble import GradientBoostingRegressor from sklearn.model_selection import learning_curve from functions.process import transform_params_list, get_values_from_container_class from metrics.calculate_regression_metrics import calculate_regression_metrics from analysis.others.hyperparam_optimize import * from classes.static_custom_class import StaticValue class GradientBoostingParams: @classmethod def get_params_type(cls): return { 'n_estimators': StaticValue.INT, 'learning_rate': StaticValue.FLOAT, 'max_depth': StaticValue.INT, 'min_samples_split': StaticValue.INT, 'min_samples_leaf': StaticValue.INT, } @classmethod def get_params(cls): return { 'n_estimators': [50, 100, 150], 'learning_rate': [0.01, 0.1, 0.2], 'max_depth': [3, 5, 7], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4], } # 梯度提升回归 def gradient_boosting_regressor(container, params): x_train, y_train, x_test, y_test, hyper_params_optimize = get_values_from_container_class(container) info = {} params = transform_params_list(GradientBoostingParams, params) params['random_state'] = [StaticValue.RANDOM_STATE] gradient_boosting_regression_model = GradientBoostingRegressor(random_state=StaticValue.RANDOM_STATE) if hyper_params_optimize == "grid_search": best_model = grid_search(params, gradient_boosting_regression_model, x_train, y_train) elif hyper_params_optimize == "bayes_search": best_model = bayes_search(params, gradient_boosting_regression_model, x_train, y_train) else: best_model = gradient_boosting_regression_model best_model.fit(x_train, y_train) info["参数"] = best_model.get_params() y_pred = best_model.predict(x_test) # y_pred = best_model.predict(x_test).reshape(-1, 1) container.set_y_pred(y_pred) train_sizes, train_scores, test_scores = learning_curve(best_model, x_train, y_train, cv=5) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) container.set_learning_curve_values(train_sizes, train_scores_mean, train_scores_std, test_scores_mean, test_scores_std) info["指标"] = calculate_regression_metrics(y_pred, y_test) container.set_info(info) container.set_status("trained") container.set_model(best_model) return container