import lightgbm as lightGBMClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import learning_curve from sklearn.tree import DecisionTreeClassifier from xgboost import XGBClassifier from analysis.others.shap_model import * from functions.process import get_values_from_container_class, transform_params_list from metrics.calculate_classification_metrics import calculate_classification_metrics from metrics.calculate_regression_metrics import calculate_regression_metrics from analysis.others.hyperparam_optimize import * from classes.static_custom_class import StaticValue class RandomForestRegressionParams: @classmethod def get_params_type(cls): return { 'n_estimators': StaticValue.INT, 'max_depth': StaticValue.INT, 'min_samples_split': StaticValue.INT, 'min_samples_leaf': StaticValue.INT, 'random_state': StaticValue.INT } @classmethod def get_params(cls): return { 'n_estimators': [10, 50, 100, 200], 'max_depth': [0, 10, 20, 30], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4], 'random_state': [StaticValue.RANDOM_STATE] } # 随机森林回归 def random_forest_regressor(container, params_list): x_train, y_train, x_test, y_test, hyper_params_optimize = get_values_from_container_class(container) info = {} params_list = transform_params_list(RandomForestRegressionParams, params_list) random_forest_regression_model = RandomForestRegressor(n_estimators=5, random_state=StaticValue.RANDOM_STATE) params = params_list if hyper_params_optimize == "grid_search": best_model = grid_search(params, random_forest_regression_model, x_train, y_train) elif hyper_params_optimize == "bayes_search": best_model = bayes_search(params, random_forest_regression_model, x_train, y_train) else: best_model = random_forest_regression_model best_model.fit(x_train, y_train) info["参数"] = best_model.get_params() y_pred = best_model.predict(x_test) # y_pred = best_model.predict(x_test).reshape(-1, 1) container.set_y_pred(y_pred) train_sizes, train_scores, test_scores = learning_curve(best_model, x_train, y_train, cv=5) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) container.set_learning_curve_values(train_sizes, train_scores_mean, train_scores_std, test_scores_mean, test_scores_std) info["指标"] = calculate_regression_metrics(y_pred, y_test) container.set_info(info) container.set_status("trained") container.set_model(best_model) return container class DecisionTreeClassifierParams: @classmethod def get_params_type(cls): return { "criterion": StaticValue.STR, "splitter": StaticValue.STR, "max_depth": StaticValue.INT, "min_samples_split": StaticValue.INT, "min_samples_leaf": StaticValue.INT, 'random_state': StaticValue.INT } @classmethod def get_params(cls): return { "criterion": ["gini", "entropy"], "splitter": ["best", "random"], "max_depth": [0, 5, 10, 15], "min_samples_split": [2, 5, 10], "min_samples_leaf": [1, 2, 4], 'random_state': [StaticValue.RANDOM_STATE] } # 决策树分类 def decision_tree_classifier(container, params_list): x_train, y_train, x_test, y_test, hyper_params_optimize = get_values_from_container_class(container) info = {} params_list = transform_params_list(DecisionTreeClassifierParams, params_list) random_forest_regression_model = DecisionTreeClassifier(random_state=StaticValue.RANDOM_STATE) params = params_list if hyper_params_optimize == "grid_search": best_model = grid_search(params, random_forest_regression_model, x_train, y_train) elif hyper_params_optimize == "bayes_search": best_model = bayes_search(params, random_forest_regression_model, x_train, y_train) else: best_model = random_forest_regression_model best_model.fit(x_train, y_train) info["参数"] = best_model.get_params() y_pred = best_model.predict(x_test) container.set_y_pred(y_pred) train_sizes, train_scores, test_scores = learning_curve(best_model, x_train, y_train, cv=5) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) container.set_learning_curve_values(train_sizes, train_scores_mean, train_scores_std, test_scores_mean, test_scores_std) info["指标"] = calculate_classification_metrics(y_pred, y_test) container.set_info(info) container.set_status("trained") container.set_model(best_model) return container class RandomForestClassifierParams: @classmethod def get_params_type(cls): return { "criterion": StaticValue.STR, "n_estimators": StaticValue.INT, "max_depth": StaticValue.INT, "min_samples_split": StaticValue.INT, "min_samples_leaf": StaticValue.INT, "random_state": StaticValue.INT } @classmethod def get_params(cls): return { "criterion": ["gini", "entropy"], "n_estimators": [50, 100, 150], "max_depth": [0, 5, 10, 15], "min_samples_split": [2, 5, 10], "min_samples_leaf": [1, 2, 4], "random_state": [StaticValue.RANDOM_STATE] } # 随机森林分类 def random_forest_classifier(container, params_list): x_train, y_train, x_test, y_test, hyper_params_optimize = get_values_from_container_class(container) info = {} params_list = transform_params_list(RandomForestClassifierParams, params_list) random_forest_classifier_model = RandomForestClassifier(n_estimators=5, random_state=StaticValue.RANDOM_STATE) params = params_list if hyper_params_optimize == "grid_search": best_model = grid_search(params, random_forest_classifier_model, x_train, y_train) elif hyper_params_optimize == "bayes_search": best_model = bayes_search(params, random_forest_classifier_model, x_train, y_train) else: best_model = random_forest_classifier_model best_model.fit(x_train, y_train) info["参数"] = best_model.get_params() y_pred = best_model.predict(x_test) # y_pred = best_model.predict(x_test).reshape(-1, 1) container.set_y_pred(y_pred) train_sizes, train_scores, test_scores = learning_curve(best_model, x_train, y_train, cv=5) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) container.set_learning_curve_values(train_sizes, train_scores_mean, train_scores_std, test_scores_mean, test_scores_std) info["指标"] = calculate_classification_metrics(y_pred, y_test) container.set_info(info) container.set_status("trained") container.set_model(best_model) return container class XgboostClassifierParams: @classmethod def get_params_type(cls): return { "n_estimators": StaticValue.INT, "learning_rate": StaticValue.FLOAT, "max_depth": StaticValue.INT, "min_child_weight": StaticValue.INT, "gamma": StaticValue.FLOAT, "subsample": StaticValue.FLOAT, "colsample_bytree": StaticValue.FLOAT, "random_state": StaticValue.INT } @classmethod def get_params(cls): return { "n_estimators": [50, 100, 150], "learning_rate": [0.01, 0.1, 0.2], "max_depth": [3, 4, 5], "min_child_weight": [1, 2, 3], "gamma": [0, 0.1, 0.2], "subsample": [0.5, 0.8, 0.9, 1.0], "colsample_bytree": [0.8, 0.9, 1.0], "random_state": [StaticValue.RANDOM_STATE] } # xgboost分类 def xgboost_classifier(container, params_list): x_train, y_train, x_test, y_test, hyper_params_optimize = get_values_from_container_class(container) info = {} params_list = transform_params_list(XgboostClassifierParams, params_list) xgboost_classifier_model = XGBClassifier(random_state=StaticValue.RANDOM_STATE) params = params_list if hyper_params_optimize == "grid_search": best_model = grid_search(params, xgboost_classifier_model, x_train, y_train) elif hyper_params_optimize == "bayes_search": best_model = bayes_search(params, xgboost_classifier_model, x_train, y_train) else: best_model = xgboost_classifier_model best_model.fit(x_train, y_train) info["参数"] = best_model.get_params() y_pred = best_model.predict(x_test) # y_pred = best_model.predict(x_test).reshape(-1, 1) container.set_y_pred(y_pred) train_sizes, train_scores, test_scores = learning_curve(best_model, x_train, y_train, cv=5) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) container.set_learning_curve_values(train_sizes, train_scores_mean, train_scores_std, test_scores_mean, test_scores_std) info["指标"] = calculate_classification_metrics(y_pred, y_test) container.set_info(info) container.set_status("trained") container.set_model(best_model) return container class LightGBMClassifierParams: @classmethod def get_params(cls): return # lightGBM分类 def lightGBM_classifier(container, params_list): x_train, y_train, x_test, y_test, hyper_params_optimize = get_values_from_container_class(container) info = {} params_list = transform_params_list(LightGBMClassifierParams, params_list) lightgbm_classifier_model = lightGBMClassifier params = params_list if hyper_params_optimize == "grid_search": best_model = grid_search(params, lightgbm_classifier_model, x_train, y_train) elif hyper_params_optimize == "bayes_search": best_model = bayes_search(params, lightgbm_classifier_model, x_train, y_train) else: best_model = lightgbm_classifier_model best_model.train(x_train, y_train) info["参数"] = best_model.get_params() y_pred = best_model.predict(x_test) # y_pred = best_model.predict(x_test).reshape(-1, 1) container.set_y_pred(y_pred) train_sizes, train_scores, test_scores = learning_curve(best_model, x_train, y_train, cv=5) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) container.set_learning_curve_values(train_sizes, train_scores_mean, train_scores_std, test_scores_mean, test_scores_std) info["指标"] = calculate_classification_metrics(y_pred, y_test) container.set_info(info) container.set_status("trained") container.set_model(best_model) return container