# 全局静态变量值存储类 class StaticValue: # SHAP抽样数量 SAMPLE_NUM = 20 # 超参数文本框的最大组件数量 MAX_PARAMS_NUM = 60 # 颜色和标签显示的最大组件数量 MAX_NUM = 20 # 随机种子 (数据集切分+模型训练) RANDOM_STATE = 123 # 参数类型 INT = "int" FLOAT = "float" BOOL = "bool" STR = "str" # 画图颜色组重复次数 COLOR_ITER_NUM = 3 # 颜色组 COLORS = [ "#ca5353", "#c874a5", "#b674c8", "#8274c8", "#748dc8", "#74acc8", "#74c8b7", "#74c88d", "#a6c874", "#e0e27e", "#df9b77", "#404040", "#999999", "#d4d4d4" ] * COLOR_ITER_NUM COLORS_0 = [ "#8074C8", "#7895C1", "#A8CBDF", "#992224", "#B54764", "#E3625D", "#EF8B67", "#F0C284" ] * COLOR_ITER_NUM COLORS_1 = [ "#4A5F7E", "#719AAC", "#72B063", "#94C6CD", "#B8DBB3", "#E29135" ] * COLOR_ITER_NUM COLORS_2 = [ "#4485C7", "#D4562E", "#DBB428", "#682487", "#84BA42", "#7ABBDB", "#A51C36" ] * COLOR_ITER_NUM COLORS_3 = [ "#8074C8", "#7895C1", "#A8CBDF", "#F5EBAE", "#F0C284", "#EF8B67", "#E3625D", "#B54764" ] * COLOR_ITER_NUM COLORS_4 = [ "#979998", "#C69287", "#E79A90", "#EFBC91", "#E4CD87", "#FAE5BB", "#DDDDDF" ] * COLOR_ITER_NUM COLORS_5 = [ "#91CCC0", "#7FABD1", "#F7AC53", "#EC6E66", "#B5CE4E", "#BD7795", "#7C7979" ] * COLOR_ITER_NUM COLORS_6 = [ "#E9687A", "#F58F7A", "#FDE2D8", "#CFCFD0", "#B6B3D6" ] * COLOR_ITER_NUM # 文件路径相关静态变量存储类 class FilePath: png_base = "./buffer/{}.png" excel_base = "./buffer/{}.xlsx" # [绘图] display_dataset = "current_excel_data" data_distribution_plot = "data_distribution_plot" descriptive_indicators_plot = "descriptive_indicators_plot" heatmap_plot = "heatmap_plot" learning_curve_plot = "learning_curve_plot" shap_beeswarm_plot = "shap_beeswarm_plot" data_fit_plot = "data_fit_plot" waterfall_plot = "waterfall_plot" force_plot = "force_plot" dependence_plot = "dependence_plot" # 绘图Step 15:在这里添加新的绘图方法名称 # 模型名称静态变量存储类 class MN: # ModelName classification = "classification" regression = "regression" # [模型] linear_regressor = "linear regressor" polynomial_regressor = "polynomial regressor" logistic_classifier = "logistic classifier" decision_tree_classifier = "decision tree classifier" random_forest_classifier = "random forest classifier" random_forest_regressor = "random forest regressor" xgboost_classifier = "xgboost classifier" lightGBM_classifier = "lightGBM classifier" gradient_boosting_regressor = "gradient boosting regressor" svm_classifier = "svm classifier" svm_regressor = "svm regressor" knn_classifier = "knn classifier" knn_regressor = "knn regressor" naive_bayes_classifier = "naive bayes classifier" # 模型Step 4:在这里添加新的模型名称 # [绘图] data_distribution = "data_distribution" descriptive_indicators = "descriptive_indicators" heatmap = "heatmap" learning_curve = "learning_curve" shap_beeswarm = "shap_beeswarm" data_fit = "data_fit" waterfall = "waterfall" force = "force" dependence = "dependence" # 绘图Step 4:在这里添加新的绘图方法名称 # 组件标签名称静态变量存储类 class LN: # LabelName choose_dataset_radio = "选择所需数据源 [必选]" display_total_col_num_text = "总列数" display_total_row_num_text = "总行数" display_na_list_text = "存在缺失值的列" del_all_na_col_button = "删除所有存在缺失值的列 [可选]" display_duplicate_num_text = "重复的行数" del_col_checkboxgroup = "选择所需删除的列" del_col_button = "删除 [可选]" remain_row_slider = "保留的行数" remain_row_button = "保留 [可选]" del_duplicate_button = "删除所有重复行 [可选]" encode_label_checkboxgroup = "选择所需标签编码的字符型数值列" display_encode_label_dataframe = "标签编码信息" encode_label_button = "字符型转数值型 [可选]" change_data_type_to_float_button = "将所有数据强制转换为浮点型(除第1列以外)[必选]" standardize_data_checkboxgroup = "选择所需标准化的列" standardize_data_button = "标准化 [可选]" select_as_y_radio = "选择因变量 [必选]" choose_assign_radio = "选择任务类型(同时会根据任务类型将第1列数据强制转换)[必选]" train_size_textbox = "分割出的训练集所占比例" model_optimize_radio = "选择超参数优化方法" model_train_input_params_dataframe = "超参数列表" model_train_button = "训练" model_train_params_dataframe = "训练后的模型参数" model_train_metrics_dataframe = "训练后的模型指标" select_as_model_radio = "选择所需训练的模型" # [模型] linear_regression_model_radio = "选择线性回归的模型" naive_bayes_classification_model_radio = "选择朴素贝叶斯分类的模型" # 模型Step 5:在这里添加新的模型额外组件名称 title_name_textbox = "标题" x_label_textbox = "x 轴名称" y_label_textbox = "y 轴名称" colors = ["颜色 {}".format(i) for i in range(StaticValue.MAX_NUM)] labels = ["图例 {}".format(i) for i in range(StaticValue.MAX_NUM)] # [绘图] heatmap_is_rotate = "x轴标签是否旋转" heatmap_checkboxgroup = "选择所需绘制系数热力图的列" heatmap_button = "绘制系数热力图" data_distribution_radio = "选择所需绘制数据分布图的列" data_distribution_is_rotate = "x轴标签是否旋转" data_distribution_button = "绘制数据分布图" descriptive_indicators_checkboxgroup = "选择所需绘制箱线统计图的列" descriptive_indicators_is_rotate = "x轴标签是否旋转" descriptive_indicators_button = "绘制箱线统计图" learning_curve_checkboxgroup = "选择所需绘制学习曲线图的模型" learning_curve_button = "绘制学习曲线图" shap_beeswarm_radio = "选择所需绘制特征蜂群图的模型" shap_beeswarm_type = "选择图像类型" shap_beeswarm_button = "绘制特征蜂群图" data_fit_checkboxgroup = "选择所需绘制数据拟合图的模型" data_fit_button = "绘制数据拟合图" waterfall_radio = "选择所需绘制特征瀑布图的模型" waterfall_number = "输入相关特征的变量索引" waterfall_button = "绘制特征瀑布图" force_radio = "选择所需绘制特征力图的模型" force_number = "输入相关特征的变量索引" force_button = "绘制特征力图" dependence_radio = "选择所需绘制特征依赖图的模型" dependence_col = "选择相应的列" dependence_button = "绘制特征依赖图" # 绘图Step 5:在这里添加新的绘图方法相关组件名称 data_distribution_plot = "数据分布图" descriptive_indicators_plot = "箱线统计图" heatmap_plot = "系数热力图" learning_curve_plot = "学习曲线图" shap_beeswarm_plot = "特征蜂群图" data_fit_plot = "数据拟合图" waterfall_plot = "特征瀑布图" force_plot = "特征力图" dependence_plot = "特征依赖图" # 绘图Step 6:在这里添加新的绘图方法名称