Spaces:
Running
Running
fixed cor
Browse files- Layoutlmv3_inference/ocr.py +15 -129
Layoutlmv3_inference/ocr.py
CHANGED
|
@@ -6,9 +6,12 @@ import json
|
|
| 6 |
import requests
|
| 7 |
import traceback
|
| 8 |
import tempfile
|
|
|
|
|
|
|
| 9 |
|
| 10 |
from PIL import Image
|
| 11 |
|
|
|
|
| 12 |
def preprocess_image(image_path, max_file_size_mb=1, target_file_size_mb=0.5):
|
| 13 |
try:
|
| 14 |
# Read the image
|
|
@@ -21,10 +24,12 @@ def preprocess_image(image_path, max_file_size_mb=1, target_file_size_mb=0.5):
|
|
| 21 |
cv2.imwrite(temp_file_path, enhanced)
|
| 22 |
|
| 23 |
# Check file size of the temporary file
|
| 24 |
-
file_size_mb = os.path.getsize(
|
|
|
|
| 25 |
|
| 26 |
while file_size_mb > max_file_size_mb:
|
| 27 |
-
print(
|
|
|
|
| 28 |
ratio = np.sqrt(target_file_size_mb / file_size_mb)
|
| 29 |
new_width = int(image.shape[1] * ratio)
|
| 30 |
new_height = int(image.shape[0] * ratio)
|
|
@@ -63,7 +68,11 @@ def enhance_txt(img, intensity_increase=20, bilateral_filter_diameter=9, bilater
|
|
| 63 |
# Convert image to grayscale
|
| 64 |
grayscale_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
| 65 |
|
| 66 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
blurred = cv2.GaussianBlur(grayscale_img, (1, 1), 0)
|
| 68 |
|
| 69 |
edged = 255 - cv2.Canny(blurred, 100, 150, apertureSize=7)
|
|
@@ -72,7 +81,8 @@ def enhance_txt(img, intensity_increase=20, bilateral_filter_diameter=9, bilater
|
|
| 72 |
img = np.clip(img + intensity_increase, 0, 255).astype(np.uint8)
|
| 73 |
|
| 74 |
# Apply bilateral filter to reduce noise
|
| 75 |
-
img = cv2.bilateralFilter(img, bilateral_filter_diameter,
|
|
|
|
| 76 |
|
| 77 |
_, binary = cv2.threshold(blurred, threshold, 255, cv2.THRESH_BINARY)
|
| 78 |
return binary
|
|
@@ -91,6 +101,7 @@ def run_tesseract_on_preprocessed_image(preprocessed_image, image_path):
|
|
| 91 |
url = "https://api.ocr.space/parse/image"
|
| 92 |
|
| 93 |
# Define the API key and the language
|
|
|
|
| 94 |
api_key = os.getenv("ocr_space")
|
| 95 |
language = "eng"
|
| 96 |
|
|
@@ -210,128 +221,3 @@ def prepare_batch_for_inference(image_paths):
|
|
| 210 |
|
| 211 |
print("10. Prepared for Inference Batch")
|
| 212 |
return inference_batch
|
| 213 |
-
al_filter_diameter, bilateral_filter_sigma_color, bilateral_filter_sigma_space)
|
| 214 |
-
|
| 215 |
-
_, binary = cv2.threshold(blurred, threshold, 255, cv2.THRESH_BINARY)
|
| 216 |
-
return binary
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
def run_tesseract_on_preprocessed_image(preprocessed_image, image_path):
|
| 220 |
-
try:
|
| 221 |
-
image_name = os.path.basename(image_path)
|
| 222 |
-
image_name = image_name[:image_name.find('.')]
|
| 223 |
-
|
| 224 |
-
# Create the "temp" folder if it doesn't exist
|
| 225 |
-
temp_folder = "static/temp"
|
| 226 |
-
if not os.path.exists(temp_folder):
|
| 227 |
-
os.makedirs(temp_folder)
|
| 228 |
-
|
| 229 |
-
# Define the OCR API endpoint
|
| 230 |
-
url = "https://api.ocr.space/parse/image"
|
| 231 |
-
|
| 232 |
-
# Define the API key and the language
|
| 233 |
-
api_key = os.getenv("ocr_space")
|
| 234 |
-
language = "eng"
|
| 235 |
-
|
| 236 |
-
# Save the preprocessed image
|
| 237 |
-
cv2.imwrite(os.path.join(temp_folder, f"{image_name}_preprocessed.jpg"), preprocessed_image)
|
| 238 |
-
|
| 239 |
-
# Open the preprocessed image file as binary
|
| 240 |
-
with open(os.path.join(temp_folder, f"{image_name}_preprocessed.jpg"), "rb") as f:
|
| 241 |
-
# Define the payload for the API request
|
| 242 |
-
payload = {
|
| 243 |
-
"apikey": api_key,
|
| 244 |
-
"language": language,
|
| 245 |
-
"isOverlayRequired": True,
|
| 246 |
-
"OCREngine": 2
|
| 247 |
-
}
|
| 248 |
-
# Define the file parameter for the API request
|
| 249 |
-
file = {
|
| 250 |
-
"file": f
|
| 251 |
-
}
|
| 252 |
-
# Send the POST request to the OCR API
|
| 253 |
-
response = requests.post(url, data=payload, files=file)
|
| 254 |
-
|
| 255 |
-
# Check the status code of the response
|
| 256 |
-
if response.status_code == 200:
|
| 257 |
-
# Parse the JSON response
|
| 258 |
-
result = response.json()
|
| 259 |
-
print("---JSON file saved")
|
| 260 |
-
# Save the OCR result as JSON
|
| 261 |
-
with open(os.path.join(temp_folder, f"{image_name}_ocr.json"), 'w') as f:
|
| 262 |
-
json.dump(result, f)
|
| 263 |
-
|
| 264 |
-
return os.path.join(temp_folder, f"{image_name}_ocr.json")
|
| 265 |
-
else:
|
| 266 |
-
# Print the error message
|
| 267 |
-
print("Error: " + response.text)
|
| 268 |
-
return None
|
| 269 |
-
|
| 270 |
-
except Exception as e:
|
| 271 |
-
print(f"An error occurred during OCR request: {str(e)}")
|
| 272 |
-
return None
|
| 273 |
-
|
| 274 |
-
def clean_tesseract_output(json_output_path):
|
| 275 |
-
try:
|
| 276 |
-
with open(json_output_path, 'r') as json_file:
|
| 277 |
-
data = json.load(json_file)
|
| 278 |
-
|
| 279 |
-
lines = data['ParsedResults'][0]['TextOverlay']['Lines']
|
| 280 |
-
|
| 281 |
-
words = []
|
| 282 |
-
for line in lines:
|
| 283 |
-
for word_info in line['Words']:
|
| 284 |
-
word = {}
|
| 285 |
-
origin_box = [
|
| 286 |
-
word_info['Left'],
|
| 287 |
-
word_info['Top'],
|
| 288 |
-
word_info['Left'] + word_info['Width'],
|
| 289 |
-
word_info['Top'] + word_info['Height']
|
| 290 |
-
]
|
| 291 |
-
|
| 292 |
-
word['word_text'] = word_info['WordText']
|
| 293 |
-
word['word_box'] = origin_box
|
| 294 |
-
words.append(word)
|
| 295 |
-
|
| 296 |
-
return words
|
| 297 |
-
except (KeyError, IndexError, FileNotFoundError, json.JSONDecodeError) as e:
|
| 298 |
-
print(f"Error cleaning Tesseract output: {str(e)}")
|
| 299 |
-
return None
|
| 300 |
-
|
| 301 |
-
def prepare_batch_for_inference(image_paths):
|
| 302 |
-
# print("my_function was called")
|
| 303 |
-
# traceback.print_stack() # This will print the stack trace
|
| 304 |
-
print(f"Number of images to process: {len(image_paths)}") # Print the total number of images to be processed
|
| 305 |
-
print("1. Preparing for Inference")
|
| 306 |
-
tsv_output_paths = []
|
| 307 |
-
|
| 308 |
-
inference_batch = dict()
|
| 309 |
-
print("2. Starting Preprocessing")
|
| 310 |
-
# Ensure that the image is only 1
|
| 311 |
-
for image_path in image_paths:
|
| 312 |
-
print(f"Processing the image: {image_path}") # Print the image being processed
|
| 313 |
-
print("3. Preprocessing the Receipt")
|
| 314 |
-
preprocessed_image = preprocess_image(image_path)
|
| 315 |
-
if preprocessed_image is not None:
|
| 316 |
-
print("4. Preprocessing done. Running OCR")
|
| 317 |
-
json_output_path = run_tesseract_on_preprocessed_image(preprocessed_image, image_path)
|
| 318 |
-
print("5. OCR Complete")
|
| 319 |
-
if json_output_path:
|
| 320 |
-
tsv_output_paths.append(json_output_path)
|
| 321 |
-
|
| 322 |
-
print("6. Preprocessing and OCR Done")
|
| 323 |
-
# clean_outputs is a list of lists
|
| 324 |
-
clean_outputs = [clean_tesseract_output(tsv_path) for tsv_path in tsv_output_paths]
|
| 325 |
-
print("7. Cleaned OCR output")
|
| 326 |
-
word_lists = [[word['word_text'] for word in clean_output] for clean_output in clean_outputs]
|
| 327 |
-
print("8. Word List Created")
|
| 328 |
-
boxes_lists = [[word['word_box'] for word in clean_output] for clean_output in clean_outputs]
|
| 329 |
-
print("9. Box List Created")
|
| 330 |
-
inference_batch = {
|
| 331 |
-
"image_path": image_paths,
|
| 332 |
-
"bboxes": boxes_lists,
|
| 333 |
-
"words": word_lists
|
| 334 |
-
}
|
| 335 |
-
|
| 336 |
-
print("10. Prepared for Inference Batch")
|
| 337 |
-
return inference_batch
|
|
|
|
| 6 |
import requests
|
| 7 |
import traceback
|
| 8 |
import tempfile
|
| 9 |
+
from rembg import remove
|
| 10 |
+
|
| 11 |
|
| 12 |
from PIL import Image
|
| 13 |
|
| 14 |
+
|
| 15 |
def preprocess_image(image_path, max_file_size_mb=1, target_file_size_mb=0.5):
|
| 16 |
try:
|
| 17 |
# Read the image
|
|
|
|
| 24 |
cv2.imwrite(temp_file_path, enhanced)
|
| 25 |
|
| 26 |
# Check file size of the temporary file
|
| 27 |
+
file_size_mb = os.path.getsize(
|
| 28 |
+
temp_file_path) / (1024 * 1024) # Convert to megabytes
|
| 29 |
|
| 30 |
while file_size_mb > max_file_size_mb:
|
| 31 |
+
print(
|
| 32 |
+
f"File size ({file_size_mb} MB) exceeds the maximum allowed size ({max_file_size_mb} MB). Resizing the image.")
|
| 33 |
ratio = np.sqrt(target_file_size_mb / file_size_mb)
|
| 34 |
new_width = int(image.shape[1] * ratio)
|
| 35 |
new_height = int(image.shape[0] * ratio)
|
|
|
|
| 68 |
# Convert image to grayscale
|
| 69 |
grayscale_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
| 70 |
|
| 71 |
+
# Find contours
|
| 72 |
+
contours, _ = cv2.findContours(
|
| 73 |
+
grayscale_img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 74 |
+
|
| 75 |
+
# # Apply Gaussian blur
|
| 76 |
blurred = cv2.GaussianBlur(grayscale_img, (1, 1), 0)
|
| 77 |
|
| 78 |
edged = 255 - cv2.Canny(blurred, 100, 150, apertureSize=7)
|
|
|
|
| 81 |
img = np.clip(img + intensity_increase, 0, 255).astype(np.uint8)
|
| 82 |
|
| 83 |
# Apply bilateral filter to reduce noise
|
| 84 |
+
img = cv2.bilateralFilter(img, bilateral_filter_diameter,
|
| 85 |
+
bilateral_filter_sigma_color, bilateral_filter_sigma_space)
|
| 86 |
|
| 87 |
_, binary = cv2.threshold(blurred, threshold, 255, cv2.THRESH_BINARY)
|
| 88 |
return binary
|
|
|
|
| 101 |
url = "https://api.ocr.space/parse/image"
|
| 102 |
|
| 103 |
# Define the API key and the language
|
| 104 |
+
# api_key = "K88232854988957" # Replace with your actual OCR Space API key
|
| 105 |
api_key = os.getenv("ocr_space")
|
| 106 |
language = "eng"
|
| 107 |
|
|
|
|
| 221 |
|
| 222 |
print("10. Prepared for Inference Batch")
|
| 223 |
return inference_batch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|