import os import re import fitz # PyMuPDF import tempfile import base64 from datetime import datetime import streamlit as st from transformers import pipeline from groq import Groq import streamlit.components.v1 as components from io import BytesIO import random import matplotlib.pyplot as plt import numpy as np import time # Page configuration st.set_page_config( page_title="ZeroPhish Gate", page_icon="🛡️", layout="wide", initial_sidebar_state="collapsed" ) # ⛳ Access secrets securely from environment variables GROQ_API_KEY = os.getenv("GROQ_API_KEY") HF_TOKEN = os.getenv("HF_TOKEN") # ✅ Validate secrets (simplified for Hugging Face) if not HF_TOKEN: st.warning("⚠️ HF_TOKEN not found. Using demo mode with limited features.") # Use GROQ if available, otherwise show a warning groq_client = None if GROQ_API_KEY: try: groq_client = Groq(api_key=GROQ_API_KEY) except: st.warning("⚠️ Failed to initialize GROQ client. Expert analysis will be limited.") # ✅ Load phishing detection pipeline from Hugging Face @st.cache_resource(show_spinner="Loading AI model...") def load_phishing_model(): try: return pipeline( "text-classification", model="ealvaradob/bert-finetuned-phishing", token=HF_TOKEN ) except Exception as e: st.error(f"❌ Error loading model: {e}") # Return a simple lambda function as fallback return lambda text: [{'label': 'UNKNOWN', 'score': 0.5}] phishing_pipe = load_phishing_model() # ✅ Language and role options language_choices = ["English", "Urdu", "French", "Spanish", "German", "Chinese"] role_choices = ["Admin", "Procurement", "Logistics", "Finance", "HR", "IT", "Executive"] # ✅ Glossary terms GLOSSARY = { "phishing": "Phishing is a scam where attackers trick you into revealing personal information.", "malware": "Malicious software designed to harm or exploit systems.", "spam": "Unwanted or unsolicited messages.", "tone": "The emotional character of the message.", "spear phishing": "Targeted phishing attacks aimed at specific individuals or organizations.", "smishing": "SMS phishing - phishing conducted via text messages.", "vishing": "Voice phishing - phishing conducted via phone calls.", "social engineering": "Manipulating people into revealing confidential information." } # ✅ Translations (demo dictionary-based) TRANSLATIONS = { "Phishing": {"Urdu": "فشنگ", "French": "Hameçonnage", "Spanish": "Suplantación de identidad", "German": "Phishing", "Chinese": "钓鱼"}, "Spam": {"Urdu": "سپیم", "French": "Courrier indésirable", "Spanish": "Correo basura", "German": "Spam", "Chinese": "垃圾邮件"}, "Malware": {"Urdu": "میلویئر", "French": "Logiciel malveillant", "Spanish": "Software malicioso", "German": "Schadware", "Chinese": "恶意软件"}, "Safe": {"Urdu": "محفوظ", "French": "Sûr", "Spanish": "Seguro", "German": "Sicher", "Chinese": "安全的"} } # ✅ In-memory history if "history" not in st.session_state: st.session_state.history = [] # ======================= # Custom CSS for Enhanced UI # ======================= def load_css(): st.markdown(""" """, unsafe_allow_html=True) # ======================= # Function Definitions # ======================= def extract_text_from_file(file): if file is None: return "" ext = file.name.split(".")[-1].lower() if ext == "pdf": try: doc = fitz.open(stream=file.read(), filetype="pdf") return "\n".join(page.get_text() for page in doc) except Exception as e: st.error(f"❌ Error reading PDF: {e}") return "" elif ext == "txt": try: return file.read().decode("utf-8") except Exception as e: st.error(f"❌ Error reading text file: {e}") return "" return "" def analyze_with_huggingface(text): try: result = phishing_pipe(text) label = result[0]['label'] confidence = round(result[0]['score'] * 100, 2) threat_type = { "PHISHING": "Phishing", "SPAM": "Spam", "MALWARE": "Malware", "LEGITIMATE": "Safe" }.get(label.upper(), "Unknown") return label, confidence, threat_type except Exception as e: st.error(f"❌ Model error: {e}") return "Error", 0, f"Error: {e}" def get_severity_class(threat_type, score): if threat_type.lower() == "safe": return "success" elif score > 85: return "danger" else: return "warning" def semantic_analysis(text, role, language): # If GROQ is not available, return a generic analysis if not groq_client: return f"This message shows signs of potentially being a {random.choice(['phishing attempt', 'spam', 'suspicious message'])}. Be cautious with any links or attachments. Always verify the sender through official channels before taking any action." try: prompt = f""" You are a cybersecurity expert specialized in analyzing suspicious messages and explaining them in simple terms. Analyze the following message for a {role} and provide: 1. Whether it appears to be a phishing attempt, spam, malware, or legitimate 2. The specific red flags or indicators that support your analysis 3. What actions the recipient should take 4. How this type of attack typically works Keep your explanation concise (150-200 words), informative and avoid asking questions. Message to analyze: {text} """ response = groq_client.chat.completions.create( model="llama3-8b-8192", messages=[ {"role": "system", "content": "You are a cybersecurity assistant specialized in explaining phishing and suspicious messages."}, {"role": "user", "content": prompt} ] ) raw = response.choices[0].message.content clean = re.sub(r"Is there anything else you'd like.*", "", raw, flags=re.I).strip() return clean except Exception as e: st.warning(f"⚠️ LLM analysis unavailable: {e}") return "This message shows signs of potentially malicious content. Be cautious with any links or attachments. Always verify the sender through official channels before taking any action." def translate_label(threat_type, language="English"): if language == "English": return threat_type return TRANSLATIONS.get(threat_type, {}).get(language, threat_type) def create_report(label, score, threat_type, explanation, text): ts = datetime.now().strftime("%Y%m%d_%H%M%S") filename = f"Zerophish_Report_{ts}.txt" report = f""" 🔍 AI THREAT DETECTION REPORT ============================ Generated: {datetime.now().strftime("%Y-%m-%d %H:%M:%S")} INPUT MESSAGE: {text} ANALYSIS RESULTS: ---------------- Prediction: {label} Threat Type: {threat_type} Confidence: {score}% EXPERT EXPLANATION: ----------------- {explanation} RECOMMENDATIONS: -------------- 1. Do not click any links or download any attachments from this message if marked as suspicious 2. Report this message to your IT security team 3. Delete the message from your inbox 4. Be vigilant for similar messages in the future ============================ Generated by ZeroPhish Gate """ with tempfile.NamedTemporaryFile(mode="w+", delete=False, suffix=".txt") as temp: temp.write(report) return temp.name def render_history(): if not st.session_state.history: st.info("🕒 No analysis history yet. Analyze messages to see your history here.") return for i, record in enumerate(reversed(st.session_state.history)): severity = get_severity_class(record['threat'], record['score']) with st.container(): st.markdown(f"""

Entry #{len(st.session_state.history) - i}

Input: {record['input'][:100]}{'...' if len(record['input']) > 100 else ''}

{record['threat']} Confidence: {record['score']}%

Summary: {record['summary'][:150]}{'...' if len(record['summary']) > 150 else ''}

""", unsafe_allow_html=True) def create_threat_visualization(threat_type, score): # Create figure and axis fig, ax = plt.subplots(figsize=(8, 1)) # Define the color gradient based on threat type and score if threat_type.lower() == "safe": color = '#10B981' # Green for safe elif score > 85: color = '#EF4444' # Red for high confidence threats else: color = '#F59E0B' # Amber for medium confidence threats # Create the gauge chart ax.barh(0, score, height=0.6, color=color) ax.barh(0, 100, height=0.6, color='#E5E7EB', zorder=0) # Add score text ax.text(score/2, 0, f"{score}%", ha='center', va='center', color='white', fontweight='bold') # Clean up the chart ax.set_xlim(0, 100) ax.set_ylim(-0.5, 0.5) ax.axis('off') # Add threat level indicators plt.text(25, -0.4, 'LOW', ha='center', fontsize=8, color='#4B5563') plt.text(50, -0.4, 'MEDIUM', ha='center', fontsize=8, color='#4B5563') plt.text(75, -0.4, 'HIGH', ha='center', fontsize=8, color='#4B5563') # Create buffer for returning buf = BytesIO() plt.savefig(buf, format='png', bbox_inches='tight', dpi=100) plt.close(fig) buf.seek(0) return buf # Web-based text-to-speech using ResponsiveVoice (no server-side dependencies) def add_responsive_voice(text, lang='English'): # Map our language names to ResponsiveVoice API names lang_map = { 'English': 'UK English Female', 'French': 'French Female', 'Spanish': 'Spanish Female', 'German': 'Deutsch Female', 'Chinese': 'Chinese Female', 'Urdu': 'Hindi Female' # Fallback since Urdu isn't directly supported } voice = lang_map.get(lang, 'UK English Female') html = f"""
Listen to analysis
""" components.html(html, height=60) # Create demo messages for user to try def get_demo_messages(): return [ "Hello, I noticed an issue with your account. Please click this link to verify your details: http://amaz0n-secure.com/verify", "URGENT: Your account has been compromised. Call this number immediately: +1-555-123-4567 to secure your account.", "Dear user, we have detected unusual activity on your account. Please download this attachment to review the details.", "This is a reminder that the company picnic is scheduled for this Saturday at 2pm in Central Park. Please RSVP by Thursday." ] # ======================= # Streamlit App UI # ======================= def main(): load_css() # App Header st.markdown('
', unsafe_allow_html=True) col1, col2 = st.columns([1, 5]) with col1: st.image("https://img.icons8.com/fluency/96/shield.png", width=80) with col2: st.title("🛡️ ZeroPhish Gate") st.markdown("**AI-powered phishing detection and security education platform**") st.markdown('
', unsafe_allow_html=True) # Main app tabs tab1, tab2, tab3 = st.tabs(["📝 Analyze Message", "📊 History", "📚 Security Resources"]) with tab1: st.markdown('
', unsafe_allow_html=True) st.subheader("✉️ Enter the suspicious message") # Input method selection input_method = st.radio("Choose input method:", ["Text Input", "Upload File", "Try Demo"], horizontal=True) text_input = "" if input_method == "Text Input": text_input = st.text_area("Paste the suspicious message here:", height=150) elif input_method == "Upload File": uploaded_file = st.file_uploader("📄 Upload PDF/TXT file", type=["pdf", "txt"]) if uploaded_file: with st.spinner("Extracting text from file..."): text_input = extract_text_from_file(uploaded_file) if text_input: st.success(f"✅ Successfully extracted {len(text_input)} characters from {uploaded_file.name}") st.text_area("Extracted text:", text_input, height=150) else: st.error("❌ Could not extract text from the file.") elif input_method == "Try Demo": demo_messages = get_demo_messages() selected_demo = st.selectbox( "Select a demo message:", range(len(demo_messages)), format_func=lambda i: f"Demo {i+1}: {demo_messages[i][:50]}..." ) text_input = demo_messages[selected_demo] st.text_area("Demo message:", text_input, height=150) col1, col2 = st.columns(2) with col1: language = st.selectbox("🌐 Preferred Language", language_choices) with col2: role = st.selectbox("🧑‍💼 Your Role", role_choices) col1, col2 = st.columns([1, 4]) with col1: analyze_btn = st.button("🔍 Analyze", use_container_width=True) with col2: clear_btn = st.button("🗑️ Clear History", use_container_width=True) st.markdown('
', unsafe_allow_html=True) # Run analysis if analyze_btn and text_input.strip(): st.markdown('
', unsafe_allow_html=True) st.markdown("🔄 **Analyzing message... please wait**") st.markdown('
', unsafe_allow_html=True) # Create a placeholder for the progress bar progress_placeholder = st.empty() # Simulate a progress bar for better UX for percent_complete in range(0, 101, 5): time.sleep(0.05) progress_placeholder.progress(percent_complete) # Analysis logic label, score, threat_type = analyze_with_huggingface(text_input) translated_threat = translate_label(threat_type, language) # Remove the progress bar progress_placeholder.empty() # Get severity class for styling severity = get_severity_class(threat_type, score) # Display results st.markdown(f'
', unsafe_allow_html=True) st.subheader("🔍 Analysis Results") col1, col2 = st.columns([2, 1]) with col1: st.markdown(f"""

Threat Assessment

Detection: {threat_type} ({translated_threat})

Confidence: {score}%

Status: {'⚠️ CAUTION ADVISED' if threat_type.lower() != 'safe' else '✅ MESSAGE APPEARS SAFE'}

""", unsafe_allow_html=True) with col2: # Show confidence visualization confidence_chart = create_threat_visualization(threat_type, score) st.image(confidence_chart, caption="Threat Confidence Level") # More detailed analysis if suspicious if threat_type.lower() != "safe": st.markdown("### 🧠 Expert Analysis") with st.spinner("Generating detailed analysis..."): summary = semantic_analysis(text_input, role, language) st.write(summary) # Add voice playback using ResponsiveVoice add_responsive_voice(summary, language) col1, col2 = st.columns(2) with col1: if st.button("📤 Send Report to IT Security Team", use_container_width=True): st.success("📨 Report sent to IT security team successfully.") with col2: # Generate and offer download link report_path = create_report(label, score, threat_type, summary, text_input) with open(report_path, "rb") as f: report_data = f.read() b64_report = base64.b64encode(report_data).decode() href = f'' st.markdown(href, unsafe_allow_html=True) # Security tips based on threat type st.markdown("### 🔐 Security Tips") if threat_type.lower() == "phishing": st.info("• Never click on suspicious links\n• Check the sender's email address carefully\n• Contact the supposed sender through official channels to verify") elif threat_type.lower() == "spam": st.info("• Mark as spam in your email client\n• Consider using email filtering services\n• Don't reply or click on any links") elif threat_type.lower() == "malware": st.warning("• Don't download any attachments\n• Run a virus scan if you've interacted with this message\n• Report to your IT department immediately") else: st.success("✅ This message appears to be legitimate. No further action required.") # Save to history st.session_state.history.append({ "input": text_input, "threat": threat_type, "score": score, "summary": summary if threat_type.lower() != "safe" else "Message appears to be safe. No detailed analysis required." }) st.markdown('
', unsafe_allow_html=True) elif analyze_btn and not text_input.strip(): st.warning("⚠️ Please enter some text or upload a file to analyze.") with tab2: st.subheader("📊 Analysis History") if clear_btn: st.session_state.history.clear() st.success("✅ History cleared!") render_history() with tab3: st.subheader("📚 Security Resources") st.markdown('
', unsafe_allow_html=True) st.markdown("### 📖 Glossary of Security Terms") for term, definition in GLOSSARY.items(): st.markdown(f"**{term.capitalize()}**: {definition}") st.markdown('
', unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True) st.markdown("### 🎓 Educational Resources") st.markdown(""" * [CISA: Phishing Awareness](https://www.cisa.gov/topics/cyber-threats-and-advisories/phishing) * [FTC: How to Recognize and Avoid Phishing Scams](https://consumer.ftc.gov/articles/how-recognize-and-avoid-phishing-scams) * [Google's Phishing Quiz](https://phishingquiz.withgoogle.com/) * [SANS Security Awareness Training](https://www.sans.org/security-awareness-training/) """) st.markdown('
', unsafe_allow_html=True) st.markdown('
', unsafe_allow_html=True) st.markdown("### 🚨 How to Report Phishing") st.markdown(""" **Internal Reporting:** * Forward suspicious emails to your IT security team * Report through your organization's security incident portal **External Reporting:** * [Report to the Anti-Phishing Working Group](https://apwg.org/reportphishing/) * [Report to the FBI's Internet Crime Complaint Center](https://www.ic3.gov/) * Forward phishing emails to [phishing-report@us-cert.gov](mailto:phishing-report@us-cert.gov) """) st.markdown('
', unsafe_allow_html=True) # Footer st.markdown("""

ZeroPhish Gate | AI-powered phishing detection | Created with ❤️ for cybersecurity

""", unsafe_allow_html=True) if __name__ == "__main__": main()