Spaces:
Sleeping
Sleeping
| import os | |
| import torch | |
| import torch.nn as nn | |
| import pytorch_lightning as pl | |
| from sklearn import metrics | |
| from transformers import AutoModelForAudioClassification | |
| import numpy as np | |
| class FeedforwardModel(nn.Module): | |
| def __init__(self, input_size, output_size): | |
| super(FeedforwardModel, self).__init__() | |
| self.model = nn.Sequential( | |
| nn.Linear(input_size, 1024), | |
| nn.BatchNorm1d(1024), | |
| nn.ReLU(), | |
| nn.Dropout(0.3), | |
| nn.Linear(1024, 512), | |
| nn.BatchNorm1d(512), | |
| nn.ReLU(), | |
| nn.Dropout(0.3), | |
| nn.Linear(512, 256), | |
| nn.BatchNorm1d(256), | |
| nn.ReLU(), | |
| nn.Dropout(0.3), | |
| nn.Linear(256, 128), | |
| nn.BatchNorm1d(128), | |
| nn.ReLU(), | |
| nn.Dropout(0.3), | |
| nn.Linear(128, output_size), | |
| ) | |
| def forward(self, x): | |
| logit = self.model(x) | |
| return logit | |