Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,7 @@
|
|
| 1 |
-
import spaces
|
| 2 |
import os
|
| 3 |
import requests
|
| 4 |
import torch
|
| 5 |
-
from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler
|
| 6 |
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
| 7 |
from diffusers.models import AutoencoderKL
|
| 8 |
from PIL import Image
|
|
@@ -11,15 +10,13 @@ import cv2
|
|
| 11 |
import numpy as np
|
| 12 |
from diffusers.models.attention_processor import AttnProcessor2_0
|
| 13 |
import gradio as gr
|
|
|
|
| 14 |
|
| 15 |
-
USE_TORCH_COMPILE = 0
|
| 16 |
-
ENABLE_CPU_OFFLOAD = 0
|
| 17 |
|
| 18 |
-
# Set up the device
|
| 19 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 20 |
|
| 21 |
-
|
| 22 |
-
# Function to download files (from the example)
|
| 23 |
def download_file(url, folder_path, filename):
|
| 24 |
if not os.path.exists(folder_path):
|
| 25 |
os.makedirs(folder_path)
|
|
@@ -37,7 +34,6 @@ def download_file(url, folder_path, filename):
|
|
| 37 |
else:
|
| 38 |
print(f"Error downloading the file. Status code: {response.status_code}")
|
| 39 |
|
| 40 |
-
# Download necessary models and files
|
| 41 |
def download_models():
|
| 42 |
models = {
|
| 43 |
"MODEL": ("https://huggingface.co/dantea1118/juggernaut_reborn/resolve/main/juggernaut_reborn.safetensors?download=true", "models/models/Stable-diffusion", "juggernaut_reborn.safetensors"),
|
|
@@ -56,9 +52,6 @@ def download_models():
|
|
| 56 |
|
| 57 |
download_models()
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
class LazyRealESRGAN:
|
| 63 |
def __init__(self, device, scale):
|
| 64 |
self.device = device
|
|
@@ -74,72 +67,49 @@ class LazyRealESRGAN:
|
|
| 74 |
self.load_model()
|
| 75 |
return self.model.predict(img)
|
| 76 |
|
| 77 |
-
# Initialize the lazy models
|
| 78 |
lazy_realesrgan_x2 = LazyRealESRGAN(device, scale=2)
|
| 79 |
lazy_realesrgan_x4 = LazyRealESRGAN(device, scale=4)
|
| 80 |
|
| 81 |
def resize_and_upscale(input_image, resolution):
|
| 82 |
-
scale = 2
|
| 83 |
-
if resolution == 2048:
|
| 84 |
-
init_w = 1024
|
| 85 |
-
elif resolution == 2560:
|
| 86 |
-
init_w = 1280
|
| 87 |
-
elif resolution == 3072:
|
| 88 |
-
init_w = 1536
|
| 89 |
-
else:
|
| 90 |
-
init_w = 1024
|
| 91 |
-
scale = 4
|
| 92 |
-
|
| 93 |
input_image = input_image.convert("RGB")
|
| 94 |
W, H = input_image.size
|
| 95 |
-
k = float(
|
| 96 |
-
H
|
| 97 |
-
W
|
| 98 |
-
H = int(round(H / 64.0)) * 64
|
| 99 |
-
W = int(round(W / 64.0)) * 64
|
| 100 |
img = input_image.resize((W, H), resample=Image.LANCZOS)
|
| 101 |
-
model = RealESRGAN(device, scale=scale)
|
| 102 |
-
model.load_weights(f'models/upscalers/RealESRGAN_x{scale}.pth', download=False)
|
| 103 |
-
img = model.predict(img)
|
| 104 |
if scale == 2:
|
| 105 |
img = lazy_realesrgan_x2.predict(img)
|
| 106 |
else:
|
| 107 |
img = lazy_realesrgan_x4.predict(img)
|
| 108 |
return img
|
| 109 |
|
| 110 |
-
def calculate_brightness_factors(hdr_intensity):
|
| 111 |
-
factors = [1.0] * 9
|
| 112 |
-
if hdr_intensity > 0:
|
| 113 |
-
factors = [1.0 - 0.9 * hdr_intensity, 1.0 - 0.7 * hdr_intensity, 1.0 - 0.45 * hdr_intensity,
|
| 114 |
-
1.0 - 0.25 * hdr_intensity, 1.0, 1.0 + 0.2 * hdr_intensity,
|
| 115 |
-
1.0 + 0.4 * hdr_intensity, 1.0 + 0.6 * hdr_intensity, 1.0 + 0.8 * hdr_intensity]
|
| 116 |
-
return factors
|
| 117 |
-
|
| 118 |
-
def pil_to_cv(pil_image):
|
| 119 |
-
return cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
| 120 |
-
|
| 121 |
-
def adjust_brightness(cv_image, factor):
|
| 122 |
-
hsv_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2HSV)
|
| 123 |
-
h, s, v = cv2.split(hsv_image)
|
| 124 |
-
v = np.clip(v * factor, 0, 255).astype('uint8')
|
| 125 |
-
adjusted_hsv = cv2.merge([h, s, v])
|
| 126 |
-
return cv2.cvtColor(adjusted_hsv, cv2.COLOR_HSV2BGR)
|
| 127 |
-
|
| 128 |
def create_hdr_effect(original_image, hdr):
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
| 133 |
merge_mertens = cv2.createMergeMertens()
|
| 134 |
hdr_image = merge_mertens.process(images)
|
| 135 |
hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype('uint8')
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
return hdr_image_pil
|
| 139 |
|
| 140 |
-
class
|
| 141 |
def __init__(self):
|
| 142 |
-
self.pipe =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
def setup_pipeline(self):
|
| 145 |
controlnet = ControlNetModel.from_single_file(
|
|
@@ -172,35 +142,38 @@ class ImageProcessor:
|
|
| 172 |
|
| 173 |
return pipe
|
| 174 |
|
| 175 |
-
def
|
| 176 |
-
|
| 177 |
-
|
| 178 |
|
| 179 |
-
|
| 180 |
-
prompt=prompt,
|
| 181 |
-
negative_prompt=negative_prompt,
|
| 182 |
-
image=condition_image,
|
| 183 |
-
control_image=condition_image,
|
| 184 |
-
width=condition_image.size[0],
|
| 185 |
-
height=condition_image.size[1],
|
| 186 |
-
strength=strength,
|
| 187 |
-
num_inference_steps=num_inference_steps,
|
| 188 |
-
guidance_scale=guidance_scale,
|
| 189 |
-
generator=torch.manual_seed(0),
|
| 190 |
-
).images[0]
|
| 191 |
-
|
| 192 |
-
return result
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
image_processor = ImageProcessor()
|
| 196 |
|
| 197 |
@spaces.GPU
|
| 198 |
def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale):
|
| 199 |
-
|
| 200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
prompt = "masterpiece, best quality, highres"
|
| 202 |
negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
|
| 203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
return result
|
| 205 |
|
| 206 |
# Gradio interface
|
|
@@ -214,7 +187,7 @@ with gr.Blocks() as demo:
|
|
| 214 |
output_image = gr.Image(type="pil", label="Enhanced Image")
|
| 215 |
with gr.Accordion("Advanced Options", open=False):
|
| 216 |
resolution = gr.Slider(minimum=512, maximum=2048, value=1024, step=64, label="Resolution")
|
| 217 |
-
num_inference_steps = gr.Slider(minimum=1, maximum=
|
| 218 |
strength = gr.Slider(minimum=0, maximum=1, value=0.35, step=0.05, label="Strength")
|
| 219 |
hdr = gr.Slider(minimum=0, maximum=1, value=0, step=0.1, label="HDR Effect")
|
| 220 |
guidance_scale = gr.Slider(minimum=0, maximum=20, value=3, step=0.5, label="Guidance Scale")
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import requests
|
| 3 |
import torch
|
| 4 |
+
from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler
|
| 5 |
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
| 6 |
from diffusers.models import AutoencoderKL
|
| 7 |
from PIL import Image
|
|
|
|
| 10 |
import numpy as np
|
| 11 |
from diffusers.models.attention_processor import AttnProcessor2_0
|
| 12 |
import gradio as gr
|
| 13 |
+
import spaces
|
| 14 |
|
| 15 |
+
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
| 16 |
+
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
| 17 |
|
|
|
|
| 18 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 19 |
|
|
|
|
|
|
|
| 20 |
def download_file(url, folder_path, filename):
|
| 21 |
if not os.path.exists(folder_path):
|
| 22 |
os.makedirs(folder_path)
|
|
|
|
| 34 |
else:
|
| 35 |
print(f"Error downloading the file. Status code: {response.status_code}")
|
| 36 |
|
|
|
|
| 37 |
def download_models():
|
| 38 |
models = {
|
| 39 |
"MODEL": ("https://huggingface.co/dantea1118/juggernaut_reborn/resolve/main/juggernaut_reborn.safetensors?download=true", "models/models/Stable-diffusion", "juggernaut_reborn.safetensors"),
|
|
|
|
| 52 |
|
| 53 |
download_models()
|
| 54 |
|
|
|
|
|
|
|
|
|
|
| 55 |
class LazyRealESRGAN:
|
| 56 |
def __init__(self, device, scale):
|
| 57 |
self.device = device
|
|
|
|
| 67 |
self.load_model()
|
| 68 |
return self.model.predict(img)
|
| 69 |
|
|
|
|
| 70 |
lazy_realesrgan_x2 = LazyRealESRGAN(device, scale=2)
|
| 71 |
lazy_realesrgan_x4 = LazyRealESRGAN(device, scale=4)
|
| 72 |
|
| 73 |
def resize_and_upscale(input_image, resolution):
|
| 74 |
+
scale = 2 if resolution <= 2048 else 4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
input_image = input_image.convert("RGB")
|
| 76 |
W, H = input_image.size
|
| 77 |
+
k = float(resolution) / min(H, W)
|
| 78 |
+
H = int(round(H * k / 64.0)) * 64
|
| 79 |
+
W = int(round(W * k / 64.0)) * 64
|
|
|
|
|
|
|
| 80 |
img = input_image.resize((W, H), resample=Image.LANCZOS)
|
|
|
|
|
|
|
|
|
|
| 81 |
if scale == 2:
|
| 82 |
img = lazy_realesrgan_x2.predict(img)
|
| 83 |
else:
|
| 84 |
img = lazy_realesrgan_x4.predict(img)
|
| 85 |
return img
|
| 86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
def create_hdr_effect(original_image, hdr):
|
| 88 |
+
if hdr == 0:
|
| 89 |
+
return original_image
|
| 90 |
+
cv_original = cv2.cvtColor(np.array(original_image), cv2.COLOR_RGB2BGR)
|
| 91 |
+
factors = [1.0 - 0.9 * hdr, 1.0 - 0.7 * hdr, 1.0 - 0.45 * hdr,
|
| 92 |
+
1.0 - 0.25 * hdr, 1.0, 1.0 + 0.2 * hdr,
|
| 93 |
+
1.0 + 0.4 * hdr, 1.0 + 0.6 * hdr, 1.0 + 0.8 * hdr]
|
| 94 |
+
images = [cv2.convertScaleAbs(cv_original, alpha=factor) for factor in factors]
|
| 95 |
merge_mertens = cv2.createMergeMertens()
|
| 96 |
hdr_image = merge_mertens.process(images)
|
| 97 |
hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype('uint8')
|
| 98 |
+
return Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB))
|
|
|
|
|
|
|
| 99 |
|
| 100 |
+
class LazyLoadPipeline:
|
| 101 |
def __init__(self):
|
| 102 |
+
self.pipe = None
|
| 103 |
+
|
| 104 |
+
def load(self):
|
| 105 |
+
if self.pipe is None:
|
| 106 |
+
self.pipe = self.setup_pipeline()
|
| 107 |
+
if ENABLE_CPU_OFFLOAD:
|
| 108 |
+
self.pipe.enable_model_cpu_offload()
|
| 109 |
+
else:
|
| 110 |
+
self.pipe.to(device)
|
| 111 |
+
if USE_TORCH_COMPILE:
|
| 112 |
+
self.pipe.unet = torch.compile(self.pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 113 |
|
| 114 |
def setup_pipeline(self):
|
| 115 |
controlnet = ControlNetModel.from_single_file(
|
|
|
|
| 142 |
|
| 143 |
return pipe
|
| 144 |
|
| 145 |
+
def __call__(self, *args, **kwargs):
|
| 146 |
+
self.load()
|
| 147 |
+
return self.pipe(*args, **kwargs)
|
| 148 |
|
| 149 |
+
lazy_pipe = LazyLoadPipeline()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
@spaces.GPU
|
| 152 |
def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale):
|
| 153 |
+
torch.cuda.empty_cache()
|
| 154 |
+
lazy_pipe.load()
|
| 155 |
+
lazy_pipe.pipe.unet.set_attn_processor(AttnProcessor2_0())
|
| 156 |
+
|
| 157 |
+
condition_image = resize_and_upscale(input_image, resolution)
|
| 158 |
+
condition_image = create_hdr_effect(condition_image, hdr)
|
| 159 |
+
|
| 160 |
prompt = "masterpiece, best quality, highres"
|
| 161 |
negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
|
| 162 |
+
|
| 163 |
+
options = {
|
| 164 |
+
"prompt": prompt,
|
| 165 |
+
"negative_prompt": negative_prompt,
|
| 166 |
+
"image": condition_image,
|
| 167 |
+
"control_image": condition_image,
|
| 168 |
+
"width": condition_image.size[0],
|
| 169 |
+
"height": condition_image.size[1],
|
| 170 |
+
"strength": strength,
|
| 171 |
+
"num_inference_steps": num_inference_steps,
|
| 172 |
+
"guidance_scale": guidance_scale,
|
| 173 |
+
"generator": torch.Generator(device=device).manual_seed(0),
|
| 174 |
+
}
|
| 175 |
+
|
| 176 |
+
result = lazy_pipe(**options).images[0]
|
| 177 |
return result
|
| 178 |
|
| 179 |
# Gradio interface
|
|
|
|
| 187 |
output_image = gr.Image(type="pil", label="Enhanced Image")
|
| 188 |
with gr.Accordion("Advanced Options", open=False):
|
| 189 |
resolution = gr.Slider(minimum=512, maximum=2048, value=1024, step=64, label="Resolution")
|
| 190 |
+
num_inference_steps = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Number of Inference Steps")
|
| 191 |
strength = gr.Slider(minimum=0, maximum=1, value=0.35, step=0.05, label="Strength")
|
| 192 |
hdr = gr.Slider(minimum=0, maximum=1, value=0, step=0.1, label="HDR Effect")
|
| 193 |
guidance_scale = gr.Slider(minimum=0, maximum=20, value=3, step=0.5, label="Guidance Scale")
|