Spaces:
Sleeping
Sleeping
# JBHF/VERTAAL-APP-EAGLE-SHELTER/app.py - 10-04-2024, 18u00m CET | |
# WERKT AL: DE OPGENOMEN AUDIO MBV DEZE APP, audio.wav, HOEFT NIET PERSÉ GEPERSISTEERD TE WORDEN !!!!!! | |
# https://github.com/theevann/streamlit-audiorecorder | |
# An audio Recorder for streamlit | |
# | |
# Description | |
# Audio recorder component for streamlit. | |
# It creates a button to start the recording and takes three arguments: | |
# the start button text, the stop button text, and the pause button text. | |
# If the pause button text is not specified, the pause button is not displayed. | |
# | |
# Parameters | |
# The signature of the component is: | |
# audiorecorder(start_prompt="Start recording", stop_prompt="Stop recording", pause_prompt="", key=None): | |
# The prompt parameters are self-explanatory, and the optional key parameter is used internally by streamlit | |
# to properly distinguish multiple audiorecorders on the page. | |
# | |
# Return value | |
# The component's return value is a pydub AudioSegment. | |
# | |
# All AudioSegment methods are available, in particular you can: | |
# - Play the audio in the frontend with st.audio(audio.export().read()) | |
# - Save the audio to a file with audio.export("audio.wav", format="wav") | |
# JB: Waarom zie ik in mijn HF Spaces omgeving de file "audio.wav" niet terug ? | |
# JB: 08-04-2024 - Mogelijk is caching al voldoende (anders file persistence)# | |
# Zie hiervoor: | |
# | |
# CACHING: | |
# ======== | |
# STREAMLIT - Caching overview - Streamlit Docs - 07-04-2024 !!!!! | |
# https://docs.streamlit.io/develop/concepts/architecture/caching | |
# | |
# EVERNOTE : | |
# https://www.evernote.com/shard/s313/nl/41973486/31880952-8bd9-41ef-8047-ca844143e833/ | |
# STREAMLIT - Caching overview - Streamlit Docs - 07-04-2024 !!!!! | |
# | |
# 08-04-2024 | |
# | |
# EN | |
# | |
# PERSISTENCE: | |
# ============ | |
# HF SPACES STREAMLIT APPS - GET PASSWORDS AND ACCESS TOKENS FROM HF ENVIRONMENT ! - PERSISTENT STORAGE ON HF SPACES ! - EAGLE SHELTER VERTAAL APP ETC ! - app.py · julien-c/persistent-data at main - 20-03-2024 !!!!! !!!!! !!!!! | |
# https://huggingface.co/spaces/julien-c/persistent-data/blob/main/app.py | |
# | |
# ——-> | |
# | |
# DUPLICATED TO: | |
# https://huggingface.co/spaces/JBHF/persistent-data?logs=container | |
# | |
# EVERNOTE : | |
# https://www.evernote.com/shard/s313/nl/41973486/1b07098e-3376-4316-abb3-b3d0996ebf03/ | |
# HF SPACES STREAMLIT APPS - GET PASSWORDS AND ACCESS TOKENS FROM HF ENVIRONMENT ! - PERSISTENT STORAGE ON HF SPACES ! - EAGLE SHELTER VERTAAL APP ETC ! - app.py · julien-c/persistent-data at main - 20-03-2024 !!!!! !!!!! !!!!! | |
# | |
# 08-04-2024 | |
# | |
import os | |
import streamlit as st | |
########################################################################################################### | |
# VERTALING | |
# DAADWERKELIJK MET MIC OPGENOMEN EN GETRANSCRIBEERD STUKJE OEKRAÍENSE TEKST TER TEST | |
# OM HIERONDER NAAR NEDERLANDS TE VERTALEN MBV LLM MIXTRAL-8x7b-GROQ! : | |
# text_to_transcribe: | |
# князем Данилом Романовичем біля Звенигорода і названий на честь його сина Лева Сьогодні Львів має площу 155 квадратних кілометрів з безліччю громадських будинків, кафе, магазинів | |
# ... | |
# TEXTS FROM UKRAIN TO TRANSLATE: | |
# 1 - Short text from https://youtu.be/1_vO60OkkrY?list=PLeeQI3aTmCn9Lu9mgSCmmc-KkGI95-Ie6 : | |
text_to_transcribe = """князем Данилом Романовичем біля Звенигорода і названий на честь його сина Лева Сьогодні Львів має площу 155 квадратних кілометрів з безліччю громадських будинків, кафе, магазинів""" | |
# | |
# 2 - complete, long text from https://youtu.be/1_vO60OkkrY?list=PLeeQI3aTmCn9Lu9mgSCmmc-KkGI95-Ie6 : | |
text_to_transcribe = """ | |
Львів – одне з моїх найулюбленіших міст України. Я вже відвідувала це місто п’ять разів, але хочу повертатися туди знову і знову. Львів – це історична столиця Галичини і Західної України. Це великий культурний, політичний і релігійний центр України. | |
Львів був заснований у середині XIII ст. князем Данилом Романовичем біля Звенигорода і названий на честь його сина, Лева. Сьогодні Львів має площу 155 км. кв. Найбільш виразна частина Львова включає проспект Шевченка і Городецьку вулицю, з безліччю громадських будинків, готелів, кафе, магазинів і банків у стилі ХІХ-ХХ ст. | |
Львів – дивовижне місто, яке наскрізь просякнуте п’янким ароматом кави і шоколаду. Світ візит я починаю із серця Львова – Площа ринок, потім я підіймаюся на Ратушу. Я люблю відвідувати заклади, які стали візитівкою міста такі як: Копальня кави, Майстерня шоколаду, Гасова Лямпа, Дім Легенд. Львів — єдине в Україні місто, у якому збереглися архітектурні споруди часів Ренесансу. Найбільш яскравими прикладами цього стилю служать церква Успіння і каплиця Трьох Святих. | |
Основні пам'ятники міста — пам'ятник А. Міцкевичу, І. Франку, В. Стефанику, С. Бандері. Екскурсія середньовічними замками також не залишає нікого байдужим. | |
Неможливо передати словами всю красу і велич Львова, треба бачити це самостійно. Це старовинне місто, яке зачаровує своїми традиціями, красою та шармом. | |
""" | |
st.write("text_to_transcribe: ", text_to_transcribe) | |
# Groq in Langchain | |
# Groq is even compatible with LangChain. To begin using Groq in LangChain, download the library: | |
# !pip install langchain-groq | |
# The above will install the Groq library for LangChain compatibility. Now let’s try it out in code: | |
# Import the necessary libraries. | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_groq import ChatGroq | |
groq_api_key = os.environ['GROQ_API_KEY'] | |
# groq_api_key = "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" # os.environ['GROQ_API_KEY'] | |
# groq_api_key = "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" # JB OK 24-03-2024 | |
st.write("groq_api_key: ", groq_api_key) | |
# Initialize a ChatGroq object with a temperature of 0 and the "mixtral-8x7b-32768" model. | |
llm = ChatGroq(temperature=0, model_name="mixtral-8x7b-32768") | |
# The above code does the following: | |
# -Creates a new ChatGroq object named llm | |
# -Sets the temperature parameter to 0, indicating that the responses should be more predictable | |
# -Sets the model_name parameter to “mixtral-8x7b-32768“, specifying the language model to use | |
# Define the system message introducing the AI assistant's capabilities. | |
# system = "You are an expert Coding Assistant." | |
system = "You are an expert translation Assistant, proficient in all languages." | |
# Define a placeholder for the user's input. | |
human = "{text}" | |
# Create a chat prompt consisting of the system and human messages. | |
prompt = ChatPromptTemplate.from_messages([("system", system), ("human", human)]) | |
# Invoke the chat chain with the user's input. | |
chain = prompt | llm | |
# response = chain.invoke({"text": "Write a simple code to generate Fibonacci numbers in Rust?"}) # ORIGINAL | |
# response = chain.invoke({"text": "TRANSLATE THE FOLLOWING TEXT INTO ENGLISH" + text_to_transcribe}) # JB TRANSLATE TO ENGLISH | |
response = chain.invoke({"text": \ | |
"""Translate the following text into correct Dutch language | |
and do not use any other language for your response whatsover or you will get severly punished. | |
Do not translate names of places, towns and other geographical names. | |
Do not translate names of people. | |
""" + text_to_transcribe}) # JB TRANSLATE TO DUTCH | |
# Print the Response. | |
# print(response.content) | |
st.write(response.content) | |
# - The code generates a Chat Prompt using the ChatPromptTemplate class. | |
# - The prompt comprises two messages: one from the “system” (the AI assistant) and one from the “human” (the user). | |
# - The system message presents the AI assistant as an expert Coding Assistant. | |
# - The human message serves as a placeholder for the user’s input. | |
# - The llm method invokes the llm chain to produce a response based on the provided Prompt and the user’s input. | |
########################################################################################################### | |
########################################################################################################### | |
# | |
# Installation: | |
# pip install streamlit-audiorecorder | |
# Note: This package uses ffmpeg, so it should be installed for this audiorecorder to work properly. | |
# | |
# On ubuntu/debian: sudo apt update && sudo apt install ffmpeg | |
# On mac: brew install ffmpeg | |
import streamlit as st | |
from audiorecorder import audiorecorder | |
st.title("Audio Recorder") | |
# audiorecorder(start_prompt="Start recording", stop_prompt="Stop recording", pause_prompt="", key=None): | |
audio = audiorecorder("Click to record", "Click to stop recording", "Click to pause recording") | |
# JB: | |
# https://docs.streamlit.io/develop/concepts/architecture/caching | |
# @st.cache_data | |
# @st.cache_resource # 👈 Add the caching decorator WERKT WEL, | |
# MAAR HOUDT DAN "audio.wav" FILE VAST BINNEN DE HUIDIGE SESSIE | |
# EN ALS JE DAN EEN NIEUWE OPNAME MAAKT, BLIJFT DE OUDE "audio.wav" BESTAAN | |
# EN WORDT DAN NIET MET DE NIEUWE OPNAME OVERSCHREVEN ! | |
#@st.cache_resource # 👈 Add the caching decorator | |
def audio_export(audio_wav_file, format): | |
# audio.export("audio.wav", format="wav") # ORIGINAL | |
audio.export(audio_wav_file, format=format) | |
if len(audio) > 0: | |
# To play audio in frontend: | |
st.audio(audio.export().read()) | |
# To save audio to a file, use pydub export method: | |
# https://docs.streamlit.io/develop/concepts/architecture/caching | |
# @st.cache_data | |
# @st.cache_data | |
# audio.export("audio.wav", format="wav") # ORIGINAL | |
audio_export("audio.wav", format="wav") # JB 08-04-2024 | |
# To get audio properties, use pydub AudioSegment properties: | |
st.write(f"Frame rate: {audio.frame_rate}, Frame width: {audio.frame_width}, Duration: {audio.duration_seconds} seconds") | |
st.button("Rerun") | |
########################################################################################################### | |
########################################################################################################### | |
# TEST | |
# ZIE: | |
# infer_faster_whisper_large_v2 (CPU VERSIE !) 08-04-2024-COLAB-CPU-PYTHON3-tvscitechtalk.ipynb | |
# https://colab.research.google.com/drive/1EreiFx825oIrR2P43XSXjHXx01EWi6ZH#scrollTo=vuLjbPxexPDj&uniqifier=5 | |
from faster_whisper import WhisperModel | |
model_size = "large-v2" | |
# Run on GPU with FP16 | |
# model = WhisperModel(model_size, device="cuda", compute_type="float16") # ORIGINAL, DRAAIT OP COLAB T4 GPU OK | |
# TEST: Run on CPU | |
# model = WhisperModel(model_size, device="cpu", compute_type="float16") # JB, DRAAIT OP COLAB CPU OK ? | |
# ValueError: Requested float16 compute type, but the target device or backend do not support efficient float16 computation. | |
# | |
# st.write("Loading the WhisperModel: model = WhisperModel(model_size, device=\"cpu\")") | |
# model = WhisperModel(model_size, device="cpu") # , compute_type="float16") # JB, DRAAIT OP COLAB CPU OK: JA; HF SPACES STREAMLIT FREE TIER: JB OK ! | |
# JB: Dit gebruikt mijn HF Token ! | |
# st.write("Ready Loading the WhisperModel: model = WhisperModel(model_size, device=\"cpu\")") | |
st.write("Loading the WhisperModel: model = WhisperModel(model_size, device=\"cpu\", compute_type=\"int8\")") | |
model = WhisperModel(model_size, device="cpu", compute_type="int8") # , compute_type="float16") # JB | |
# JB: Dit gebruikt mijn HF Token ! | |
# st.write("Ready Loading the WhisperModel: model = WhisperModel(model_size, device=\"cpu\")") | |
# LOADING OF model = WhisperModel(model_size, device="cpu") TAKES ABOUT 1 MINUTE ON HF SPACES STREAMLIT FREE TIER | |
# | |
st.write("Ready Loading the WhisperModel: model = WhisperModel(model_size, device=\"cpu\", compute_type=\"int8\")") | |
# LOADING OF model = WhisperModel(model_size, device=\"cpu\", compute_type=\"int8\") TAKES ABOUT 33 sec (Na RERUN 1 minute) ON HF SPACES STREAMLIT FREE TIER | |
# USING: | |
# model = WhisperModel(model_size, device="cpu", compute_type="int8") # JB | |
# segments, info = model.transcribe("sam_altman_lex_podcast_367.flac", beam_size=1) | |
# /content/Ukrainian podcast #10 Traveling to Lviv - Подорож до Льова. SLOW UKRAINIAN.mp3 | |
# segments, info = model.transcribe("Ukrainian podcast #10 Traveling to Lviv - Подорож до Льова. SLOW UKRAINIAN.mp3", beam_size=1) | |
# TEST: | |
segments, info = model.transcribe("audio.wav", beam_size=1) # DIT WERKT: GEDURENDE DE SESSIE BLIJFT audio.wav FILE BESCHIKBAAR IN DEZE APP !!!!! | |
# print("Detected language '%s' with probability %f" % (info.language, info.language_probability)) | |
st.write("Detected language '%s' with probability %f" % (info.language, info.language_probability)) | |
st.write("") | |
st.write("info.all_language_probs : ", info.all_language_probs) | |
st.write("len(info.all_language_probs): ", len(info.all_language_probs)) | |
# 99 | |
st.write("") | |
st.write("info: ", info) | |
# Ukrainian podcast #10 Traveling to Lviv - Подорож до Льова. SLOW UKRAINIAN.mp3 : | |
st.write("info.duration: ", info.duration) | |
# 233.8249375 | |
# time: 3.98 ms (started: 2024-03-15 10:55:15 +00:00) | |
# minutes = int(info.duration / 60) | |
# seconds = info.duration - minutes*60 | |
minutes = int(info.duration / 60) | |
seconds = info.duration - minutes*60 | |
st.write(minutes," minutes and ", seconds, " seconds") | |
text_to_transcribe = "" | |
for segment in segments: | |
# print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text)) | |
st.write("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text)) | |
text_to_transcribe = text_to_transcribe + " " + segment.text | |
st.write("---------------------------------------------------------------------") | |
#text_to_transcribe = "" | |
#st.write("TOTAL TEXT TO TRANSCRIBE:") | |
#for segment in segments: | |
# st.write(segment.text) | |
# text_to_transcribe = text_to_transcribe + " " + segment | |
# # print(segment) | |
#st.write("text_to_transcribe: ", text_to_transcribe) | |
# DAADWERKELIJK MET MIC OPGENOMEN EN GETRANSCRIBEERD STUKJE OEKRAÍENSE TEKST TER TEST | |
# OM HIERONDER NAAR NEDERLANDS TE VERTALEN MBV LLM MIXTRAL-8x7b-GROQ! : | |
# text_to_transcribe: | |
# князем Данилом Романовичем біля Звенигорода і названий на честь його сина Лева Сьогодні Львів має площу 155 квадратних кілометрів з безліччю громадських будинків, кафе, магазинів | |
########################################################################################################### | |
# VERTALEN NAAR NEDERLANDS VAN DE CONTENT IN text_to_transcribe: | |
# (PROBEER OOK EEN 2 STAPS VERTALING: EERST NAAR ENGELS, | |
# EN DAN DIE ENGELSE TEKST NAAR NEDERLANDS TE VERTALEN. | |
# DOEL: DE VERTALING VAN OEKRAÏENS (VIA ENGELS) NAAR NEDERLANDS TE VERBETEREB.) | |
response = chain.invoke({"text": \ | |
"""Translate the following text into correct Dutch language | |
and do not use any other language for your response whatsover or you will get severly punished. | |
Do not translate names of places, towns and other geographical names. | |
Do not translate names of people. | |
Only give the translation and not anything else! | |
""" + text_to_transcribe}) # JB TRANSLATE TO DUTCH | |
# Print the Response. | |
# print(response.content) | |
st.write("ORIGINELE TEKST : ", text_to_transcribe) | |
st.write("NEDERLANDSE VERTALING HIERVAN: ", response.content) | |