Spaces:
Runtime error
Runtime error
uploaded main end point file
Browse files- facility_predict.py +172 -0
facility_predict.py
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
import json
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
import heapq
|
| 7 |
+
import pandas as pd
|
| 8 |
+
from tqdm import tqdm
|
| 9 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 10 |
+
from torch.utils.data import TensorDataset, DataLoader
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class Preprocess:
|
| 14 |
+
def __init__(self, tokenizer_vocab_path, tokenizer_max_len):
|
| 15 |
+
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_vocab_path, use_auth_token='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')
|
| 16 |
+
self.max_len = tokenizer_max_len
|
| 17 |
+
|
| 18 |
+
def clean_text(self, text):
|
| 19 |
+
text = text.lower()
|
| 20 |
+
stopwords = ["i", "was", "transferred",
|
| 21 |
+
"from", "to", "nilienda", "kituo",
|
| 22 |
+
"cha", "lakini", "saa", "hii", "niko",
|
| 23 |
+
"at", "nilienda", "nikahudumiwa", "pole",
|
| 24 |
+
"deliver", "na", "ni", "baada", "ya",
|
| 25 |
+
"kutumwa", "kutoka", "nilienda",
|
| 26 |
+
"ndipo", "nikapewa", "hiyo", "lindam ama", "nikawa",
|
| 27 |
+
"mgonjwa", "nikatibiwa", "in", "had", "a",
|
| 28 |
+
"visit", "gynaecologist", "ndio",
|
| 29 |
+
"karibu", "mimi", "niko", "sehemu", "hospitali",
|
| 30 |
+
"serikali", "delivered", "katika", "kaunti", "kujifungua",
|
| 31 |
+
"katika", "huko", "nilipoenda", "kwa", "bado", "naedelea",
|
| 32 |
+
"sija", "maliza", "mwisho",
|
| 33 |
+
"nilianza", "kliniki", "yangu",
|
| 34 |
+
"nilianzia", "nilijifungua"]
|
| 35 |
+
text_single = ' '.join(word for word in text.split() if word not in stopwords)
|
| 36 |
+
return text_single
|
| 37 |
+
|
| 38 |
+
def encode_fn(self, text_single):
|
| 39 |
+
"""
|
| 40 |
+
Using tokenizer to preprocess the text
|
| 41 |
+
example of text_single:'Nairobi Hospital'
|
| 42 |
+
"""
|
| 43 |
+
tokenizer = self.tokenizer(text_single,
|
| 44 |
+
padding=True,
|
| 45 |
+
truncation=True,
|
| 46 |
+
max_length=self.max_len,
|
| 47 |
+
return_tensors='pt'
|
| 48 |
+
)
|
| 49 |
+
input_ids = tokenizer['input_ids']
|
| 50 |
+
attention_mask = tokenizer['attention_mask']
|
| 51 |
+
return input_ids, attention_mask
|
| 52 |
+
|
| 53 |
+
def process_tokenizer(self, text_single):
|
| 54 |
+
"""
|
| 55 |
+
Preprocess text and prepare dataloader for a single new sentence
|
| 56 |
+
"""
|
| 57 |
+
input_ids, attention_mask = self.encode_fn(text_single)
|
| 58 |
+
data = TensorDataset(input_ids, attention_mask)
|
| 59 |
+
return data
|
| 60 |
+
|
| 61 |
+
class Facility_Model:
|
| 62 |
+
def __init__(self, facility_model_path: any,
|
| 63 |
+
max_len: int):
|
| 64 |
+
self.max_len = max_len
|
| 65 |
+
self.softmax = torch.nn.Softmax(dim=1)
|
| 66 |
+
self.gpu = False
|
| 67 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(facility_model_path, use_auth_token='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')
|
| 68 |
+
self.model.eval() # set pytorch model for inference mode
|
| 69 |
+
|
| 70 |
+
if torch.cuda.device_count() > 1:
|
| 71 |
+
self.model = torch.nn.DataParallel(self.model)
|
| 72 |
+
|
| 73 |
+
if self.gpu:
|
| 74 |
+
seed = 42
|
| 75 |
+
random.seed(seed)
|
| 76 |
+
np.random.seed(seed)
|
| 77 |
+
torch.manual_seed(seed)
|
| 78 |
+
torch.cuda.manual_seed_all(seed)
|
| 79 |
+
torch.backends.cudnn.deterministic = True
|
| 80 |
+
self.device = torch.device('cuda')
|
| 81 |
+
else:
|
| 82 |
+
self.device = 'cpu'
|
| 83 |
+
|
| 84 |
+
self.model = self.model.to(self.device)
|
| 85 |
+
|
| 86 |
+
def predict_single(self, model, pred_data):
|
| 87 |
+
"""
|
| 88 |
+
Model inference for new single sentence
|
| 89 |
+
"""
|
| 90 |
+
pred_dataloader = DataLoader(pred_data, batch_size=10, shuffle=False)
|
| 91 |
+
for i, batch in enumerate(pred_dataloader):
|
| 92 |
+
with torch.no_grad():
|
| 93 |
+
outputs = model(input_ids=batch[0].to(self.device),
|
| 94 |
+
attention_mask=batch[1].to(self.device)
|
| 95 |
+
)
|
| 96 |
+
loss, logits = outputs.loss, outputs.logits
|
| 97 |
+
probability = self.softmax(logits)
|
| 98 |
+
probability_list = probability.detach().cpu().numpy()
|
| 99 |
+
return probability_list
|
| 100 |
+
|
| 101 |
+
def output_intent_probability(self, pred: any) -> dict:
|
| 102 |
+
"""
|
| 103 |
+
convert the model output into a dictionary with all intents and its probability
|
| 104 |
+
"""
|
| 105 |
+
output_dict = {}
|
| 106 |
+
# transform the relation table(between label and intent)
|
| 107 |
+
path_table = pd.read_csv('/content/drive/MyDrive/dhis14000/dhis_label_relation_14357.csv')
|
| 108 |
+
|
| 109 |
+
label_intent_dict = path_table[["label", "corresponding_label"]].set_index("corresponding_label").to_dict()['label']
|
| 110 |
+
|
| 111 |
+
# transform the output into dictionary(between intent and probability)
|
| 112 |
+
for intent in range(pred.shape[1]):
|
| 113 |
+
output_dict[label_intent_dict[intent]] = pred[0][intent]
|
| 114 |
+
|
| 115 |
+
return output_dict
|
| 116 |
+
|
| 117 |
+
def inference(self, prepared_data):
|
| 118 |
+
"""
|
| 119 |
+
Make predictions on one new sentence and output a JSON format variable
|
| 120 |
+
"""
|
| 121 |
+
temp = []
|
| 122 |
+
prob_distribution = self.predict_single(self.model, prepared_data)
|
| 123 |
+
prediction_results = self.output_intent_probability(prob_distribution.astype(float))
|
| 124 |
+
|
| 125 |
+
# Filter out predictions containing "dental" or "optical" keywords
|
| 126 |
+
filtered_results = {intent: prob for intent, prob in prediction_results.items()
|
| 127 |
+
if
|
| 128 |
+
"dental" not in intent.lower() and "optical" not in intent.lower() and "eye" not in intent.lower()}
|
| 129 |
+
|
| 130 |
+
sorted_pred_intent_results = sorted(filtered_results.items(), key=lambda x: x[1], reverse=True)
|
| 131 |
+
sorted_pred_intent_results_dict = dict(sorted_pred_intent_results)
|
| 132 |
+
# Return the top result
|
| 133 |
+
top_results = dict(list(sorted_pred_intent_results)[:1])
|
| 134 |
+
# temp.append(top_results)
|
| 135 |
+
# final_preds = json.dumps(temp)
|
| 136 |
+
final_preds = ', '.join(top_results.keys())
|
| 137 |
+
final_preds = final_preds.replace("'", "")
|
| 138 |
+
return final_preds
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
jacaranda_hugging_face_model = "Jacaranda/dhis_14000_600k_Test_Model"
|
| 142 |
+
|
| 143 |
+
obj_Facility_Model = Facility_Model(facility_model_path=jacaranda_hugging_face_model,
|
| 144 |
+
max_len=128
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
processor = Preprocess(tokenizer_vocab_path=jacaranda_hugging_face_model,
|
| 148 |
+
tokenizer_max_len=128
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def predict_batch_from_csv(input_file, output_file):
|
| 153 |
+
# Load batch data from CSV
|
| 154 |
+
batch_data = pd.read_csv(input_file)
|
| 155 |
+
|
| 156 |
+
# Initialize predictions list
|
| 157 |
+
predictions = []
|
| 158 |
+
|
| 159 |
+
# Iterate over rows with tqdm for progress tracking
|
| 160 |
+
for _, row in tqdm(batch_data.iterrows(), total=len(batch_data)):
|
| 161 |
+
text = row['facility_name'] # Replace 'facility_name' with the actual column name containing the text data
|
| 162 |
+
cleaned_text = processor.clean_text(text)
|
| 163 |
+
prepared_data = processor.process_tokenizer(cleaned_text)
|
| 164 |
+
prediction = obj_Facility_Model.inference(prepared_data)
|
| 165 |
+
predictions.append(prediction)
|
| 166 |
+
|
| 167 |
+
# Create DataFrame for predictions
|
| 168 |
+
output_data = pd.DataFrame({'prediction': predictions})
|
| 169 |
+
# Merge with input DataFrame
|
| 170 |
+
pred_output_df = pd.concat([batch_data, output_data], axis=1)
|
| 171 |
+
# Save predictions to CSV
|
| 172 |
+
pred_output_df.to_csv(output_file, index=False)
|