Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Commit 
							
							·
						
						b582ef0
	
1
								Parent(s):
							
							9729d73
								
first commit
Browse files- .gitignore +189 -0
- README.md +69 -13
- app.py +331 -0
- configs/mvdiffusion-joint-ortho-6views.yaml +42 -0
- example_images/14_10_29_489_Tiger_1__1.png +0 -0
- example_images/box.png +0 -0
- example_images/bread.png +0 -0
- example_images/cat.png +0 -0
- example_images/cat_head.png +0 -0
- example_images/chili.png +0 -0
- example_images/duola.png +0 -0
- example_images/halloween.png +0 -0
- example_images/head.png +0 -0
- example_images/kettle.png +0 -0
- example_images/kunkun.png +0 -0
- example_images/milk.png +0 -0
- example_images/owl.png +0 -0
- example_images/poro.png +0 -0
- example_images/pumpkin.png +0 -0
- example_images/skull.png +0 -0
- example_images/stone.png +0 -0
- example_images/teapot.png +0 -0
- example_images/tiger-head-3d-model-obj-stl.png +0 -0
- mvdiffusion/data/fixed_poses/four_views/000_back_RT.txt +3 -0
- mvdiffusion/data/fixed_poses/four_views/000_front_RT.txt +3 -0
- mvdiffusion/data/fixed_poses/four_views/000_left_RT.txt +3 -0
- mvdiffusion/data/fixed_poses/four_views/000_right_RT.txt +3 -0
- mvdiffusion/data/fixed_poses/nine_views/000_back_RT.txt +3 -0
- mvdiffusion/data/fixed_poses/nine_views/000_back_left_RT.txt +3 -0
- mvdiffusion/data/fixed_poses/nine_views/000_back_right_RT.txt +3 -0
- mvdiffusion/data/fixed_poses/nine_views/000_front_RT.txt +3 -0
- mvdiffusion/data/fixed_poses/nine_views/000_front_left_RT.txt +3 -0
- mvdiffusion/data/fixed_poses/nine_views/000_front_right_RT.txt +3 -0
- mvdiffusion/data/fixed_poses/nine_views/000_left_RT.txt +3 -0
- mvdiffusion/data/fixed_poses/nine_views/000_right_RT.txt +3 -0
- mvdiffusion/data/fixed_poses/nine_views/000_top_RT.txt +3 -0
- mvdiffusion/data/normal_utils.py +45 -0
- mvdiffusion/data/objaverse_dataset.py +608 -0
- mvdiffusion/data/single_image_dataset.py +321 -0
- mvdiffusion/models/transformer_mv2d.py +1005 -0
- mvdiffusion/models/unet_mv2d_blocks.py +880 -0
- mvdiffusion/models/unet_mv2d_condition.py +1462 -0
- mvdiffusion/pipelines/pipeline_mvdiffusion_image.py +485 -0
- requirements.txt +30 -0
- run_test.sh +1 -0
- utils/misc.py +54 -0
    	
        .gitignore
    ADDED
    
    | @@ -0,0 +1,189 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Initially taken from Github's Python gitignore file
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            # Byte-compiled / optimized / DLL files
         | 
| 4 | 
            +
            __pycache__/
         | 
| 5 | 
            +
            *.py[cod]
         | 
| 6 | 
            +
            *$py.class
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            # C extensions
         | 
| 9 | 
            +
            *.so
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            # tests and logs
         | 
| 12 | 
            +
            tests/fixtures/cached_*_text.txt
         | 
| 13 | 
            +
            logs/
         | 
| 14 | 
            +
            lightning_logs/
         | 
| 15 | 
            +
            lang_code_data/
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            # Distribution / packaging
         | 
| 18 | 
            +
            .Python
         | 
| 19 | 
            +
            build/
         | 
| 20 | 
            +
            develop-eggs/
         | 
| 21 | 
            +
            dist/
         | 
| 22 | 
            +
            downloads/
         | 
| 23 | 
            +
            eggs/
         | 
| 24 | 
            +
            .eggs/
         | 
| 25 | 
            +
            lib/
         | 
| 26 | 
            +
            lib64/
         | 
| 27 | 
            +
            parts/
         | 
| 28 | 
            +
            sdist/
         | 
| 29 | 
            +
            var/
         | 
| 30 | 
            +
            wheels/
         | 
| 31 | 
            +
            *.egg-info/
         | 
| 32 | 
            +
            .installed.cfg
         | 
| 33 | 
            +
            *.egg
         | 
| 34 | 
            +
            MANIFEST
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            # PyInstaller
         | 
| 37 | 
            +
            #  Usually these files are written by a python script from a template
         | 
| 38 | 
            +
            #  before PyInstaller builds the exe, so as to inject date/other infos into it.
         | 
| 39 | 
            +
            *.manifest
         | 
| 40 | 
            +
            *.spec
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            # Installer logs
         | 
| 43 | 
            +
            pip-log.txt
         | 
| 44 | 
            +
            pip-delete-this-directory.txt
         | 
| 45 | 
            +
             | 
| 46 | 
            +
            # Unit test / coverage reports
         | 
| 47 | 
            +
            htmlcov/
         | 
| 48 | 
            +
            .tox/
         | 
| 49 | 
            +
            .nox/
         | 
| 50 | 
            +
            .coverage
         | 
| 51 | 
            +
            .coverage.*
         | 
| 52 | 
            +
            .cache
         | 
| 53 | 
            +
            nosetests.xml
         | 
| 54 | 
            +
            coverage.xml
         | 
| 55 | 
            +
            *.cover
         | 
| 56 | 
            +
            .hypothesis/
         | 
| 57 | 
            +
            .pytest_cache/
         | 
| 58 | 
            +
             | 
| 59 | 
            +
            # Translations
         | 
| 60 | 
            +
            *.mo
         | 
| 61 | 
            +
            *.pot
         | 
| 62 | 
            +
             | 
| 63 | 
            +
            # Django stuff:
         | 
| 64 | 
            +
            *.log
         | 
| 65 | 
            +
            local_settings.py
         | 
| 66 | 
            +
            db.sqlite3
         | 
| 67 | 
            +
             | 
| 68 | 
            +
            # Flask stuff:
         | 
| 69 | 
            +
            instance/
         | 
| 70 | 
            +
            .webassets-cache
         | 
| 71 | 
            +
             | 
| 72 | 
            +
            # Scrapy stuff:
         | 
| 73 | 
            +
            .scrapy
         | 
| 74 | 
            +
             | 
| 75 | 
            +
            # Sphinx documentation
         | 
| 76 | 
            +
            docs/_build/
         | 
| 77 | 
            +
             | 
| 78 | 
            +
            # PyBuilder
         | 
| 79 | 
            +
            target/
         | 
| 80 | 
            +
             | 
| 81 | 
            +
            # Jupyter Notebook
         | 
| 82 | 
            +
            .ipynb_checkpoints
         | 
| 83 | 
            +
             | 
| 84 | 
            +
            # IPython
         | 
| 85 | 
            +
            profile_default/
         | 
| 86 | 
            +
            ipython_config.py
         | 
| 87 | 
            +
             | 
| 88 | 
            +
            # pyenv
         | 
| 89 | 
            +
            .python-version
         | 
| 90 | 
            +
             | 
| 91 | 
            +
            # celery beat schedule file
         | 
| 92 | 
            +
            celerybeat-schedule
         | 
| 93 | 
            +
             | 
| 94 | 
            +
            # SageMath parsed files
         | 
| 95 | 
            +
            *.sage.py
         | 
| 96 | 
            +
             | 
| 97 | 
            +
            # Environments
         | 
| 98 | 
            +
            .env
         | 
| 99 | 
            +
            .venv
         | 
| 100 | 
            +
            env/
         | 
| 101 | 
            +
            venv/
         | 
| 102 | 
            +
            ENV/
         | 
| 103 | 
            +
            env.bak/
         | 
| 104 | 
            +
            venv.bak/
         | 
| 105 | 
            +
             | 
| 106 | 
            +
            # Spyder project settings
         | 
| 107 | 
            +
            .spyderproject
         | 
| 108 | 
            +
            .spyproject
         | 
| 109 | 
            +
             | 
| 110 | 
            +
            # Rope project settings
         | 
| 111 | 
            +
            .ropeproject
         | 
| 112 | 
            +
             | 
| 113 | 
            +
            # mkdocs documentation
         | 
| 114 | 
            +
            /site
         | 
| 115 | 
            +
             | 
| 116 | 
            +
            # mypy
         | 
| 117 | 
            +
            .mypy_cache/
         | 
| 118 | 
            +
            .dmypy.json
         | 
| 119 | 
            +
            dmypy.json
         | 
| 120 | 
            +
             | 
| 121 | 
            +
            # Pyre type checker
         | 
| 122 | 
            +
            .pyre/
         | 
| 123 | 
            +
             | 
| 124 | 
            +
            # vscode
         | 
| 125 | 
            +
            .vs
         | 
| 126 | 
            +
            .vscode
         | 
| 127 | 
            +
             | 
| 128 | 
            +
            # Pycharm
         | 
| 129 | 
            +
            .idea
         | 
| 130 | 
            +
             | 
| 131 | 
            +
            # TF code
         | 
| 132 | 
            +
            tensorflow_code
         | 
| 133 | 
            +
             | 
| 134 | 
            +
            # Models
         | 
| 135 | 
            +
            proc_data
         | 
| 136 | 
            +
             | 
| 137 | 
            +
            # examples
         | 
| 138 | 
            +
            runs
         | 
| 139 | 
            +
            /runs_old
         | 
| 140 | 
            +
            /wandb
         | 
| 141 | 
            +
            /examples/runs
         | 
| 142 | 
            +
            /examples/**/*.args
         | 
| 143 | 
            +
            /examples/rag/sweep
         | 
| 144 | 
            +
             | 
| 145 | 
            +
            # data
         | 
| 146 | 
            +
            /data
         | 
| 147 | 
            +
            serialization_dir
         | 
| 148 | 
            +
             | 
| 149 | 
            +
            # emacs
         | 
| 150 | 
            +
            *.*~
         | 
| 151 | 
            +
            debug.env
         | 
| 152 | 
            +
             | 
| 153 | 
            +
            # vim
         | 
| 154 | 
            +
            .*.swp
         | 
| 155 | 
            +
             | 
| 156 | 
            +
            #ctags
         | 
| 157 | 
            +
            tags
         | 
| 158 | 
            +
             | 
| 159 | 
            +
            # pre-commit
         | 
| 160 | 
            +
            .pre-commit*
         | 
| 161 | 
            +
             | 
| 162 | 
            +
            # .lock
         | 
| 163 | 
            +
            *.lock
         | 
| 164 | 
            +
             | 
| 165 | 
            +
            # DS_Store (MacOS)
         | 
| 166 | 
            +
            .DS_Store
         | 
| 167 | 
            +
            # RL pipelines may produce mp4 outputs
         | 
| 168 | 
            +
            *.mp4
         | 
| 169 | 
            +
             | 
| 170 | 
            +
            # dependencies
         | 
| 171 | 
            +
            /transformers
         | 
| 172 | 
            +
             | 
| 173 | 
            +
            # ruff
         | 
| 174 | 
            +
            .ruff_cache
         | 
| 175 | 
            +
             | 
| 176 | 
            +
            # ckpts
         | 
| 177 | 
            +
            *.ckpt
         | 
| 178 | 
            +
             | 
| 179 | 
            +
            outputs/*
         | 
| 180 | 
            +
             | 
| 181 | 
            +
            NeuS/exp/*
         | 
| 182 | 
            +
            NeuS/test_scenes/*
         | 
| 183 | 
            +
            NeuS/mesh2tex/*
         | 
| 184 | 
            +
            neus_configs
         | 
| 185 | 
            +
            vast/*
         | 
| 186 | 
            +
            render_results
         | 
| 187 | 
            +
            experiments/*
         | 
| 188 | 
            +
            neus/*
         | 
| 189 | 
            +
            ckpts/*
         | 
    	
        README.md
    CHANGED
    
    | @@ -1,13 +1,69 @@ | |
| 1 | 
            -
             | 
| 2 | 
            -
             | 
| 3 | 
            -
             | 
| 4 | 
            -
             | 
| 5 | 
            -
             | 
| 6 | 
            -
             | 
| 7 | 
            -
             | 
| 8 | 
            -
             | 
| 9 | 
            -
             | 
| 10 | 
            -
             | 
| 11 | 
            -
             | 
| 12 | 
            -
             | 
| 13 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Wonder3D
         | 
| 2 | 
            +
            Single Image to 3D using Cross-Domain Diffusion
         | 
| 3 | 
            +
            ## [Paper](https://arxiv.org/abs/2310.15008) | [Project page](https://www.xxlong.site/Wonder3D/) 
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            Wonder3D reconstructs highly-detailed textured meshes from a single-view image in only 2 ∼ 3 minutes. Wonder3D first generates consistent multi-view normal maps with corresponding color images via a cross-domain diffusion model, and then leverages a novel normal fusion method to achieve fast and high-quality reconstruction.
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            ## Schedule
         | 
| 10 | 
            +
            - [x] Inference code and pretrained models.
         | 
| 11 | 
            +
            - [ ] Huggingface demo.
         | 
| 12 | 
            +
            - [ ] Training code.
         | 
| 13 | 
            +
            - [ ] Rendering code for data prepare.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
             | 
| 16 | 
            +
            ### Preparation for inference
         | 
| 17 | 
            +
            1. Install packages in `requirements.txt`. 
         | 
| 18 | 
            +
            ```angular2html
         | 
| 19 | 
            +
            conda create -n wonder3d
         | 
| 20 | 
            +
            conda activate wonder3d
         | 
| 21 | 
            +
            pip install -r requirements.txt
         | 
| 22 | 
            +
            ```
         | 
| 23 | 
            +
            2. Download the [checkpoints](https://connecthkuhk-my.sharepoint.com/:f:/g/personal/xxlong_connect_hku_hk/EgSHPyJAtaJFpV_BjXM3zXwB-UMIrT4v-sQwGgw-coPtIA) into the root folder.
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            ### Inference
         | 
| 26 | 
            +
            1. Make sure you have the following models.
         | 
| 27 | 
            +
            ```bash
         | 
| 28 | 
            +
            Wonder3D
         | 
| 29 | 
            +
            |-- ckpts
         | 
| 30 | 
            +
                |-- unet
         | 
| 31 | 
            +
                |-- scheduler.bin
         | 
| 32 | 
            +
                ...
         | 
| 33 | 
            +
            ```
         | 
| 34 | 
            +
            2. Predict foreground mask as the alpha channel. We use [Clipdrop](https://clipdrop.co/remove-background) to segment the foreground object interactively. 
         | 
| 35 | 
            +
            You may also use `rembg` to remove the backgrounds.
         | 
| 36 | 
            +
            ```bash
         | 
| 37 | 
            +
            # !pip install rembg
         | 
| 38 | 
            +
            import rembg
         | 
| 39 | 
            +
            result = rembg.remove(result)
         | 
| 40 | 
            +
            result.show()
         | 
| 41 | 
            +
            ```
         | 
| 42 | 
            +
            3. Run Wonder3d to produce multiview-consistent normal maps and color images. Then you can check the results in the folder `./outputs`. (we use rembg to remove backgrounds of the results, but the segmemtations are not always perfect.) 
         | 
| 43 | 
            +
            ```bash
         | 
| 44 | 
            +
            accelerate launch --config_file 1gpu.yaml test_mvdiffusion_seq.py \
         | 
| 45 | 
            +
                        --config mvdiffusion-joint-ortho-6views.yaml
         | 
| 46 | 
            +
            ```
         | 
| 47 | 
            +
            or 
         | 
| 48 | 
            +
            ```bash
         | 
| 49 | 
            +
            bash run_test.sh
         | 
| 50 | 
            +
            ```
         | 
| 51 | 
            +
             | 
| 52 | 
            +
            4. Mesh Extraction
         | 
| 53 | 
            +
            ```bash
         | 
| 54 | 
            +
            cd ./instant-nsr-pl
         | 
| 55 | 
            +
            bash run.sh output_folder_path scene_name
         | 
| 56 | 
            +
            ```
         | 
| 57 | 
            +
             | 
| 58 | 
            +
            ## Citation
         | 
| 59 | 
            +
            If you find this repository useful in your project, please cite the following work. :)
         | 
| 60 | 
            +
            ```
         | 
| 61 | 
            +
            @misc{long2023wonder3d,
         | 
| 62 | 
            +
                  title={Wonder3D: Single Image to 3D using Cross-Domain Diffusion}, 
         | 
| 63 | 
            +
                  author={Xiaoxiao Long and Yuan-Chen Guo and Cheng Lin and Yuan Liu and Zhiyang Dou and Lingjie Liu and Yuexin Ma and Song-Hai Zhang and Marc Habermann and Christian Theobalt and Wenping Wang},
         | 
| 64 | 
            +
                  year={2023},
         | 
| 65 | 
            +
                  eprint={2310.15008},
         | 
| 66 | 
            +
                  archivePrefix={arXiv},
         | 
| 67 | 
            +
                  primaryClass={cs.CV}
         | 
| 68 | 
            +
            }
         | 
| 69 | 
            +
            ```
         | 
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,331 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import os
         | 
| 2 | 
            +
            import sys
         | 
| 3 | 
            +
            import numpy
         | 
| 4 | 
            +
            import torch
         | 
| 5 | 
            +
            import rembg
         | 
| 6 | 
            +
            import threading
         | 
| 7 | 
            +
            import urllib.request
         | 
| 8 | 
            +
            from PIL import Image
         | 
| 9 | 
            +
            from typing import Dict, Optional, Tuple, List
         | 
| 10 | 
            +
            from dataclasses import dataclass
         | 
| 11 | 
            +
            import streamlit as st
         | 
| 12 | 
            +
            import huggingface_hub
         | 
| 13 | 
            +
            from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
         | 
| 14 | 
            +
            from mvdiffusion.models.unet_mv2d_condition import UNetMV2DConditionModel
         | 
| 15 | 
            +
            from mvdiffusion.data.single_image_dataset import SingleImageDataset as MVDiffusionDataset
         | 
| 16 | 
            +
            from mvdiffusion.pipelines.pipeline_mvdiffusion_image import MVDiffusionImagePipeline
         | 
| 17 | 
            +
            from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            @dataclass
         | 
| 20 | 
            +
            class TestConfig:
         | 
| 21 | 
            +
                pretrained_model_name_or_path: str
         | 
| 22 | 
            +
                pretrained_unet_path:str
         | 
| 23 | 
            +
                revision: Optional[str]
         | 
| 24 | 
            +
                validation_dataset: Dict
         | 
| 25 | 
            +
                save_dir: str
         | 
| 26 | 
            +
                seed: Optional[int]
         | 
| 27 | 
            +
                validation_batch_size: int
         | 
| 28 | 
            +
                dataloader_num_workers: int
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                local_rank: int
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                pipe_kwargs: Dict
         | 
| 33 | 
            +
                pipe_validation_kwargs: Dict
         | 
| 34 | 
            +
                unet_from_pretrained_kwargs: Dict
         | 
| 35 | 
            +
                validation_guidance_scales: List[float]
         | 
| 36 | 
            +
                validation_grid_nrow: int
         | 
| 37 | 
            +
                camera_embedding_lr_mult: float
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                num_views: int
         | 
| 40 | 
            +
                camera_embedding_type: str
         | 
| 41 | 
            +
             | 
| 42 | 
            +
                pred_type: str  # joint, or ablation
         | 
| 43 | 
            +
             | 
| 44 | 
            +
                enable_xformers_memory_efficient_attention: bool
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                cond_on_normals: bool
         | 
| 47 | 
            +
                cond_on_colors: bool
         | 
| 48 | 
            +
             | 
| 49 | 
            +
            img_example_counter = 0
         | 
| 50 | 
            +
            iret_base = 'example_images'
         | 
| 51 | 
            +
            iret = [
         | 
| 52 | 
            +
                dict(rimageinput=os.path.join(iret_base, x), dispi=os.path.join(iret_base, x))
         | 
| 53 | 
            +
                for x in sorted(os.listdir(iret_base))
         | 
| 54 | 
            +
            ]
         | 
| 55 | 
            +
             | 
| 56 | 
            +
             | 
| 57 | 
            +
            class SAMAPI:
         | 
| 58 | 
            +
                predictor = None
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                @staticmethod
         | 
| 61 | 
            +
                @st.cache_resource
         | 
| 62 | 
            +
                def get_instance(sam_checkpoint=None):
         | 
| 63 | 
            +
                    if SAMAPI.predictor is None:
         | 
| 64 | 
            +
                        if sam_checkpoint is None:
         | 
| 65 | 
            +
                            sam_checkpoint = "tmp/sam_vit_h_4b8939.pth"
         | 
| 66 | 
            +
                        if not os.path.exists(sam_checkpoint):
         | 
| 67 | 
            +
                            os.makedirs('tmp', exist_ok=True)
         | 
| 68 | 
            +
                            urllib.request.urlretrieve(
         | 
| 69 | 
            +
                                "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
         | 
| 70 | 
            +
                                sam_checkpoint
         | 
| 71 | 
            +
                            )
         | 
| 72 | 
            +
                        device = "cuda:0" if torch.cuda.is_available() else "cpu"
         | 
| 73 | 
            +
                        model_type = "default"
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                        from segment_anything import sam_model_registry, SamPredictor
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                        sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
         | 
| 78 | 
            +
                        sam.to(device=device)
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                        predictor = SamPredictor(sam)
         | 
| 81 | 
            +
                        SAMAPI.predictor = predictor
         | 
| 82 | 
            +
                    return SAMAPI.predictor
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                @staticmethod
         | 
| 85 | 
            +
                def segment_api(rgb, mask=None, bbox=None, sam_checkpoint=None):
         | 
| 86 | 
            +
                    """
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                    Parameters
         | 
| 89 | 
            +
                    ----------
         | 
| 90 | 
            +
                    rgb : np.ndarray h,w,3 uint8
         | 
| 91 | 
            +
                    mask: np.ndarray h,w bool
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                    Returns
         | 
| 94 | 
            +
                    -------
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                    """
         | 
| 97 | 
            +
                    np = numpy
         | 
| 98 | 
            +
                    predictor = SAMAPI.get_instance(sam_checkpoint)
         | 
| 99 | 
            +
                    predictor.set_image(rgb)
         | 
| 100 | 
            +
                    if mask is None and bbox is None:
         | 
| 101 | 
            +
                        box_input = None
         | 
| 102 | 
            +
                    else:
         | 
| 103 | 
            +
                        # mask to bbox
         | 
| 104 | 
            +
                        if bbox is None:
         | 
| 105 | 
            +
                            y1, y2, x1, x2 = np.nonzero(mask)[0].min(), np.nonzero(mask)[0].max(), np.nonzero(mask)[1].min(), \
         | 
| 106 | 
            +
                                             np.nonzero(mask)[1].max()
         | 
| 107 | 
            +
                        else:
         | 
| 108 | 
            +
                            x1, y1, x2, y2 = bbox
         | 
| 109 | 
            +
                        box_input = np.array([[x1, y1, x2, y2]])
         | 
| 110 | 
            +
                    masks, scores, logits = predictor.predict(
         | 
| 111 | 
            +
                        box=box_input,
         | 
| 112 | 
            +
                        multimask_output=True,
         | 
| 113 | 
            +
                        return_logits=False,
         | 
| 114 | 
            +
                    )
         | 
| 115 | 
            +
                    mask = masks[-1]
         | 
| 116 | 
            +
                    return mask
         | 
| 117 | 
            +
             | 
| 118 | 
            +
             | 
| 119 | 
            +
            def image_examples(samples, ncols, return_key=None, example_text="Examples"):
         | 
| 120 | 
            +
                global img_example_counter
         | 
| 121 | 
            +
                trigger = False
         | 
| 122 | 
            +
                with st.expander(example_text, True):
         | 
| 123 | 
            +
                    for i in range(len(samples) // ncols):
         | 
| 124 | 
            +
                        cols = st.columns(ncols)
         | 
| 125 | 
            +
                        for j in range(ncols):
         | 
| 126 | 
            +
                            idx = i * ncols + j
         | 
| 127 | 
            +
                            if idx >= len(samples):
         | 
| 128 | 
            +
                                continue
         | 
| 129 | 
            +
                            entry = samples[idx]
         | 
| 130 | 
            +
                            with cols[j]:
         | 
| 131 | 
            +
                                st.image(entry['dispi'])
         | 
| 132 | 
            +
                                img_example_counter += 1
         | 
| 133 | 
            +
                                with st.columns(5)[2]:
         | 
| 134 | 
            +
                                    this_trigger = st.button('\+', key='imgexuse%d' % img_example_counter)
         | 
| 135 | 
            +
                                trigger = trigger or this_trigger
         | 
| 136 | 
            +
                                if this_trigger:
         | 
| 137 | 
            +
                                    trigger = entry[return_key]
         | 
| 138 | 
            +
                return trigger
         | 
| 139 | 
            +
             | 
| 140 | 
            +
             | 
| 141 | 
            +
            def segment_img(img: Image):
         | 
| 142 | 
            +
                output = rembg.remove(img)
         | 
| 143 | 
            +
                mask = numpy.array(output)[:, :, 3] > 0
         | 
| 144 | 
            +
                sam_mask = SAMAPI.segment_api(numpy.array(img)[:, :, :3], mask)
         | 
| 145 | 
            +
                segmented_img = Image.new("RGBA", img.size, (0, 0, 0, 0))
         | 
| 146 | 
            +
                segmented_img.paste(img, mask=Image.fromarray(sam_mask))
         | 
| 147 | 
            +
                return segmented_img
         | 
| 148 | 
            +
             | 
| 149 | 
            +
             | 
| 150 | 
            +
            def segment_6imgs(imgs):
         | 
| 151 | 
            +
                segmented_imgs = []
         | 
| 152 | 
            +
                for i, img in enumerate(imgs):
         | 
| 153 | 
            +
                    output = rembg.remove(img)
         | 
| 154 | 
            +
                    mask = numpy.array(output)[:, :, 3]
         | 
| 155 | 
            +
                    mask = SAMAPI.segment_api(numpy.array(img)[:, :, :3], mask)
         | 
| 156 | 
            +
                    data = numpy.array(img)[:,:,:3]
         | 
| 157 | 
            +
                    data[mask == 0] = [255, 255, 255]
         | 
| 158 | 
            +
                    segmented_imgs.append(data)
         | 
| 159 | 
            +
                result = numpy.concatenate([
         | 
| 160 | 
            +
                    numpy.concatenate([segmented_imgs[0], segmented_imgs[1]], axis=1),
         | 
| 161 | 
            +
                    numpy.concatenate([segmented_imgs[2], segmented_imgs[3]], axis=1),
         | 
| 162 | 
            +
                    numpy.concatenate([segmented_imgs[4], segmented_imgs[5]], axis=1)
         | 
| 163 | 
            +
                ])
         | 
| 164 | 
            +
                return Image.fromarray(result)
         | 
| 165 | 
            +
             | 
| 166 | 
            +
            def pack_6imgs(imgs):
         | 
| 167 | 
            +
                result = numpy.concatenate([
         | 
| 168 | 
            +
                    numpy.concatenate([imgs[0], imgs[1]], axis=1),
         | 
| 169 | 
            +
                    numpy.concatenate([imgs[2], imgs[3]], axis=1),
         | 
| 170 | 
            +
                    numpy.concatenate([imgs[4], imgs[5]], axis=1)
         | 
| 171 | 
            +
                ])
         | 
| 172 | 
            +
                return Image.fromarray(result)
         | 
| 173 | 
            +
             | 
| 174 | 
            +
             | 
| 175 | 
            +
            def expand2square(pil_img, background_color):
         | 
| 176 | 
            +
                width, height = pil_img.size
         | 
| 177 | 
            +
                if width == height:
         | 
| 178 | 
            +
                    return pil_img
         | 
| 179 | 
            +
                elif width > height:
         | 
| 180 | 
            +
                    result = Image.new(pil_img.mode, (width, width), background_color)
         | 
| 181 | 
            +
                    result.paste(pil_img, (0, (width - height) // 2))
         | 
| 182 | 
            +
                    return result
         | 
| 183 | 
            +
                else:
         | 
| 184 | 
            +
                    result = Image.new(pil_img.mode, (height, height), background_color)
         | 
| 185 | 
            +
                    result.paste(pil_img, ((height - width) // 2, 0))
         | 
| 186 | 
            +
                    return result
         | 
| 187 | 
            +
             | 
| 188 | 
            +
             | 
| 189 | 
            +
            @st.cache_data
         | 
| 190 | 
            +
            def check_dependencies():
         | 
| 191 | 
            +
                reqs = []
         | 
| 192 | 
            +
                try:
         | 
| 193 | 
            +
                    import diffusers
         | 
| 194 | 
            +
                except ImportError:
         | 
| 195 | 
            +
                    import traceback
         | 
| 196 | 
            +
                    traceback.print_exc()
         | 
| 197 | 
            +
                    print("Error: `diffusers` not found.", file=sys.stderr)
         | 
| 198 | 
            +
                    reqs.append("diffusers==0.20.2")
         | 
| 199 | 
            +
                else:
         | 
| 200 | 
            +
                    if not diffusers.__version__.startswith("0.20"):
         | 
| 201 | 
            +
                        print(
         | 
| 202 | 
            +
                            f"Warning: You are using an unsupported version of diffusers ({diffusers.__version__}), which may lead to performance issues.",
         | 
| 203 | 
            +
                            file=sys.stderr
         | 
| 204 | 
            +
                        )
         | 
| 205 | 
            +
                        print("Recommended version is `diffusers==0.20.2`.", file=sys.stderr)
         | 
| 206 | 
            +
                try:
         | 
| 207 | 
            +
                    import transformers
         | 
| 208 | 
            +
                except ImportError:
         | 
| 209 | 
            +
                    import traceback
         | 
| 210 | 
            +
                    traceback.print_exc()
         | 
| 211 | 
            +
                    print("Error: `transformers` not found.", file=sys.stderr)
         | 
| 212 | 
            +
                    reqs.append("transformers==4.29.2")
         | 
| 213 | 
            +
                if torch.__version__ < '2.0':
         | 
| 214 | 
            +
                    try:
         | 
| 215 | 
            +
                        import xformers
         | 
| 216 | 
            +
                    except ImportError:
         | 
| 217 | 
            +
                        print("Warning: You are using PyTorch 1.x without a working `xformers` installation.", file=sys.stderr)
         | 
| 218 | 
            +
                        print("You may see a significant memory overhead when running the model.", file=sys.stderr)
         | 
| 219 | 
            +
                if len(reqs):
         | 
| 220 | 
            +
                    print(f"Info: Fix all dependency errors with `pip install {' '.join(reqs)}`.")
         | 
| 221 | 
            +
             | 
| 222 | 
            +
             | 
| 223 | 
            +
            @st.cache_resource
         | 
| 224 | 
            +
            def load_wonder3d_pipeline(cfg):
         | 
| 225 | 
            +
                # Load scheduler, tokenizer and models.
         | 
| 226 | 
            +
                # noise_scheduler = DDPMScheduler.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="scheduler")
         | 
| 227 | 
            +
                image_encoder = CLIPVisionModelWithProjection.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="image_encoder", revision=cfg.revision)
         | 
| 228 | 
            +
                feature_extractor = CLIPImageProcessor.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="feature_extractor", revision=cfg.revision)
         | 
| 229 | 
            +
                vae = AutoencoderKL.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="vae", revision=cfg.revision)
         | 
| 230 | 
            +
                unet = UNetMV2DConditionModel.from_pretrained_2d(cfg.pretrained_unet_path, subfolder="unet", revision=cfg.revision, **cfg.unet_from_pretrained_kwargs)
         | 
| 231 | 
            +
             | 
| 232 | 
            +
                weight_dtype = torch.float16
         | 
| 233 | 
            +
                # Move text_encode and vae to gpu and cast to weight_dtype
         | 
| 234 | 
            +
                image_encoder.to(dtype=weight_dtype)
         | 
| 235 | 
            +
                vae.to(dtype=weight_dtype)
         | 
| 236 | 
            +
                unet.to(dtype=weight_dtype)
         | 
| 237 | 
            +
             | 
| 238 | 
            +
                pipeline = MVDiffusionImagePipeline(
         | 
| 239 | 
            +
                    image_encoder=image_encoder, feature_extractor=feature_extractor, vae=vae, unet=unet, safety_checker=None,
         | 
| 240 | 
            +
                    scheduler=DDIMScheduler.from_pretrained(cfg.pretrained_model_name_or_path, subfolder="scheduler"),
         | 
| 241 | 
            +
                    **cfg.pipe_kwargs
         | 
| 242 | 
            +
                )
         | 
| 243 | 
            +
             | 
| 244 | 
            +
                if torch.cuda.is_available():
         | 
| 245 | 
            +
                    pipeline.to('cuda:0')
         | 
| 246 | 
            +
                sys.main_lock = threading.Lock()
         | 
| 247 | 
            +
                return pipeline
         | 
| 248 | 
            +
             | 
| 249 | 
            +
             | 
| 250 | 
            +
            from utils.misc import load_config    
         | 
| 251 | 
            +
            from omegaconf import OmegaConf
         | 
| 252 | 
            +
            # parse YAML config to OmegaConf
         | 
| 253 | 
            +
            cfg = load_config("./configs/mvdiffusion-joint-ortho-6views.yaml")
         | 
| 254 | 
            +
            # print(cfg)
         | 
| 255 | 
            +
            schema = OmegaConf.structured(TestConfig)
         | 
| 256 | 
            +
            # cfg = OmegaConf.load(args.config)
         | 
| 257 | 
            +
            cfg = OmegaConf.merge(schema, cfg)
         | 
| 258 | 
            +
             | 
| 259 | 
            +
            check_dependencies()
         | 
| 260 | 
            +
            pipeline = load_wonder3d_pipeline(cfg)
         | 
| 261 | 
            +
            SAMAPI.get_instance()
         | 
| 262 | 
            +
            torch.set_grad_enabled(False)
         | 
| 263 | 
            +
             | 
| 264 | 
            +
            st.title("Wonder3D Demo")
         | 
| 265 | 
            +
            # st.caption("For faster inference without waiting in queue, you may clone the space and run it yourself.")
         | 
| 266 | 
            +
            prog = st.progress(0.0, "Idle")
         | 
| 267 | 
            +
            pic = st.file_uploader("Upload an Image", key='imageinput', type=['png', 'jpg', 'webp'])
         | 
| 268 | 
            +
            left, right = st.columns(2)
         | 
| 269 | 
            +
            with left:
         | 
| 270 | 
            +
                rem_input_bg = st.checkbox("Remove Input Background")
         | 
| 271 | 
            +
            with right:
         | 
| 272 | 
            +
                rem_output_bg = st.checkbox("Remove Output Background")
         | 
| 273 | 
            +
            num_inference_steps = st.slider("Number of Inference Steps", 15, 100, 75)
         | 
| 274 | 
            +
            st.caption("Diffusion Steps. For general real or synthetic objects, around 28 is enough. For objects with delicate details such as faces (either realistic or illustration), you may need 75 or more steps.")
         | 
| 275 | 
            +
            cfg_scale = st.slider("Classifier Free Guidance Scale", 1.0, 10.0, 4.0)
         | 
| 276 | 
            +
            seed = st.text_input("Seed", "42")
         | 
| 277 | 
            +
            submit = False
         | 
| 278 | 
            +
            if st.button("Submit"):
         | 
| 279 | 
            +
                submit = True
         | 
| 280 | 
            +
            results_container = st.container()
         | 
| 281 | 
            +
            sample_got = image_examples(iret, 4, 'rimageinput')
         | 
| 282 | 
            +
            if sample_got:
         | 
| 283 | 
            +
                pic = sample_got
         | 
| 284 | 
            +
            with results_container:
         | 
| 285 | 
            +
                if sample_got or submit:
         | 
| 286 | 
            +
                    prog.progress(0.03, "Waiting in Queue...")
         | 
| 287 | 
            +
                    with sys.main_lock:
         | 
| 288 | 
            +
                        seed = int(seed)
         | 
| 289 | 
            +
                        torch.manual_seed(seed)
         | 
| 290 | 
            +
                        img = Image.open(pic)
         | 
| 291 | 
            +
                        if max(img.size) > 1280:
         | 
| 292 | 
            +
                            w, h = img.size
         | 
| 293 | 
            +
                            w = round(1280 / max(img.size) * w)
         | 
| 294 | 
            +
                            h = round(1280 / max(img.size) * h)
         | 
| 295 | 
            +
                            img = img.resize((w, h))
         | 
| 296 | 
            +
                        left, right = st.columns(2)
         | 
| 297 | 
            +
                        with left:
         | 
| 298 | 
            +
                            st.image(img)
         | 
| 299 | 
            +
                            st.caption("Input Image")
         | 
| 300 | 
            +
                        prog.progress(0.1, "Preparing Inputs")
         | 
| 301 | 
            +
                        if rem_input_bg:
         | 
| 302 | 
            +
                            with right:
         | 
| 303 | 
            +
                                img = segment_img(img)
         | 
| 304 | 
            +
                                st.image(img)
         | 
| 305 | 
            +
                                st.caption("Input (Background Removed)")
         | 
| 306 | 
            +
                        img = expand2square(img, (127, 127, 127, 0))
         | 
| 307 | 
            +
                        pipeline.set_progress_bar_config(disable=True)
         | 
| 308 | 
            +
                        result = pipeline(
         | 
| 309 | 
            +
                            img,
         | 
| 310 | 
            +
                            num_inference_steps=num_inference_steps,
         | 
| 311 | 
            +
                            guidance_scale=cfg_scale,
         | 
| 312 | 
            +
                            generator=torch.Generator(pipeline.device).manual_seed(seed),
         | 
| 313 | 
            +
                            callback=lambda i, t, latents: prog.progress(0.1 + 0.8 * i / num_inference_steps, "Diffusion Step %d" % i)
         | 
| 314 | 
            +
                        ).images
         | 
| 315 | 
            +
                        bsz = result.shape[0] // 2
         | 
| 316 | 
            +
                        normals_pred = result[:bsz]
         | 
| 317 | 
            +
                        images_pred = result[bsz:]
         | 
| 318 | 
            +
                        prog.progress(0.9, "Post Processing")
         | 
| 319 | 
            +
                        left, right = st.columns(2)
         | 
| 320 | 
            +
                        with left:
         | 
| 321 | 
            +
                            st.image(pack_6imgs(normals_pred))
         | 
| 322 | 
            +
                            st.image(pack_6imgs(images_pred))
         | 
| 323 | 
            +
                            st.caption("Result")
         | 
| 324 | 
            +
                        if rem_output_bg:
         | 
| 325 | 
            +
                            normals_pred = segment_6imgs(normals_pred)
         | 
| 326 | 
            +
                            images_pred = segment_6imgs(images_pred)
         | 
| 327 | 
            +
                            with right:
         | 
| 328 | 
            +
                                st.image(normals_pred)
         | 
| 329 | 
            +
                                st.image(images_pred)
         | 
| 330 | 
            +
                                st.caption("Result (Background Removed)")
         | 
| 331 | 
            +
                        prog.progress(1.0, "Idle")
         | 
    	
        configs/mvdiffusion-joint-ortho-6views.yaml
    ADDED
    
    | @@ -0,0 +1,42 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            pretrained_model_name_or_path: 'lambdalabs/sd-image-variations-diffusers'
         | 
| 2 | 
            +
            pretrained_unet_path: './ckpts/'
         | 
| 3 | 
            +
            revision: null
         | 
| 4 | 
            +
            validation_dataset:
         | 
| 5 | 
            +
              root_dir: "./example_images" # the folder path stores testing images
         | 
| 6 | 
            +
              num_views: 6
         | 
| 7 | 
            +
              bg_color: 'white'
         | 
| 8 | 
            +
              img_wh: [256, 256]
         | 
| 9 | 
            +
              num_validation_samples: 1000
         | 
| 10 | 
            +
              crop_size: 192
         | 
| 11 | 
            +
              filepaths: ['owl.png']  # the test image names. leave it empty, test all images in the folder
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            save_dir: 'outputs/'
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            pred_type: 'joint'
         | 
| 16 | 
            +
            seed: 42
         | 
| 17 | 
            +
            validation_batch_size: 1
         | 
| 18 | 
            +
            dataloader_num_workers: 64
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            local_rank: -1
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            pipe_kwargs:
         | 
| 23 | 
            +
              camera_embedding_type: 'e_de_da_sincos'
         | 
| 24 | 
            +
              num_views: 6
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            validation_guidance_scales: [3.0]
         | 
| 27 | 
            +
            pipe_validation_kwargs:
         | 
| 28 | 
            +
              eta: 1.0
         | 
| 29 | 
            +
            validation_grid_nrow: 6
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            unet_from_pretrained_kwargs:
         | 
| 32 | 
            +
              camera_embedding_type: 'e_de_da_sincos'
         | 
| 33 | 
            +
              projection_class_embeddings_input_dim: 10  
         | 
| 34 | 
            +
              num_views: 6
         | 
| 35 | 
            +
              sample_size: 32
         | 
| 36 | 
            +
              zero_init_conv_in: false
         | 
| 37 | 
            +
              zero_init_camera_projection: false  
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            num_views: 6
         | 
| 40 | 
            +
            camera_embedding_type: 'e_de_da_sincos'
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            enable_xformers_memory_efficient_attention: true
         | 
    	
        example_images/14_10_29_489_Tiger_1__1.png
    ADDED
    
    |   | 
    	
        example_images/box.png
    ADDED
    
    |   | 
    	
        example_images/bread.png
    ADDED
    
    |   | 
    	
        example_images/cat.png
    ADDED
    
    |   | 
    	
        example_images/cat_head.png
    ADDED
    
    |   | 
    	
        example_images/chili.png
    ADDED
    
    |   | 
    	
        example_images/duola.png
    ADDED
    
    |   | 
    	
        example_images/halloween.png
    ADDED
    
    |   | 
    	
        example_images/head.png
    ADDED
    
    |   | 
    	
        example_images/kettle.png
    ADDED
    
    |   | 
    	
        example_images/kunkun.png
    ADDED
    
    |   | 
    	
        example_images/milk.png
    ADDED
    
    |   | 
    	
        example_images/owl.png
    ADDED
    
    |   | 
    	
        example_images/poro.png
    ADDED
    
    |   | 
    	
        example_images/pumpkin.png
    ADDED
    
    |   | 
    	
        example_images/skull.png
    ADDED
    
    |   | 
    	
        example_images/stone.png
    ADDED
    
    |   | 
    	
        example_images/teapot.png
    ADDED
    
    |   | 
    	
        example_images/tiger-head-3d-model-obj-stl.png
    ADDED
    
    |   | 
    	
        mvdiffusion/data/fixed_poses/four_views/000_back_RT.txt
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            -1.000000238418579102e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00
         | 
| 2 | 
            +
            0.000000000000000000e+00 -1.343588564850506373e-07 1.000000119209289551e+00 1.746665105883948854e-07
         | 
| 3 | 
            +
            0.000000000000000000e+00 1.000000119209289551e+00 -1.343588564850506373e-07 -1.300000071525573730e+00
         | 
    	
        mvdiffusion/data/fixed_poses/four_views/000_front_RT.txt
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00
         | 
| 2 | 
            +
            0.000000000000000000e+00 -1.343588564850506373e-07 1.000000119209289551e+00 -1.746665105883948854e-07
         | 
| 3 | 
            +
            0.000000000000000000e+00 -1.000000119209289551e+00 -1.343588564850506373e-07 -1.300000071525573730e+00
         | 
    	
        mvdiffusion/data/fixed_poses/four_views/000_left_RT.txt
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            -2.220446049250313081e-16 -1.000000000000000000e+00 0.000000000000000000e+00 -2.886579758146288598e-16
         | 
| 2 | 
            +
            0.000000000000000000e+00 -2.220446049250313081e-16 1.000000000000000000e+00 0.000000000000000000e+00
         | 
| 3 | 
            +
            -1.000000000000000000e+00 0.000000000000000000e+00 -2.220446049250313081e-16 -1.299999952316284180e+00
         | 
    	
        mvdiffusion/data/fixed_poses/four_views/000_right_RT.txt
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            -2.220446049250313081e-16 1.000000000000000000e+00 0.000000000000000000e+00 2.886579758146288598e-16
         | 
| 2 | 
            +
            0.000000000000000000e+00 -2.220446049250313081e-16 1.000000000000000000e+00 0.000000000000000000e+00
         | 
| 3 | 
            +
            1.000000000000000000e+00 0.000000000000000000e+00 -2.220446049250313081e-16 -1.299999952316284180e+00
         | 
    	
        mvdiffusion/data/fixed_poses/nine_views/000_back_RT.txt
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            -5.266582965850830078e-01 7.410295009613037109e-01 -4.165407419204711914e-01 -5.960464477539062500e-08
         | 
| 2 | 
            +
            5.865638996738198330e-08 4.900035560131072998e-01 8.717204332351684570e-01 -9.462351613365171943e-08
         | 
| 3 | 
            +
            8.500770330429077148e-01 4.590988159179687500e-01 -2.580644786357879639e-01 -1.300000071525573730e+00
         | 
    	
        mvdiffusion/data/fixed_poses/nine_views/000_back_left_RT.txt
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            -9.734988808631896973e-01 1.993551850318908691e-01 -1.120596975088119507e-01 -1.713633537292480469e-07
         | 
| 2 | 
            +
            3.790224578636980368e-09 4.900034964084625244e-01 8.717204928398132324e-01 1.772203575001185527e-07
         | 
| 3 | 
            +
            2.286916375160217285e-01 8.486189246177673340e-01 -4.770178496837615967e-01 -1.838477611541748047e+00
         | 
    	
        mvdiffusion/data/fixed_poses/nine_views/000_back_right_RT.txt
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            2.286914736032485962e-01 8.486190438270568848e-01 -4.770178198814392090e-01 1.564621925354003906e-07
         | 
| 2 | 
            +
            -3.417914484771245043e-08 4.900034070014953613e-01 8.717205524444580078e-01 -7.293811421504869941e-08
         | 
| 3 | 
            +
            9.734990000724792480e-01 -1.993550658226013184e-01 1.120596155524253845e-01 -1.838477969169616699e+00
         | 
    	
        mvdiffusion/data/fixed_poses/nine_views/000_front_RT.txt
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            5.266583561897277832e-01 -7.410295009613037109e-01 4.165407419204711914e-01 0.000000000000000000e+00
         | 
| 2 | 
            +
            5.865638996738198330e-08 4.900035560131072998e-01 8.717204332351684570e-01 9.462351613365171943e-08
         | 
| 3 | 
            +
            -8.500770330429077148e-01 -4.590988159179687500e-01 2.580645382404327393e-01 -1.300000071525573730e+00
         | 
    	
        mvdiffusion/data/fixed_poses/nine_views/000_front_left_RT.txt
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            -2.286916971206665039e-01 -8.486189842224121094e-01 4.770179092884063721e-01 -2.458691596984863281e-07
         | 
| 2 | 
            +
            9.085837859856837895e-09 4.900034666061401367e-01 8.717205524444580078e-01 1.205695667749751010e-07
         | 
| 3 | 
            +
            -9.734990000724792480e-01 1.993551701307296753e-01 -1.120597645640373230e-01 -1.838477969169616699e+00
         | 
    	
        mvdiffusion/data/fixed_poses/nine_views/000_front_right_RT.txt
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            9.734989404678344727e-01 -1.993551850318908691e-01 1.120596975088119507e-01 -1.415610313415527344e-07
         | 
| 2 | 
            +
            3.790224578636980368e-09 4.900034964084625244e-01 8.717204928398132324e-01 -1.772203575001185527e-07
         | 
| 3 | 
            +
            -2.286916375160217285e-01 -8.486189246177673340e-01 4.770178794860839844e-01 -1.838477611541748047e+00
         | 
    	
        mvdiffusion/data/fixed_poses/nine_views/000_left_RT.txt
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            -8.500771522521972656e-01 -4.590989053249359131e-01 2.580644488334655762e-01 0.000000000000000000e+00
         | 
| 2 | 
            +
            -4.257411134744870651e-08 4.900034964084625244e-01 8.717204928398132324e-01 9.006067358541258727e-08
         | 
| 3 | 
            +
            -5.266583561897277832e-01 7.410295605659484863e-01 -4.165408313274383545e-01 -1.300000071525573730e+00
         | 
    	
        mvdiffusion/data/fixed_poses/nine_views/000_right_RT.txt
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            8.500770330429077148e-01 4.590989053249359131e-01 -2.580644488334655762e-01 5.960464477539062500e-08
         | 
| 2 | 
            +
            -4.257411134744870651e-08 4.900034964084625244e-01 8.717204928398132324e-01 -9.006067358541258727e-08
         | 
| 3 | 
            +
            5.266583561897277832e-01 -7.410295605659484863e-01 4.165407419204711914e-01 -1.300000071525573730e+00
         | 
    	
        mvdiffusion/data/fixed_poses/nine_views/000_top_RT.txt
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            9.958608150482177734e-01 7.923202216625213623e-02 -4.453715682029724121e-02 -3.098167056236889039e-09
         | 
| 2 | 
            +
            -9.089154005050659180e-02 8.681122064590454102e-01 -4.879753291606903076e-01 5.784738377201392723e-08
         | 
| 3 | 
            +
            -2.028124157504862524e-08 4.900035560131072998e-01 8.717204332351684570e-01 -1.300000071525573730e+00
         | 
    	
        mvdiffusion/data/normal_utils.py
    ADDED
    
    | @@ -0,0 +1,45 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import numpy as np
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            def camNormal2worldNormal(rot_c2w, camNormal):
         | 
| 4 | 
            +
                H,W,_ = camNormal.shape
         | 
| 5 | 
            +
                normal_img = np.matmul(rot_c2w[None, :, :], camNormal.reshape(-1,3)[:, :, None]).reshape([H, W, 3])
         | 
| 6 | 
            +
             | 
| 7 | 
            +
                return normal_img
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            def worldNormal2camNormal(rot_w2c, normal_map_world):
         | 
| 10 | 
            +
                H,W,_ = normal_map_world.shape
         | 
| 11 | 
            +
                # normal_img = np.matmul(rot_w2c[None, :, :], worldNormal.reshape(-1,3)[:, :, None]).reshape([H, W, 3])
         | 
| 12 | 
            +
             | 
| 13 | 
            +
                # faster version
         | 
| 14 | 
            +
                # Reshape the normal map into a 2D array where each row represents a normal vector
         | 
| 15 | 
            +
                normal_map_flat = normal_map_world.reshape(-1, 3)
         | 
| 16 | 
            +
             | 
| 17 | 
            +
                # Transform the normal vectors using the transformation matrix
         | 
| 18 | 
            +
                normal_map_camera_flat = np.dot(normal_map_flat, rot_w2c.T)
         | 
| 19 | 
            +
             | 
| 20 | 
            +
                # Reshape the transformed normal map back to its original shape
         | 
| 21 | 
            +
                normal_map_camera = normal_map_camera_flat.reshape(normal_map_world.shape)
         | 
| 22 | 
            +
             | 
| 23 | 
            +
                return normal_map_camera
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            def trans_normal(normal, RT_w2c, RT_w2c_target):
         | 
| 26 | 
            +
             | 
| 27 | 
            +
                # normal_world = camNormal2worldNormal(np.linalg.inv(RT_w2c[:3,:3]), normal)
         | 
| 28 | 
            +
                # normal_target_cam = worldNormal2camNormal(RT_w2c_target[:3,:3], normal_world)
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                relative_RT = np.matmul(RT_w2c_target[:3,:3], np.linalg.inv(RT_w2c[:3,:3]))
         | 
| 31 | 
            +
                normal_target_cam = worldNormal2camNormal(relative_RT[:3,:3], normal)
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                return normal_target_cam
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            def img2normal(img):
         | 
| 36 | 
            +
                return (img/255.)*2-1
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            def normal2img(normal):
         | 
| 39 | 
            +
                return np.uint8((normal*0.5+0.5)*255)
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            def norm_normalize(normal, dim=-1):
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                normal = normal/(np.linalg.norm(normal, axis=dim, keepdims=True)+1e-6)
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                return normal
         | 
    	
        mvdiffusion/data/objaverse_dataset.py
    ADDED
    
    | @@ -0,0 +1,608 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from typing import Dict
         | 
| 2 | 
            +
            import numpy as np
         | 
| 3 | 
            +
            from omegaconf import DictConfig, ListConfig
         | 
| 4 | 
            +
            import torch
         | 
| 5 | 
            +
            from torch.utils.data import Dataset
         | 
| 6 | 
            +
            from pathlib import Path
         | 
| 7 | 
            +
            import json
         | 
| 8 | 
            +
            from PIL import Image
         | 
| 9 | 
            +
            from torchvision import transforms
         | 
| 10 | 
            +
            from einops import rearrange
         | 
| 11 | 
            +
            from typing import Literal, Tuple, Optional, Any
         | 
| 12 | 
            +
            import cv2
         | 
| 13 | 
            +
            import random
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            import json
         | 
| 16 | 
            +
            import os, sys
         | 
| 17 | 
            +
            import math
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            import PIL.Image
         | 
| 20 | 
            +
            from .normal_utils import trans_normal, normal2img, img2normal
         | 
| 21 | 
            +
            import pdb
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            def shift_list(lst, n):
         | 
| 24 | 
            +
                length = len(lst)
         | 
| 25 | 
            +
                n = n % length  # Ensure n is within the range of the list length
         | 
| 26 | 
            +
                return lst[-n:] + lst[:-n]
         | 
| 27 | 
            +
             | 
| 28 | 
            +
             | 
| 29 | 
            +
            class ObjaverseDataset(Dataset):
         | 
| 30 | 
            +
                def __init__(self,
         | 
| 31 | 
            +
                    root_dir: str,
         | 
| 32 | 
            +
                    num_views: int,
         | 
| 33 | 
            +
                    bg_color: Any,
         | 
| 34 | 
            +
                    img_wh: Tuple[int, int],
         | 
| 35 | 
            +
                    object_list: str,
         | 
| 36 | 
            +
                    groups_num: int=1,
         | 
| 37 | 
            +
                    validation: bool = False,
         | 
| 38 | 
            +
                    random_views: bool = False,
         | 
| 39 | 
            +
                    num_validation_samples: int = 64,
         | 
| 40 | 
            +
                    num_samples: Optional[int] = None,
         | 
| 41 | 
            +
                    invalid_list: Optional[str] = None,
         | 
| 42 | 
            +
                    trans_norm_system: bool = True,   # if True, transform all normals map into the cam system of front view
         | 
| 43 | 
            +
                    augment_data: bool = False,
         | 
| 44 | 
            +
                    read_normal: bool = True,
         | 
| 45 | 
            +
                    read_color: bool = False,
         | 
| 46 | 
            +
                    read_depth: bool = False,
         | 
| 47 | 
            +
                    mix_color_normal: bool = False,
         | 
| 48 | 
            +
                    random_view_and_domain: bool = False
         | 
| 49 | 
            +
                    ) -> None:
         | 
| 50 | 
            +
                    """Create a dataset from a folder of images.
         | 
| 51 | 
            +
                    If you pass in a root directory it will be searched for images
         | 
| 52 | 
            +
                    ending in ext (ext can be a list)
         | 
| 53 | 
            +
                    """
         | 
| 54 | 
            +
                    self.root_dir = Path(root_dir)
         | 
| 55 | 
            +
                    self.num_views = num_views
         | 
| 56 | 
            +
                    self.bg_color = bg_color
         | 
| 57 | 
            +
                    self.validation = validation
         | 
| 58 | 
            +
                    self.num_samples = num_samples
         | 
| 59 | 
            +
                    self.trans_norm_system = trans_norm_system
         | 
| 60 | 
            +
                    self.augment_data = augment_data
         | 
| 61 | 
            +
                    self.invalid_list = invalid_list
         | 
| 62 | 
            +
                    self.groups_num = groups_num
         | 
| 63 | 
            +
                    print("augment data: ", self.augment_data)
         | 
| 64 | 
            +
                    self.img_wh = img_wh
         | 
| 65 | 
            +
                    self.read_normal = read_normal
         | 
| 66 | 
            +
                    self.read_color = read_color
         | 
| 67 | 
            +
                    self.read_depth = read_depth
         | 
| 68 | 
            +
                    self.mix_color_normal = mix_color_normal  # mix load color and normal maps
         | 
| 69 | 
            +
                    self.random_view_and_domain = random_view_and_domain # load normal or rgb of a single view
         | 
| 70 | 
            +
                    self.random_views = random_views
         | 
| 71 | 
            +
                    if not self.random_views:
         | 
| 72 | 
            +
                        if self.num_views == 4:
         | 
| 73 | 
            +
                            self.view_types  = ['front', 'right', 'back', 'left']
         | 
| 74 | 
            +
                        elif self.num_views == 5:
         | 
| 75 | 
            +
                            self.view_types  = ['front', 'front_right', 'right', 'back', 'left']
         | 
| 76 | 
            +
                        elif self.num_views == 6 or self.num_views==1:
         | 
| 77 | 
            +
                            self.view_types  = ['front', 'front_right', 'right', 'back', 'left', 'front_left']
         | 
| 78 | 
            +
                    else:
         | 
| 79 | 
            +
                        self.view_types  = ['front', 'front_right', 'right', 'back', 'left', 'front_left']
         | 
| 80 | 
            +
                    
         | 
| 81 | 
            +
                    self.fix_cam_pose_dir = "./mvdiffusion/data/fixed_poses/nine_views"
         | 
| 82 | 
            +
             | 
| 83 | 
            +
                    self.fix_cam_poses = self.load_fixed_poses()  # world2cam matrix
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                    if object_list is not None:
         | 
| 86 | 
            +
                        with open(object_list) as f:
         | 
| 87 | 
            +
                            self.objects = json.load(f)
         | 
| 88 | 
            +
                        self.objects = [os.path.basename(o).replace(".glb", "") for o in self.objects]
         | 
| 89 | 
            +
                    else:
         | 
| 90 | 
            +
                        self.objects = os.listdir(self.root_dir)
         | 
| 91 | 
            +
                        self.objects = sorted(self.objects)
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                    if self.invalid_list is not None:
         | 
| 94 | 
            +
                        with open(self.invalid_list) as f:
         | 
| 95 | 
            +
                            self.invalid_objects = json.load(f)
         | 
| 96 | 
            +
                        self.invalid_objects = [os.path.basename(o).replace(".glb", "") for o in self.invalid_objects]
         | 
| 97 | 
            +
                    else:
         | 
| 98 | 
            +
                        self.invalid_objects = []
         | 
| 99 | 
            +
                    
         | 
| 100 | 
            +
                    
         | 
| 101 | 
            +
                    self.all_objects = set(self.objects) - (set(self.invalid_objects) & set(self.objects))
         | 
| 102 | 
            +
                    self.all_objects = list(self.all_objects)
         | 
| 103 | 
            +
             | 
| 104 | 
            +
                    if not validation:
         | 
| 105 | 
            +
                        self.all_objects = self.all_objects[:-num_validation_samples]
         | 
| 106 | 
            +
                    else:
         | 
| 107 | 
            +
                        self.all_objects = self.all_objects[-num_validation_samples:]
         | 
| 108 | 
            +
                    if num_samples is not None:
         | 
| 109 | 
            +
                        self.all_objects = self.all_objects[:num_samples]
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                    print("loading ", len(self.all_objects), " objects in the dataset")
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                    if self.mix_color_normal:
         | 
| 114 | 
            +
                        self.backup_data = self.__getitem_mix__(0, "9438abf986c7453a9f4df7c34aa2e65b")
         | 
| 115 | 
            +
                    elif self.random_view_and_domain:
         | 
| 116 | 
            +
                        self.backup_data = self.__getitem_random_viewanddomain__(0, "9438abf986c7453a9f4df7c34aa2e65b")
         | 
| 117 | 
            +
                    else:
         | 
| 118 | 
            +
                        self.backup_data = self.__getitem_norm__(0, "9438abf986c7453a9f4df7c34aa2e65b") # "66b2134b7e3645b29d7c349645291f78")
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                def __len__(self):
         | 
| 121 | 
            +
                    return len(self.objects)*self.total_view
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                def load_fixed_poses(self):
         | 
| 124 | 
            +
                    poses = {}
         | 
| 125 | 
            +
                    for face in self.view_types:
         | 
| 126 | 
            +
                        RT = np.loadtxt(os.path.join(self.fix_cam_pose_dir,'%03d_%s_RT.txt'%(0, face)))
         | 
| 127 | 
            +
                        poses[face] = RT
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                    return poses
         | 
| 130 | 
            +
                    
         | 
| 131 | 
            +
                def cartesian_to_spherical(self, xyz):
         | 
| 132 | 
            +
                    ptsnew = np.hstack((xyz, np.zeros(xyz.shape)))
         | 
| 133 | 
            +
                    xy = xyz[:,0]**2 + xyz[:,1]**2
         | 
| 134 | 
            +
                    z = np.sqrt(xy + xyz[:,2]**2)
         | 
| 135 | 
            +
                    theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down
         | 
| 136 | 
            +
                    #ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up
         | 
| 137 | 
            +
                    azimuth = np.arctan2(xyz[:,1], xyz[:,0])
         | 
| 138 | 
            +
                    return np.array([theta, azimuth, z])
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                def get_T(self, target_RT, cond_RT):
         | 
| 141 | 
            +
                    R, T = target_RT[:3, :3], target_RT[:, -1]
         | 
| 142 | 
            +
                    T_target = -R.T @ T # change to cam2world
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                    R, T = cond_RT[:3, :3], cond_RT[:, -1]
         | 
| 145 | 
            +
                    T_cond = -R.T @ T
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                    theta_cond, azimuth_cond, z_cond = self.cartesian_to_spherical(T_cond[None, :])
         | 
| 148 | 
            +
                    theta_target, azimuth_target, z_target = self.cartesian_to_spherical(T_target[None, :])
         | 
| 149 | 
            +
                    
         | 
| 150 | 
            +
                    d_theta = theta_target - theta_cond
         | 
| 151 | 
            +
                    d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi)
         | 
| 152 | 
            +
                    d_z = z_target - z_cond
         | 
| 153 | 
            +
                    
         | 
| 154 | 
            +
                    # d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()])
         | 
| 155 | 
            +
                    return d_theta, d_azimuth
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                def get_bg_color(self):
         | 
| 158 | 
            +
                    if self.bg_color == 'white':
         | 
| 159 | 
            +
                        bg_color = np.array([1., 1., 1.], dtype=np.float32)
         | 
| 160 | 
            +
                    elif self.bg_color == 'black':
         | 
| 161 | 
            +
                        bg_color = np.array([0., 0., 0.], dtype=np.float32)
         | 
| 162 | 
            +
                    elif self.bg_color == 'gray':
         | 
| 163 | 
            +
                        bg_color = np.array([0.5, 0.5, 0.5], dtype=np.float32)
         | 
| 164 | 
            +
                    elif self.bg_color == 'random':
         | 
| 165 | 
            +
                        bg_color = np.random.rand(3)
         | 
| 166 | 
            +
                    elif self.bg_color == 'three_choices':
         | 
| 167 | 
            +
                        white = np.array([1., 1., 1.], dtype=np.float32)
         | 
| 168 | 
            +
                        black = np.array([0., 0., 0.], dtype=np.float32)
         | 
| 169 | 
            +
                        gray = np.array([0.5, 0.5, 0.5], dtype=np.float32)
         | 
| 170 | 
            +
                        bg_color = random.choice([white, black, gray])
         | 
| 171 | 
            +
                    elif isinstance(self.bg_color, float):
         | 
| 172 | 
            +
                        bg_color = np.array([self.bg_color] * 3, dtype=np.float32)
         | 
| 173 | 
            +
                    else:
         | 
| 174 | 
            +
                        raise NotImplementedError
         | 
| 175 | 
            +
                    return bg_color
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                def load_mask(self, img_path, return_type='np'):
         | 
| 180 | 
            +
                    # not using cv2 as may load in uint16 format
         | 
| 181 | 
            +
                    # img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255]
         | 
| 182 | 
            +
                    # img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC)
         | 
| 183 | 
            +
                    # pil always returns uint8
         | 
| 184 | 
            +
                    img = np.array(Image.open(img_path).resize(self.img_wh))
         | 
| 185 | 
            +
                    img = np.float32(img > 0)
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                    assert len(np.shape(img)) == 2
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                    if return_type == "np":
         | 
| 190 | 
            +
                        pass
         | 
| 191 | 
            +
                    elif return_type == "pt":
         | 
| 192 | 
            +
                        img = torch.from_numpy(img)
         | 
| 193 | 
            +
                    else:
         | 
| 194 | 
            +
                        raise NotImplementedError
         | 
| 195 | 
            +
                    
         | 
| 196 | 
            +
                    return img
         | 
| 197 | 
            +
                
         | 
| 198 | 
            +
                def load_image(self, img_path, bg_color, alpha, return_type='np'):
         | 
| 199 | 
            +
                    # not using cv2 as may load in uint16 format
         | 
| 200 | 
            +
                    # img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255]
         | 
| 201 | 
            +
                    # img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC)
         | 
| 202 | 
            +
                    # pil always returns uint8
         | 
| 203 | 
            +
                    img = np.array(Image.open(img_path).resize(self.img_wh))
         | 
| 204 | 
            +
                    img = img.astype(np.float32) / 255. # [0, 1]
         | 
| 205 | 
            +
                    assert img.shape[-1] == 3 # RGB
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                    if alpha.shape[-1] != 1:
         | 
| 208 | 
            +
                        alpha = alpha[:, :, None]
         | 
| 209 | 
            +
             | 
| 210 | 
            +
                    img = img[...,:3] * alpha + bg_color * (1 - alpha)
         | 
| 211 | 
            +
             | 
| 212 | 
            +
                    if return_type == "np":
         | 
| 213 | 
            +
                        pass
         | 
| 214 | 
            +
                    elif return_type == "pt":
         | 
| 215 | 
            +
                        img = torch.from_numpy(img)
         | 
| 216 | 
            +
                    else:
         | 
| 217 | 
            +
                        raise NotImplementedError
         | 
| 218 | 
            +
                    
         | 
| 219 | 
            +
                    return img
         | 
| 220 | 
            +
                
         | 
| 221 | 
            +
                def load_depth(self, img_path, bg_color, alpha, return_type='np'):
         | 
| 222 | 
            +
                    # not using cv2 as may load in uint16 format
         | 
| 223 | 
            +
                    # img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255]
         | 
| 224 | 
            +
                    # img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC)
         | 
| 225 | 
            +
                    # pil always returns uint8
         | 
| 226 | 
            +
                    img = np.array(Image.open(img_path).resize(self.img_wh))
         | 
| 227 | 
            +
                    img = img.astype(np.float32) / 65535. # [0, 1]
         | 
| 228 | 
            +
             | 
| 229 | 
            +
                    img[img > 0.4] = 0
         | 
| 230 | 
            +
                    img = img / 0.4
         | 
| 231 | 
            +
                    
         | 
| 232 | 
            +
                    assert img.ndim == 2 # depth
         | 
| 233 | 
            +
                    img = np.stack([img]*3, axis=-1)
         | 
| 234 | 
            +
             | 
| 235 | 
            +
                    if alpha.shape[-1] != 1:
         | 
| 236 | 
            +
                        alpha = alpha[:, :, None]
         | 
| 237 | 
            +
             | 
| 238 | 
            +
                    # print(np.max(img[:, :, 0]))
         | 
| 239 | 
            +
             | 
| 240 | 
            +
                    img = img[...,:3] * alpha + bg_color * (1 - alpha)
         | 
| 241 | 
            +
             | 
| 242 | 
            +
                    if return_type == "np":
         | 
| 243 | 
            +
                        pass
         | 
| 244 | 
            +
                    elif return_type == "pt":
         | 
| 245 | 
            +
                        img = torch.from_numpy(img)
         | 
| 246 | 
            +
                    else:
         | 
| 247 | 
            +
                        raise NotImplementedError
         | 
| 248 | 
            +
                    
         | 
| 249 | 
            +
                    return img
         | 
| 250 | 
            +
                
         | 
| 251 | 
            +
                def load_normal(self, img_path, bg_color, alpha, RT_w2c=None, RT_w2c_cond=None, return_type='np'):
         | 
| 252 | 
            +
                    # not using cv2 as may load in uint16 format
         | 
| 253 | 
            +
                    # img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255]
         | 
| 254 | 
            +
                    # img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC)
         | 
| 255 | 
            +
                    # pil always returns uint8
         | 
| 256 | 
            +
                    normal = np.array(Image.open(img_path).resize(self.img_wh))
         | 
| 257 | 
            +
             | 
| 258 | 
            +
                    assert normal.shape[-1] == 3 # RGB
         | 
| 259 | 
            +
             | 
| 260 | 
            +
                    normal = trans_normal(img2normal(normal), RT_w2c, RT_w2c_cond)
         | 
| 261 | 
            +
             | 
| 262 | 
            +
                    img = (normal*0.5 + 0.5).astype(np.float32)  # [0, 1]
         | 
| 263 | 
            +
             | 
| 264 | 
            +
                    if alpha.shape[-1] != 1:
         | 
| 265 | 
            +
                        alpha = alpha[:, :, None]
         | 
| 266 | 
            +
             | 
| 267 | 
            +
                    img = img[...,:3] * alpha + bg_color * (1 - alpha)
         | 
| 268 | 
            +
             | 
| 269 | 
            +
                    if return_type == "np":
         | 
| 270 | 
            +
                        pass
         | 
| 271 | 
            +
                    elif return_type == "pt":
         | 
| 272 | 
            +
                        img = torch.from_numpy(img)
         | 
| 273 | 
            +
                    else:
         | 
| 274 | 
            +
                        raise NotImplementedError
         | 
| 275 | 
            +
                    
         | 
| 276 | 
            +
                    return img
         | 
| 277 | 
            +
             | 
| 278 | 
            +
                def __len__(self):
         | 
| 279 | 
            +
                    return len(self.all_objects)
         | 
| 280 | 
            +
             | 
| 281 | 
            +
                def __getitem_mix__(self, index, debug_object=None):
         | 
| 282 | 
            +
                    if debug_object is not  None:
         | 
| 283 | 
            +
                        object_name =  debug_object #
         | 
| 284 | 
            +
                        set_idx = random.sample(range(0, self.groups_num), 1)[0] # without replacement
         | 
| 285 | 
            +
                    else:
         | 
| 286 | 
            +
                        object_name = self.all_objects[index%len(self.all_objects)]
         | 
| 287 | 
            +
                        set_idx = 0
         | 
| 288 | 
            +
             | 
| 289 | 
            +
                    if self.augment_data:
         | 
| 290 | 
            +
                        cond_view = random.sample(self.view_types, k=1)[0]
         | 
| 291 | 
            +
                    else:
         | 
| 292 | 
            +
                        cond_view = 'front'
         | 
| 293 | 
            +
             | 
| 294 | 
            +
                    if random.random() < 0.5:
         | 
| 295 | 
            +
                        read_color, read_normal, read_depth = True, False, False
         | 
| 296 | 
            +
                    else:
         | 
| 297 | 
            +
                        read_color, read_normal, read_depth = False, True, True
         | 
| 298 | 
            +
             | 
| 299 | 
            +
                    read_normal = read_normal & self.read_normal
         | 
| 300 | 
            +
                    read_depth = read_depth & self.read_depth
         | 
| 301 | 
            +
             | 
| 302 | 
            +
                    assert (read_color and (read_normal or read_depth)) is False
         | 
| 303 | 
            +
                        
         | 
| 304 | 
            +
                    view_types = self.view_types
         | 
| 305 | 
            +
             | 
| 306 | 
            +
                    cond_w2c = self.fix_cam_poses[cond_view]
         | 
| 307 | 
            +
             | 
| 308 | 
            +
                    tgt_w2cs = [self.fix_cam_poses[view] for view in view_types]
         | 
| 309 | 
            +
             | 
| 310 | 
            +
                    elevations = []
         | 
| 311 | 
            +
                    azimuths = []
         | 
| 312 | 
            +
             | 
| 313 | 
            +
                    # get the bg color
         | 
| 314 | 
            +
                    bg_color = self.get_bg_color()
         | 
| 315 | 
            +
             | 
| 316 | 
            +
                    cond_alpha = self.load_mask(os.path.join(self.root_dir,  object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, cond_view)), return_type='np')
         | 
| 317 | 
            +
                    img_tensors_in = [
         | 
| 318 | 
            +
                        self.load_image(os.path.join(self.root_dir,  object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, cond_view)), bg_color, cond_alpha, return_type='pt').permute(2, 0, 1)
         | 
| 319 | 
            +
                    ] * self.num_views
         | 
| 320 | 
            +
                    img_tensors_out = []
         | 
| 321 | 
            +
             | 
| 322 | 
            +
                    for view, tgt_w2c in zip(view_types, tgt_w2cs):
         | 
| 323 | 
            +
                        img_path = os.path.join(self.root_dir,  object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, view))
         | 
| 324 | 
            +
                        mask_path = os.path.join(self.root_dir,  object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, view))
         | 
| 325 | 
            +
                        normal_path = os.path.join(self.root_dir,  object_name[:3], object_name, "normals_%03d_%s.png" % (set_idx, view))
         | 
| 326 | 
            +
                        depth_path = os.path.join(self.root_dir,  object_name[:3], object_name, "depth_%03d_%s.png" % (set_idx, view))
         | 
| 327 | 
            +
                        alpha = self.load_mask(mask_path, return_type='np')
         | 
| 328 | 
            +
             | 
| 329 | 
            +
                        if read_color:                        
         | 
| 330 | 
            +
                            img_tensor = self.load_image(img_path, bg_color, alpha, return_type="pt")
         | 
| 331 | 
            +
                            img_tensor = img_tensor.permute(2, 0, 1)
         | 
| 332 | 
            +
                            img_tensors_out.append(img_tensor)
         | 
| 333 | 
            +
             | 
| 334 | 
            +
                        if read_normal:
         | 
| 335 | 
            +
                            normal_tensor = self.load_normal(normal_path, bg_color, alpha, RT_w2c=tgt_w2c, RT_w2c_cond=cond_w2c, return_type="pt").permute(2, 0, 1)
         | 
| 336 | 
            +
                            img_tensors_out.append(normal_tensor)
         | 
| 337 | 
            +
                        if read_depth:
         | 
| 338 | 
            +
                            depth_tensor = self.load_depth(depth_path, bg_color, alpha, return_type="pt").permute(2, 0, 1)
         | 
| 339 | 
            +
                            img_tensors_out.append(depth_tensor)
         | 
| 340 | 
            +
             | 
| 341 | 
            +
                        # evelations, azimuths
         | 
| 342 | 
            +
                        elevation, azimuth = self.get_T(tgt_w2c, cond_w2c)
         | 
| 343 | 
            +
                        elevations.append(elevation)
         | 
| 344 | 
            +
                        azimuths.append(azimuth)
         | 
| 345 | 
            +
             | 
| 346 | 
            +
                    img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W)
         | 
| 347 | 
            +
                    img_tensors_out = torch.stack(img_tensors_out, dim=0).float() # (Nv, 3, H, W)
         | 
| 348 | 
            +
             | 
| 349 | 
            +
             | 
| 350 | 
            +
                    elevations = torch.as_tensor(elevations).float().squeeze(1)
         | 
| 351 | 
            +
                    azimuths = torch.as_tensor(azimuths).float().squeeze(1)
         | 
| 352 | 
            +
                    elevations_cond = torch.as_tensor([0] * self.num_views).float()  # fixed only use 4 views to train
         | 
| 353 | 
            +
                    camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1) # (Nv, 3)
         | 
| 354 | 
            +
             | 
| 355 | 
            +
                    normal_class = torch.tensor([1, 0]).float()
         | 
| 356 | 
            +
                    normal_task_embeddings = torch.stack([normal_class]*self.num_views, dim=0)  # (Nv, 2)
         | 
| 357 | 
            +
                    color_class = torch.tensor([0, 1]).float()
         | 
| 358 | 
            +
                    color_task_embeddings = torch.stack([color_class]*self.num_views, dim=0)  # (Nv, 2)
         | 
| 359 | 
            +
                    if read_normal or read_depth:
         | 
| 360 | 
            +
                        task_embeddings = normal_task_embeddings
         | 
| 361 | 
            +
                    if read_color:
         | 
| 362 | 
            +
                        task_embeddings = color_task_embeddings
         | 
| 363 | 
            +
             | 
| 364 | 
            +
                    return {
         | 
| 365 | 
            +
                        'elevations_cond': elevations_cond,
         | 
| 366 | 
            +
                        'elevations_cond_deg': torch.rad2deg(elevations_cond),
         | 
| 367 | 
            +
                        'elevations': elevations,
         | 
| 368 | 
            +
                        'azimuths': azimuths,
         | 
| 369 | 
            +
                        'elevations_deg': torch.rad2deg(elevations),
         | 
| 370 | 
            +
                        'azimuths_deg': torch.rad2deg(azimuths),
         | 
| 371 | 
            +
                        'imgs_in': img_tensors_in,
         | 
| 372 | 
            +
                        'imgs_out': img_tensors_out,
         | 
| 373 | 
            +
                        'camera_embeddings': camera_embeddings,
         | 
| 374 | 
            +
                        'task_embeddings': task_embeddings
         | 
| 375 | 
            +
                    }
         | 
| 376 | 
            +
             | 
| 377 | 
            +
             | 
| 378 | 
            +
                def __getitem_random_viewanddomain__(self, index, debug_object=None):
         | 
| 379 | 
            +
                    if debug_object is not  None:
         | 
| 380 | 
            +
                        object_name =  debug_object #
         | 
| 381 | 
            +
                        set_idx = random.sample(range(0, self.groups_num), 1)[0] # without replacement
         | 
| 382 | 
            +
                    else:
         | 
| 383 | 
            +
                        object_name = self.all_objects[index%len(self.all_objects)]
         | 
| 384 | 
            +
                        set_idx = 0
         | 
| 385 | 
            +
             | 
| 386 | 
            +
                    if self.augment_data:
         | 
| 387 | 
            +
                        cond_view = random.sample(self.view_types, k=1)[0]
         | 
| 388 | 
            +
                    else:
         | 
| 389 | 
            +
                        cond_view = 'front'
         | 
| 390 | 
            +
             | 
| 391 | 
            +
                    if random.random() < 0.5:
         | 
| 392 | 
            +
                        read_color, read_normal, read_depth = True, False, False
         | 
| 393 | 
            +
                    else:
         | 
| 394 | 
            +
                        read_color, read_normal, read_depth = False, True, True
         | 
| 395 | 
            +
             | 
| 396 | 
            +
                    read_normal = read_normal & self.read_normal
         | 
| 397 | 
            +
                    read_depth = read_depth & self.read_depth
         | 
| 398 | 
            +
             | 
| 399 | 
            +
                    assert (read_color and (read_normal or read_depth)) is False
         | 
| 400 | 
            +
                        
         | 
| 401 | 
            +
                    view_types = self.view_types
         | 
| 402 | 
            +
             | 
| 403 | 
            +
                    cond_w2c = self.fix_cam_poses[cond_view]
         | 
| 404 | 
            +
             | 
| 405 | 
            +
                    tgt_w2cs = [self.fix_cam_poses[view] for view in view_types]
         | 
| 406 | 
            +
             | 
| 407 | 
            +
                    elevations = []
         | 
| 408 | 
            +
                    azimuths = []
         | 
| 409 | 
            +
             | 
| 410 | 
            +
                    # get the bg color
         | 
| 411 | 
            +
                    bg_color = self.get_bg_color()
         | 
| 412 | 
            +
             | 
| 413 | 
            +
                    cond_alpha = self.load_mask(os.path.join(self.root_dir,  object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, cond_view)), return_type='np')
         | 
| 414 | 
            +
                    img_tensors_in = [
         | 
| 415 | 
            +
                        self.load_image(os.path.join(self.root_dir,  object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, cond_view)), bg_color, cond_alpha, return_type='pt').permute(2, 0, 1)
         | 
| 416 | 
            +
                    ] * self.num_views
         | 
| 417 | 
            +
                    img_tensors_out = []
         | 
| 418 | 
            +
             | 
| 419 | 
            +
                    random_viewidx = random.randint(0, len(view_types)-1)
         | 
| 420 | 
            +
             | 
| 421 | 
            +
                    for view, tgt_w2c in zip([view_types[random_viewidx]], [tgt_w2cs[random_viewidx]]):
         | 
| 422 | 
            +
                        img_path = os.path.join(self.root_dir,  object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, view))
         | 
| 423 | 
            +
                        mask_path = os.path.join(self.root_dir,  object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, view))
         | 
| 424 | 
            +
                        normal_path = os.path.join(self.root_dir,  object_name[:3], object_name, "normals_%03d_%s.png" % (set_idx, view))
         | 
| 425 | 
            +
                        depth_path = os.path.join(self.root_dir,  object_name[:3], object_name, "depth_%03d_%s.png" % (set_idx, view))
         | 
| 426 | 
            +
                        alpha = self.load_mask(mask_path, return_type='np')
         | 
| 427 | 
            +
             | 
| 428 | 
            +
                        if read_color:                        
         | 
| 429 | 
            +
                            img_tensor = self.load_image(img_path, bg_color, alpha, return_type="pt")
         | 
| 430 | 
            +
                            img_tensor = img_tensor.permute(2, 0, 1)
         | 
| 431 | 
            +
                            img_tensors_out.append(img_tensor)
         | 
| 432 | 
            +
             | 
| 433 | 
            +
                        if read_normal:
         | 
| 434 | 
            +
                            normal_tensor = self.load_normal(normal_path, bg_color, alpha, RT_w2c=tgt_w2c, RT_w2c_cond=cond_w2c, return_type="pt").permute(2, 0, 1)
         | 
| 435 | 
            +
                            img_tensors_out.append(normal_tensor)
         | 
| 436 | 
            +
                        if read_depth:
         | 
| 437 | 
            +
                            depth_tensor = self.load_depth(depth_path, bg_color, alpha, return_type="pt").permute(2, 0, 1)
         | 
| 438 | 
            +
                            img_tensors_out.append(depth_tensor)
         | 
| 439 | 
            +
             | 
| 440 | 
            +
                        # evelations, azimuths
         | 
| 441 | 
            +
                        elevation, azimuth = self.get_T(tgt_w2c, cond_w2c)
         | 
| 442 | 
            +
                        elevations.append(elevation)
         | 
| 443 | 
            +
                        azimuths.append(azimuth)
         | 
| 444 | 
            +
             | 
| 445 | 
            +
                    img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W)
         | 
| 446 | 
            +
                    img_tensors_out = torch.stack(img_tensors_out, dim=0).float() # (Nv, 3, H, W)
         | 
| 447 | 
            +
             | 
| 448 | 
            +
             | 
| 449 | 
            +
                    elevations = torch.as_tensor(elevations).float().squeeze(1)
         | 
| 450 | 
            +
                    azimuths = torch.as_tensor(azimuths).float().squeeze(1)
         | 
| 451 | 
            +
                    elevations_cond = torch.as_tensor([0] * self.num_views).float()  # fixed only use 4 views to train
         | 
| 452 | 
            +
                    camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1) # (Nv, 3)
         | 
| 453 | 
            +
             | 
| 454 | 
            +
                    normal_class = torch.tensor([1, 0]).float()
         | 
| 455 | 
            +
                    normal_task_embeddings = torch.stack([normal_class]*self.num_views, dim=0)  # (Nv, 2)
         | 
| 456 | 
            +
                    color_class = torch.tensor([0, 1]).float()
         | 
| 457 | 
            +
                    color_task_embeddings = torch.stack([color_class]*self.num_views, dim=0)  # (Nv, 2)
         | 
| 458 | 
            +
                    if read_normal or read_depth:
         | 
| 459 | 
            +
                        task_embeddings = normal_task_embeddings
         | 
| 460 | 
            +
                    if read_color:
         | 
| 461 | 
            +
                        task_embeddings = color_task_embeddings
         | 
| 462 | 
            +
             | 
| 463 | 
            +
                    return {
         | 
| 464 | 
            +
                        'elevations_cond': elevations_cond,
         | 
| 465 | 
            +
                        'elevations_cond_deg': torch.rad2deg(elevations_cond),
         | 
| 466 | 
            +
                        'elevations': elevations,
         | 
| 467 | 
            +
                        'azimuths': azimuths,
         | 
| 468 | 
            +
                        'elevations_deg': torch.rad2deg(elevations),
         | 
| 469 | 
            +
                        'azimuths_deg': torch.rad2deg(azimuths),
         | 
| 470 | 
            +
                        'imgs_in': img_tensors_in,
         | 
| 471 | 
            +
                        'imgs_out': img_tensors_out,
         | 
| 472 | 
            +
                        'camera_embeddings': camera_embeddings,
         | 
| 473 | 
            +
                        'task_embeddings': task_embeddings
         | 
| 474 | 
            +
                    }
         | 
| 475 | 
            +
                
         | 
| 476 | 
            +
             | 
| 477 | 
            +
                def __getitem_norm__(self, index, debug_object=None):
         | 
| 478 | 
            +
                    if debug_object is not  None:
         | 
| 479 | 
            +
                        object_name =  debug_object #
         | 
| 480 | 
            +
                        set_idx = random.sample(range(0, self.groups_num), 1)[0] # without replacement
         | 
| 481 | 
            +
                    else:
         | 
| 482 | 
            +
                        object_name = self.all_objects[index%len(self.all_objects)]
         | 
| 483 | 
            +
                        set_idx = 0
         | 
| 484 | 
            +
             | 
| 485 | 
            +
                    if self.augment_data:
         | 
| 486 | 
            +
                        cond_view = random.sample(self.view_types, k=1)[0]
         | 
| 487 | 
            +
                    else:
         | 
| 488 | 
            +
                        cond_view = 'front'
         | 
| 489 | 
            +
             | 
| 490 | 
            +
                    # if self.random_views:
         | 
| 491 | 
            +
                    #     view_types = ['front']+random.sample(self.view_types[1:], 3)
         | 
| 492 | 
            +
                    # else:
         | 
| 493 | 
            +
                    #     view_types = self.view_types
         | 
| 494 | 
            +
             | 
| 495 | 
            +
                    view_types = self.view_types
         | 
| 496 | 
            +
             | 
| 497 | 
            +
                    cond_w2c = self.fix_cam_poses[cond_view]
         | 
| 498 | 
            +
             | 
| 499 | 
            +
                    tgt_w2cs = [self.fix_cam_poses[view] for view in view_types]
         | 
| 500 | 
            +
             | 
| 501 | 
            +
                    elevations = []
         | 
| 502 | 
            +
                    azimuths = []
         | 
| 503 | 
            +
             | 
| 504 | 
            +
                    # get the bg color
         | 
| 505 | 
            +
                    bg_color = self.get_bg_color()
         | 
| 506 | 
            +
             | 
| 507 | 
            +
                    cond_alpha = self.load_mask(os.path.join(self.root_dir,  object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, cond_view)), return_type='np')
         | 
| 508 | 
            +
                    img_tensors_in = [
         | 
| 509 | 
            +
                        self.load_image(os.path.join(self.root_dir,  object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, cond_view)), bg_color, cond_alpha, return_type='pt').permute(2, 0, 1)
         | 
| 510 | 
            +
                    ] * self.num_views
         | 
| 511 | 
            +
                    img_tensors_out = []
         | 
| 512 | 
            +
                    normal_tensors_out = []
         | 
| 513 | 
            +
                    for view, tgt_w2c in zip(view_types, tgt_w2cs):
         | 
| 514 | 
            +
                        img_path = os.path.join(self.root_dir,  object_name[:3], object_name, "rgb_%03d_%s.png" % (set_idx, view))
         | 
| 515 | 
            +
                        mask_path = os.path.join(self.root_dir,  object_name[:3], object_name, "mask_%03d_%s.png" % (set_idx, view))
         | 
| 516 | 
            +
                        alpha = self.load_mask(mask_path, return_type='np')
         | 
| 517 | 
            +
             | 
| 518 | 
            +
                        if self.read_color:                        
         | 
| 519 | 
            +
                            img_tensor = self.load_image(img_path, bg_color, alpha, return_type="pt")
         | 
| 520 | 
            +
                            img_tensor = img_tensor.permute(2, 0, 1)
         | 
| 521 | 
            +
                            img_tensors_out.append(img_tensor)
         | 
| 522 | 
            +
             | 
| 523 | 
            +
                        if self.read_normal:
         | 
| 524 | 
            +
                            normal_path = os.path.join(self.root_dir,  object_name[:3], object_name, "normals_%03d_%s.png" % (set_idx, view))
         | 
| 525 | 
            +
                            normal_tensor = self.load_normal(normal_path, bg_color, alpha, RT_w2c=tgt_w2c, RT_w2c_cond=cond_w2c, return_type="pt").permute(2, 0, 1)
         | 
| 526 | 
            +
                            normal_tensors_out.append(normal_tensor)
         | 
| 527 | 
            +
             | 
| 528 | 
            +
                        # evelations, azimuths
         | 
| 529 | 
            +
                        elevation, azimuth = self.get_T(tgt_w2c, cond_w2c)
         | 
| 530 | 
            +
                        elevations.append(elevation)
         | 
| 531 | 
            +
                        azimuths.append(azimuth)
         | 
| 532 | 
            +
             | 
| 533 | 
            +
                    img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W)
         | 
| 534 | 
            +
                    if self.read_color:
         | 
| 535 | 
            +
                        img_tensors_out = torch.stack(img_tensors_out, dim=0).float() # (Nv, 3, H, W)
         | 
| 536 | 
            +
                    if self.read_normal:
         | 
| 537 | 
            +
                        normal_tensors_out = torch.stack(normal_tensors_out, dim=0).float() # (Nv, 3, H, W)
         | 
| 538 | 
            +
             | 
| 539 | 
            +
                    elevations = torch.as_tensor(elevations).float().squeeze(1)
         | 
| 540 | 
            +
                    azimuths = torch.as_tensor(azimuths).float().squeeze(1)
         | 
| 541 | 
            +
                    elevations_cond = torch.as_tensor([0] * self.num_views).float()  # fixed only use 4 views to train
         | 
| 542 | 
            +
             | 
| 543 | 
            +
                    camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1) # (Nv, 3)
         | 
| 544 | 
            +
             | 
| 545 | 
            +
                    normal_class = torch.tensor([1, 0]).float()
         | 
| 546 | 
            +
                    normal_task_embeddings = torch.stack([normal_class]*self.num_views, dim=0)  # (Nv, 2)
         | 
| 547 | 
            +
                    color_class = torch.tensor([0, 1]).float()
         | 
| 548 | 
            +
                    color_task_embeddings = torch.stack([color_class]*self.num_views, dim=0)  # (Nv, 2)
         | 
| 549 | 
            +
             | 
| 550 | 
            +
                    return {
         | 
| 551 | 
            +
                        'elevations_cond': elevations_cond,
         | 
| 552 | 
            +
                        'elevations_cond_deg': torch.rad2deg(elevations_cond),
         | 
| 553 | 
            +
                        'elevations': elevations,
         | 
| 554 | 
            +
                        'azimuths': azimuths,
         | 
| 555 | 
            +
                        'elevations_deg': torch.rad2deg(elevations),
         | 
| 556 | 
            +
                        'azimuths_deg': torch.rad2deg(azimuths),
         | 
| 557 | 
            +
                        'imgs_in': img_tensors_in,
         | 
| 558 | 
            +
                        'imgs_out': img_tensors_out,
         | 
| 559 | 
            +
                        'normals_out': normal_tensors_out,
         | 
| 560 | 
            +
                        'camera_embeddings': camera_embeddings,
         | 
| 561 | 
            +
                        'normal_task_embeddings': normal_task_embeddings,
         | 
| 562 | 
            +
                        'color_task_embeddings': color_task_embeddings
         | 
| 563 | 
            +
                    }
         | 
| 564 | 
            +
             | 
| 565 | 
            +
                def __getitem__(self, index):
         | 
| 566 | 
            +
                    
         | 
| 567 | 
            +
                    try:
         | 
| 568 | 
            +
                        if self.mix_color_normal:
         | 
| 569 | 
            +
                            data = self.__getitem_mix__(index)
         | 
| 570 | 
            +
                        elif self.random_view_and_domain:
         | 
| 571 | 
            +
                            data = self.__getitem_random_viewanddomain__(index)
         | 
| 572 | 
            +
                        else:
         | 
| 573 | 
            +
                            data = self.__getitem_norm__(index)
         | 
| 574 | 
            +
                        return data
         | 
| 575 | 
            +
                    except:
         | 
| 576 | 
            +
                        print("load error ", self.all_objects[index%len(self.all_objects)] )
         | 
| 577 | 
            +
                        return self.backup_data
         | 
| 578 | 
            +
                    
         | 
| 579 | 
            +
             | 
| 580 | 
            +
            class ConcatDataset(torch.utils.data.Dataset):
         | 
| 581 | 
            +
                def __init__(self, datasets, weights):
         | 
| 582 | 
            +
                    self.datasets = datasets
         | 
| 583 | 
            +
                    self.weights = weights
         | 
| 584 | 
            +
                    self.num_datasets = len(datasets)
         | 
| 585 | 
            +
             | 
| 586 | 
            +
                def __getitem__(self, i):
         | 
| 587 | 
            +
             | 
| 588 | 
            +
                    chosen = random.choices(self.datasets, self.weights, k=1)[0]
         | 
| 589 | 
            +
                    return chosen[i]
         | 
| 590 | 
            +
             | 
| 591 | 
            +
                def __len__(self):
         | 
| 592 | 
            +
                    return max(len(d) for d in self.datasets)
         | 
| 593 | 
            +
             | 
| 594 | 
            +
            if __name__ == "__main__":
         | 
| 595 | 
            +
                train_dataset = ObjaverseDataset(
         | 
| 596 | 
            +
                    root_dir="/ghome/l5/xxlong/.objaverse/hf-objaverse-v1/renderings",
         | 
| 597 | 
            +
                    size=(128, 128),
         | 
| 598 | 
            +
                    ext="hdf5",
         | 
| 599 | 
            +
                    default_trans=torch.zeros(3),
         | 
| 600 | 
            +
                    return_paths=False,
         | 
| 601 | 
            +
                    total_view=8,
         | 
| 602 | 
            +
                    validation=False,
         | 
| 603 | 
            +
                    object_list=None,
         | 
| 604 | 
            +
                    views_mode='fourviews'
         | 
| 605 | 
            +
                )
         | 
| 606 | 
            +
                data0 = train_dataset[0]
         | 
| 607 | 
            +
                data1  = train_dataset[50]
         | 
| 608 | 
            +
                # print(data)
         | 
    	
        mvdiffusion/data/single_image_dataset.py
    ADDED
    
    | @@ -0,0 +1,321 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from typing import Dict
         | 
| 2 | 
            +
            import numpy as np
         | 
| 3 | 
            +
            from omegaconf import DictConfig, ListConfig
         | 
| 4 | 
            +
            import torch
         | 
| 5 | 
            +
            from torch.utils.data import Dataset
         | 
| 6 | 
            +
            from pathlib import Path
         | 
| 7 | 
            +
            import json
         | 
| 8 | 
            +
            from PIL import Image
         | 
| 9 | 
            +
            from torchvision import transforms
         | 
| 10 | 
            +
            from einops import rearrange
         | 
| 11 | 
            +
            from typing import Literal, Tuple, Optional, Any
         | 
| 12 | 
            +
            import cv2
         | 
| 13 | 
            +
            import random
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            import json
         | 
| 16 | 
            +
            import os, sys
         | 
| 17 | 
            +
            import math
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            from glob import glob
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            import PIL.Image
         | 
| 22 | 
            +
            from .normal_utils import trans_normal, normal2img, img2normal
         | 
| 23 | 
            +
            import pdb
         | 
| 24 | 
            +
             | 
| 25 | 
            +
             | 
| 26 | 
            +
            import cv2
         | 
| 27 | 
            +
            import numpy as np
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            def add_margin(pil_img, color=0, size=256):
         | 
| 30 | 
            +
                width, height = pil_img.size
         | 
| 31 | 
            +
                result = Image.new(pil_img.mode, (size, size), color)
         | 
| 32 | 
            +
                result.paste(pil_img, ((size - width) // 2, (size - height) // 2))
         | 
| 33 | 
            +
                return result
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            def scale_and_place_object(image, scale_factor):
         | 
| 36 | 
            +
                assert np.shape(image)[-1]==4  # RGBA
         | 
| 37 | 
            +
             | 
| 38 | 
            +
                # Extract the alpha channel (transparency) and the object (RGB channels)
         | 
| 39 | 
            +
                alpha_channel = image[:, :, 3]
         | 
| 40 | 
            +
             | 
| 41 | 
            +
                # Find the bounding box coordinates of the object
         | 
| 42 | 
            +
                coords = cv2.findNonZero(alpha_channel)
         | 
| 43 | 
            +
                x, y, width, height = cv2.boundingRect(coords)
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                # Calculate the scale factor for resizing
         | 
| 46 | 
            +
                original_height, original_width = image.shape[:2]
         | 
| 47 | 
            +
             | 
| 48 | 
            +
                if width > height:
         | 
| 49 | 
            +
                    size = width
         | 
| 50 | 
            +
                    original_size = original_width
         | 
| 51 | 
            +
                else:
         | 
| 52 | 
            +
                    size = height
         | 
| 53 | 
            +
                    original_size = original_height
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                scale_factor = min(scale_factor, size / (original_size+0.0))
         | 
| 56 | 
            +
             | 
| 57 | 
            +
                new_size = scale_factor * original_size
         | 
| 58 | 
            +
                scale_factor = new_size / size
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                # Calculate the new size based on the scale factor
         | 
| 61 | 
            +
                new_width = int(width * scale_factor)
         | 
| 62 | 
            +
                new_height = int(height * scale_factor)
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                center_x = original_width // 2
         | 
| 65 | 
            +
                center_y = original_height // 2
         | 
| 66 | 
            +
             | 
| 67 | 
            +
                paste_x = center_x - (new_width // 2)
         | 
| 68 | 
            +
                paste_y = center_y - (new_height // 2)
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                # Resize the object (RGB channels) to the new size
         | 
| 71 | 
            +
                rescaled_object = cv2.resize(image[y:y+height, x:x+width], (new_width, new_height))
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                # Create a new RGBA image with the resized image
         | 
| 74 | 
            +
                new_image = np.zeros((original_height, original_width, 4), dtype=np.uint8)
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                new_image[paste_y:paste_y + new_height, paste_x:paste_x + new_width] = rescaled_object
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                return new_image
         | 
| 79 | 
            +
             | 
| 80 | 
            +
            class SingleImageDataset(Dataset):
         | 
| 81 | 
            +
                def __init__(self,
         | 
| 82 | 
            +
                    root_dir: str,
         | 
| 83 | 
            +
                    num_views: int,
         | 
| 84 | 
            +
                    img_wh: Tuple[int, int],
         | 
| 85 | 
            +
                    bg_color: str,
         | 
| 86 | 
            +
                    crop_size: int = 224,
         | 
| 87 | 
            +
                    num_validation_samples: Optional[int] = None,
         | 
| 88 | 
            +
                    filepaths: Optional[list] = None,
         | 
| 89 | 
            +
                    cond_type: Optional[str] = None
         | 
| 90 | 
            +
                    ) -> None:
         | 
| 91 | 
            +
                    """Create a dataset from a folder of images.
         | 
| 92 | 
            +
                    If you pass in a root directory it will be searched for images
         | 
| 93 | 
            +
                    ending in ext (ext can be a list)
         | 
| 94 | 
            +
                    """
         | 
| 95 | 
            +
                    self.root_dir = Path(root_dir)
         | 
| 96 | 
            +
                    self.num_views = num_views
         | 
| 97 | 
            +
                    self.img_wh = img_wh
         | 
| 98 | 
            +
                    self.crop_size = crop_size
         | 
| 99 | 
            +
                    self.bg_color = bg_color
         | 
| 100 | 
            +
                    self.cond_type = cond_type
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                    if self.num_views == 4:
         | 
| 103 | 
            +
                        self.view_types  = ['front', 'right', 'back', 'left']
         | 
| 104 | 
            +
                    elif self.num_views == 5:
         | 
| 105 | 
            +
                        self.view_types  = ['front', 'front_right', 'right', 'back', 'left']
         | 
| 106 | 
            +
                    elif self.num_views == 6:
         | 
| 107 | 
            +
                        self.view_types  = ['front', 'front_right', 'right', 'back', 'left', 'front_left']
         | 
| 108 | 
            +
                    
         | 
| 109 | 
            +
                    self.fix_cam_pose_dir = "./mvdiffusion/data/fixed_poses/nine_views"
         | 
| 110 | 
            +
                    
         | 
| 111 | 
            +
                    self.fix_cam_poses = self.load_fixed_poses()  # world2cam matrix
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                    if filepaths is None:
         | 
| 114 | 
            +
                        # Get a list of all files in the directory
         | 
| 115 | 
            +
                        file_list = os.listdir(self.root_dir)
         | 
| 116 | 
            +
                    else:
         | 
| 117 | 
            +
                        file_list = filepaths
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                    if self.cond_type == None:
         | 
| 120 | 
            +
                        # Filter the files that end with .png or .jpg
         | 
| 121 | 
            +
                        self.file_list = [file for file in file_list if file.endswith(('.png', '.jpg'))]
         | 
| 122 | 
            +
                        self.cond_dirs = None
         | 
| 123 | 
            +
                    else:
         | 
| 124 | 
            +
                        self.file_list = []
         | 
| 125 | 
            +
                        self.cond_dirs = []
         | 
| 126 | 
            +
                        for scene in file_list:
         | 
| 127 | 
            +
                            self.file_list.append(os.path.join(scene, f"{scene}.png"))
         | 
| 128 | 
            +
                            if self.cond_type == 'normals':
         | 
| 129 | 
            +
                                self.cond_dirs.append(os.path.join(self.root_dir, scene, 'outs'))
         | 
| 130 | 
            +
                            else:
         | 
| 131 | 
            +
                                self.cond_dirs.append(os.path.join(self.root_dir, scene))
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                    # load all images
         | 
| 134 | 
            +
                    self.all_images = []
         | 
| 135 | 
            +
                    self.all_alphas = []
         | 
| 136 | 
            +
                    bg_color = self.get_bg_color()
         | 
| 137 | 
            +
                    for file in self.file_list:
         | 
| 138 | 
            +
                        image, alpha = self.load_image(os.path.join(self.root_dir, file), bg_color, return_type='pt')
         | 
| 139 | 
            +
                        self.all_images.append(image)
         | 
| 140 | 
            +
                        self.all_alphas.append(alpha)
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                    self.all_images = self.all_images[:num_validation_samples]
         | 
| 143 | 
            +
                    self.all_alphas = self.all_alphas[:num_validation_samples]
         | 
| 144 | 
            +
             | 
| 145 | 
            +
             | 
| 146 | 
            +
                def __len__(self):
         | 
| 147 | 
            +
                    return len(self.all_images)
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                def load_fixed_poses(self):
         | 
| 150 | 
            +
                    poses = {}
         | 
| 151 | 
            +
                    for face in self.view_types:
         | 
| 152 | 
            +
                        RT = np.loadtxt(os.path.join(self.fix_cam_pose_dir,'%03d_%s_RT.txt'%(0, face)))
         | 
| 153 | 
            +
                        poses[face] = RT
         | 
| 154 | 
            +
             | 
| 155 | 
            +
                    return poses
         | 
| 156 | 
            +
                    
         | 
| 157 | 
            +
                def cartesian_to_spherical(self, xyz):
         | 
| 158 | 
            +
                    ptsnew = np.hstack((xyz, np.zeros(xyz.shape)))
         | 
| 159 | 
            +
                    xy = xyz[:,0]**2 + xyz[:,1]**2
         | 
| 160 | 
            +
                    z = np.sqrt(xy + xyz[:,2]**2)
         | 
| 161 | 
            +
                    theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down
         | 
| 162 | 
            +
                    #ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up
         | 
| 163 | 
            +
                    azimuth = np.arctan2(xyz[:,1], xyz[:,0])
         | 
| 164 | 
            +
                    return np.array([theta, azimuth, z])
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                def get_T(self, target_RT, cond_RT):
         | 
| 167 | 
            +
                    R, T = target_RT[:3, :3], target_RT[:, -1]
         | 
| 168 | 
            +
                    T_target = -R.T @ T # change to cam2world
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                    R, T = cond_RT[:3, :3], cond_RT[:, -1]
         | 
| 171 | 
            +
                    T_cond = -R.T @ T
         | 
| 172 | 
            +
             | 
| 173 | 
            +
                    theta_cond, azimuth_cond, z_cond = self.cartesian_to_spherical(T_cond[None, :])
         | 
| 174 | 
            +
                    theta_target, azimuth_target, z_target = self.cartesian_to_spherical(T_target[None, :])
         | 
| 175 | 
            +
                    
         | 
| 176 | 
            +
                    d_theta = theta_target - theta_cond
         | 
| 177 | 
            +
                    d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi)
         | 
| 178 | 
            +
                    d_z = z_target - z_cond
         | 
| 179 | 
            +
                    
         | 
| 180 | 
            +
                    # d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()])
         | 
| 181 | 
            +
                    return d_theta, d_azimuth
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                def get_bg_color(self):
         | 
| 184 | 
            +
                    if self.bg_color == 'white':
         | 
| 185 | 
            +
                        bg_color = np.array([1., 1., 1.], dtype=np.float32)
         | 
| 186 | 
            +
                    elif self.bg_color == 'black':
         | 
| 187 | 
            +
                        bg_color = np.array([0., 0., 0.], dtype=np.float32)
         | 
| 188 | 
            +
                    elif self.bg_color == 'gray':
         | 
| 189 | 
            +
                        bg_color = np.array([0.5, 0.5, 0.5], dtype=np.float32)
         | 
| 190 | 
            +
                    elif self.bg_color == 'random':
         | 
| 191 | 
            +
                        bg_color = np.random.rand(3)
         | 
| 192 | 
            +
                    elif isinstance(self.bg_color, float):
         | 
| 193 | 
            +
                        bg_color = np.array([self.bg_color] * 3, dtype=np.float32)
         | 
| 194 | 
            +
                    else:
         | 
| 195 | 
            +
                        raise NotImplementedError
         | 
| 196 | 
            +
                    return bg_color
         | 
| 197 | 
            +
                
         | 
| 198 | 
            +
                
         | 
| 199 | 
            +
                def load_image(self, img_path, bg_color, return_type='np'):
         | 
| 200 | 
            +
                    # pil always returns uint8
         | 
| 201 | 
            +
                    image_input = Image.open(img_path)
         | 
| 202 | 
            +
                    image_size = self.img_wh[0]
         | 
| 203 | 
            +
             | 
| 204 | 
            +
                    if self.crop_size!=-1:
         | 
| 205 | 
            +
                        alpha_np = np.asarray(image_input)[:, :, 3]
         | 
| 206 | 
            +
                        coords = np.stack(np.nonzero(alpha_np), 1)[:, (1, 0)]
         | 
| 207 | 
            +
                        min_x, min_y = np.min(coords, 0)
         | 
| 208 | 
            +
                        max_x, max_y = np.max(coords, 0)
         | 
| 209 | 
            +
                        ref_img_ = image_input.crop((min_x, min_y, max_x, max_y))
         | 
| 210 | 
            +
                        h, w = ref_img_.height, ref_img_.width
         | 
| 211 | 
            +
                        scale = self.crop_size / max(h, w)
         | 
| 212 | 
            +
                        h_, w_ = int(scale * h), int(scale * w)
         | 
| 213 | 
            +
                        ref_img_ = ref_img_.resize((w_, h_), resample=Image.BICUBIC)
         | 
| 214 | 
            +
                        image_input = add_margin(ref_img_, size=image_size)
         | 
| 215 | 
            +
                    else:
         | 
| 216 | 
            +
                        image_input = add_margin(image_input, size=max(image_input.height, image_input.width))
         | 
| 217 | 
            +
                        image_input = image_input.resize((image_size, image_size), resample=Image.BICUBIC)
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                    # img = scale_and_place_object(img, self.scale_ratio)
         | 
| 220 | 
            +
                    img = np.array(image_input)
         | 
| 221 | 
            +
                    img = img.astype(np.float32) / 255. # [0, 1]
         | 
| 222 | 
            +
                    assert img.shape[-1] == 4 # RGBA
         | 
| 223 | 
            +
             | 
| 224 | 
            +
                    alpha = img[...,3:4]
         | 
| 225 | 
            +
                    img = img[...,:3] * alpha + bg_color * (1 - alpha)
         | 
| 226 | 
            +
             | 
| 227 | 
            +
                    if return_type == "np":
         | 
| 228 | 
            +
                        pass
         | 
| 229 | 
            +
                    elif return_type == "pt":
         | 
| 230 | 
            +
                        img = torch.from_numpy(img)
         | 
| 231 | 
            +
                        alpha = torch.from_numpy(alpha)
         | 
| 232 | 
            +
                    else:
         | 
| 233 | 
            +
                        raise NotImplementedError
         | 
| 234 | 
            +
                    
         | 
| 235 | 
            +
                    return img, alpha
         | 
| 236 | 
            +
                
         | 
| 237 | 
            +
                def load_conds(self, directory):
         | 
| 238 | 
            +
                    assert self.crop_size == -1
         | 
| 239 | 
            +
                    image_size = self.img_wh[0]
         | 
| 240 | 
            +
                    conds = []
         | 
| 241 | 
            +
                    for view in self.view_types:
         | 
| 242 | 
            +
                        cond_file = f"{self.cond_type}_000_{view}.png"
         | 
| 243 | 
            +
                        image_input = Image.open(os.path.join(directory, cond_file))
         | 
| 244 | 
            +
                        image_input = image_input.resize((image_size, image_size), resample=Image.BICUBIC)
         | 
| 245 | 
            +
                        image_input = np.array(image_input)[:, :, :3] / 255.
         | 
| 246 | 
            +
                        conds.append(image_input)
         | 
| 247 | 
            +
             | 
| 248 | 
            +
                    conds = np.stack(conds, axis=0)
         | 
| 249 | 
            +
                    conds = torch.from_numpy(conds).permute(0, 3, 1, 2)  # B, 3, H, W
         | 
| 250 | 
            +
                    return conds
         | 
| 251 | 
            +
             | 
| 252 | 
            +
                def __len__(self):
         | 
| 253 | 
            +
                    return len(self.all_images)
         | 
| 254 | 
            +
             | 
| 255 | 
            +
                def __getitem__(self, index):
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                    image = self.all_images[index%len(self.all_images)]
         | 
| 258 | 
            +
                    alpha = self.all_alphas[index%len(self.all_images)]
         | 
| 259 | 
            +
                    filename = self.file_list[index%len(self.all_images)].replace(".png", "")
         | 
| 260 | 
            +
             | 
| 261 | 
            +
                    if self.cond_type != None:
         | 
| 262 | 
            +
                        conds = self.load_conds(self.cond_dirs[index%len(self.all_images)])
         | 
| 263 | 
            +
                    else:
         | 
| 264 | 
            +
                        conds = None
         | 
| 265 | 
            +
             | 
| 266 | 
            +
                    cond_w2c = self.fix_cam_poses['front']
         | 
| 267 | 
            +
             | 
| 268 | 
            +
                    tgt_w2cs = [self.fix_cam_poses[view] for view in self.view_types]
         | 
| 269 | 
            +
             | 
| 270 | 
            +
                    elevations = []
         | 
| 271 | 
            +
                    azimuths = []
         | 
| 272 | 
            +
             | 
| 273 | 
            +
                    img_tensors_in = [
         | 
| 274 | 
            +
                        image.permute(2, 0, 1)
         | 
| 275 | 
            +
                    ] * self.num_views
         | 
| 276 | 
            +
             | 
| 277 | 
            +
                    alpha_tensors_in = [
         | 
| 278 | 
            +
                        alpha.permute(2, 0, 1)
         | 
| 279 | 
            +
                    ] * self.num_views
         | 
| 280 | 
            +
             | 
| 281 | 
            +
                    for view, tgt_w2c in zip(self.view_types, tgt_w2cs):
         | 
| 282 | 
            +
                        # evelations, azimuths
         | 
| 283 | 
            +
                        elevation, azimuth = self.get_T(tgt_w2c, cond_w2c)
         | 
| 284 | 
            +
                        elevations.append(elevation)
         | 
| 285 | 
            +
                        azimuths.append(azimuth)
         | 
| 286 | 
            +
             | 
| 287 | 
            +
                    img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W)
         | 
| 288 | 
            +
                    alpha_tensors_in = torch.stack(alpha_tensors_in, dim=0).float() # (Nv, 3, H, W)
         | 
| 289 | 
            +
             | 
| 290 | 
            +
                    elevations = torch.as_tensor(elevations).float().squeeze(1)
         | 
| 291 | 
            +
                    azimuths = torch.as_tensor(azimuths).float().squeeze(1)
         | 
| 292 | 
            +
                    elevations_cond = torch.as_tensor([0] * self.num_views).float()
         | 
| 293 | 
            +
             | 
| 294 | 
            +
                    normal_class = torch.tensor([1, 0]).float()
         | 
| 295 | 
            +
                    normal_task_embeddings = torch.stack([normal_class]*self.num_views, dim=0)  # (Nv, 2)
         | 
| 296 | 
            +
                    color_class = torch.tensor([0, 1]).float()
         | 
| 297 | 
            +
                    color_task_embeddings = torch.stack([color_class]*self.num_views, dim=0)  # (Nv, 2)
         | 
| 298 | 
            +
             | 
| 299 | 
            +
                    camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1) # (Nv, 3)
         | 
| 300 | 
            +
             | 
| 301 | 
            +
                    out =  {
         | 
| 302 | 
            +
                        'elevations_cond': elevations_cond,
         | 
| 303 | 
            +
                        'elevations_cond_deg': torch.rad2deg(elevations_cond),
         | 
| 304 | 
            +
                        'elevations': elevations,
         | 
| 305 | 
            +
                        'azimuths': azimuths,
         | 
| 306 | 
            +
                        'elevations_deg': torch.rad2deg(elevations),
         | 
| 307 | 
            +
                        'azimuths_deg': torch.rad2deg(azimuths),
         | 
| 308 | 
            +
                        'imgs_in': img_tensors_in,
         | 
| 309 | 
            +
                        'alphas': alpha_tensors_in,
         | 
| 310 | 
            +
                        'camera_embeddings': camera_embeddings,
         | 
| 311 | 
            +
                        'normal_task_embeddings': normal_task_embeddings,
         | 
| 312 | 
            +
                        'color_task_embeddings': color_task_embeddings,
         | 
| 313 | 
            +
                        'filename': filename,
         | 
| 314 | 
            +
                    }
         | 
| 315 | 
            +
             | 
| 316 | 
            +
                    if conds is not None:
         | 
| 317 | 
            +
                        out['conds'] = conds
         | 
| 318 | 
            +
             | 
| 319 | 
            +
                    return out
         | 
| 320 | 
            +
             | 
| 321 | 
            +
                    
         | 
    	
        mvdiffusion/models/transformer_mv2d.py
    ADDED
    
    | @@ -0,0 +1,1005 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2023 The HuggingFace Team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
            from dataclasses import dataclass
         | 
| 15 | 
            +
            from typing import Any, Dict, Optional
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            import torch
         | 
| 18 | 
            +
            import torch.nn.functional as F
         | 
| 19 | 
            +
            from torch import nn
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            from diffusers.configuration_utils import ConfigMixin, register_to_config
         | 
| 22 | 
            +
            from diffusers.models.embeddings import ImagePositionalEmbeddings
         | 
| 23 | 
            +
            from diffusers.utils import BaseOutput, deprecate, maybe_allow_in_graph
         | 
| 24 | 
            +
            from diffusers.models.attention import FeedForward, AdaLayerNorm, AdaLayerNormZero, Attention
         | 
| 25 | 
            +
            from diffusers.models.embeddings import PatchEmbed
         | 
| 26 | 
            +
            from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
         | 
| 27 | 
            +
            from diffusers.models.modeling_utils import ModelMixin
         | 
| 28 | 
            +
            from diffusers.utils.import_utils import is_xformers_available
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            from einops import rearrange
         | 
| 31 | 
            +
            import pdb
         | 
| 32 | 
            +
            import random
         | 
| 33 | 
            +
             | 
| 34 | 
            +
             | 
| 35 | 
            +
            if is_xformers_available():
         | 
| 36 | 
            +
                import xformers
         | 
| 37 | 
            +
                import xformers.ops
         | 
| 38 | 
            +
            else:
         | 
| 39 | 
            +
                xformers = None
         | 
| 40 | 
            +
             | 
| 41 | 
            +
             | 
| 42 | 
            +
            @dataclass
         | 
| 43 | 
            +
            class TransformerMV2DModelOutput(BaseOutput):
         | 
| 44 | 
            +
                """
         | 
| 45 | 
            +
                The output of [`Transformer2DModel`].
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                Args:
         | 
| 48 | 
            +
                    sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
         | 
| 49 | 
            +
                        The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
         | 
| 50 | 
            +
                        distributions for the unnoised latent pixels.
         | 
| 51 | 
            +
                """
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                sample: torch.FloatTensor
         | 
| 54 | 
            +
             | 
| 55 | 
            +
             | 
| 56 | 
            +
            class TransformerMV2DModel(ModelMixin, ConfigMixin):
         | 
| 57 | 
            +
                """
         | 
| 58 | 
            +
                A 2D Transformer model for image-like data.
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                Parameters:
         | 
| 61 | 
            +
                    num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
         | 
| 62 | 
            +
                    attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
         | 
| 63 | 
            +
                    in_channels (`int`, *optional*):
         | 
| 64 | 
            +
                        The number of channels in the input and output (specify if the input is **continuous**).
         | 
| 65 | 
            +
                    num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
         | 
| 66 | 
            +
                    dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
         | 
| 67 | 
            +
                    cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
         | 
| 68 | 
            +
                    sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
         | 
| 69 | 
            +
                        This is fixed during training since it is used to learn a number of position embeddings.
         | 
| 70 | 
            +
                    num_vector_embeds (`int`, *optional*):
         | 
| 71 | 
            +
                        The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
         | 
| 72 | 
            +
                        Includes the class for the masked latent pixel.
         | 
| 73 | 
            +
                    activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
         | 
| 74 | 
            +
                    num_embeds_ada_norm ( `int`, *optional*):
         | 
| 75 | 
            +
                        The number of diffusion steps used during training. Pass if at least one of the norm_layers is
         | 
| 76 | 
            +
                        `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
         | 
| 77 | 
            +
                        added to the hidden states.
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                        During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
         | 
| 80 | 
            +
                    attention_bias (`bool`, *optional*):
         | 
| 81 | 
            +
                        Configure if the `TransformerBlocks` attention should contain a bias parameter.
         | 
| 82 | 
            +
                """
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                @register_to_config
         | 
| 85 | 
            +
                def __init__(
         | 
| 86 | 
            +
                    self,
         | 
| 87 | 
            +
                    num_attention_heads: int = 16,
         | 
| 88 | 
            +
                    attention_head_dim: int = 88,
         | 
| 89 | 
            +
                    in_channels: Optional[int] = None,
         | 
| 90 | 
            +
                    out_channels: Optional[int] = None,
         | 
| 91 | 
            +
                    num_layers: int = 1,
         | 
| 92 | 
            +
                    dropout: float = 0.0,
         | 
| 93 | 
            +
                    norm_num_groups: int = 32,
         | 
| 94 | 
            +
                    cross_attention_dim: Optional[int] = None,
         | 
| 95 | 
            +
                    attention_bias: bool = False,
         | 
| 96 | 
            +
                    sample_size: Optional[int] = None,
         | 
| 97 | 
            +
                    num_vector_embeds: Optional[int] = None,
         | 
| 98 | 
            +
                    patch_size: Optional[int] = None,
         | 
| 99 | 
            +
                    activation_fn: str = "geglu",
         | 
| 100 | 
            +
                    num_embeds_ada_norm: Optional[int] = None,
         | 
| 101 | 
            +
                    use_linear_projection: bool = False,
         | 
| 102 | 
            +
                    only_cross_attention: bool = False,
         | 
| 103 | 
            +
                    upcast_attention: bool = False,
         | 
| 104 | 
            +
                    norm_type: str = "layer_norm",
         | 
| 105 | 
            +
                    norm_elementwise_affine: bool = True,
         | 
| 106 | 
            +
                    num_views: int = 1,
         | 
| 107 | 
            +
                    joint_attention: bool=False,
         | 
| 108 | 
            +
                    joint_attention_twice: bool=False,
         | 
| 109 | 
            +
                    multiview_attention: bool=True,
         | 
| 110 | 
            +
                    cross_domain_attention: bool=False
         | 
| 111 | 
            +
                ):
         | 
| 112 | 
            +
                    super().__init__()
         | 
| 113 | 
            +
                    self.use_linear_projection = use_linear_projection
         | 
| 114 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 115 | 
            +
                    self.attention_head_dim = attention_head_dim
         | 
| 116 | 
            +
                    inner_dim = num_attention_heads * attention_head_dim
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                    # 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
         | 
| 119 | 
            +
                    # Define whether input is continuous or discrete depending on configuration
         | 
| 120 | 
            +
                    self.is_input_continuous = (in_channels is not None) and (patch_size is None)
         | 
| 121 | 
            +
                    self.is_input_vectorized = num_vector_embeds is not None
         | 
| 122 | 
            +
                    self.is_input_patches = in_channels is not None and patch_size is not None
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                    if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
         | 
| 125 | 
            +
                        deprecation_message = (
         | 
| 126 | 
            +
                            f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
         | 
| 127 | 
            +
                            " incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
         | 
| 128 | 
            +
                            " Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
         | 
| 129 | 
            +
                            " results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
         | 
| 130 | 
            +
                            " would be very nice if you could open a Pull request for the `transformer/config.json` file"
         | 
| 131 | 
            +
                        )
         | 
| 132 | 
            +
                        deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
         | 
| 133 | 
            +
                        norm_type = "ada_norm"
         | 
| 134 | 
            +
             | 
| 135 | 
            +
                    if self.is_input_continuous and self.is_input_vectorized:
         | 
| 136 | 
            +
                        raise ValueError(
         | 
| 137 | 
            +
                            f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
         | 
| 138 | 
            +
                            " sure that either `in_channels` or `num_vector_embeds` is None."
         | 
| 139 | 
            +
                        )
         | 
| 140 | 
            +
                    elif self.is_input_vectorized and self.is_input_patches:
         | 
| 141 | 
            +
                        raise ValueError(
         | 
| 142 | 
            +
                            f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
         | 
| 143 | 
            +
                            " sure that either `num_vector_embeds` or `num_patches` is None."
         | 
| 144 | 
            +
                        )
         | 
| 145 | 
            +
                    elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
         | 
| 146 | 
            +
                        raise ValueError(
         | 
| 147 | 
            +
                            f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
         | 
| 148 | 
            +
                            f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
         | 
| 149 | 
            +
                        )
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                    # 2. Define input layers
         | 
| 152 | 
            +
                    if self.is_input_continuous:
         | 
| 153 | 
            +
                        self.in_channels = in_channels
         | 
| 154 | 
            +
             | 
| 155 | 
            +
                        self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
         | 
| 156 | 
            +
                        if use_linear_projection:
         | 
| 157 | 
            +
                            self.proj_in = LoRACompatibleLinear(in_channels, inner_dim)
         | 
| 158 | 
            +
                        else:
         | 
| 159 | 
            +
                            self.proj_in = LoRACompatibleConv(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
         | 
| 160 | 
            +
                    elif self.is_input_vectorized:
         | 
| 161 | 
            +
                        assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
         | 
| 162 | 
            +
                        assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
         | 
| 163 | 
            +
             | 
| 164 | 
            +
                        self.height = sample_size
         | 
| 165 | 
            +
                        self.width = sample_size
         | 
| 166 | 
            +
                        self.num_vector_embeds = num_vector_embeds
         | 
| 167 | 
            +
                        self.num_latent_pixels = self.height * self.width
         | 
| 168 | 
            +
             | 
| 169 | 
            +
                        self.latent_image_embedding = ImagePositionalEmbeddings(
         | 
| 170 | 
            +
                            num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
         | 
| 171 | 
            +
                        )
         | 
| 172 | 
            +
                    elif self.is_input_patches:
         | 
| 173 | 
            +
                        assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
         | 
| 174 | 
            +
             | 
| 175 | 
            +
                        self.height = sample_size
         | 
| 176 | 
            +
                        self.width = sample_size
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                        self.patch_size = patch_size
         | 
| 179 | 
            +
                        self.pos_embed = PatchEmbed(
         | 
| 180 | 
            +
                            height=sample_size,
         | 
| 181 | 
            +
                            width=sample_size,
         | 
| 182 | 
            +
                            patch_size=patch_size,
         | 
| 183 | 
            +
                            in_channels=in_channels,
         | 
| 184 | 
            +
                            embed_dim=inner_dim,
         | 
| 185 | 
            +
                        )
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                    # 3. Define transformers blocks
         | 
| 188 | 
            +
                    self.transformer_blocks = nn.ModuleList(
         | 
| 189 | 
            +
                        [
         | 
| 190 | 
            +
                            BasicMVTransformerBlock(
         | 
| 191 | 
            +
                                inner_dim,
         | 
| 192 | 
            +
                                num_attention_heads,
         | 
| 193 | 
            +
                                attention_head_dim,
         | 
| 194 | 
            +
                                dropout=dropout,
         | 
| 195 | 
            +
                                cross_attention_dim=cross_attention_dim,
         | 
| 196 | 
            +
                                activation_fn=activation_fn,
         | 
| 197 | 
            +
                                num_embeds_ada_norm=num_embeds_ada_norm,
         | 
| 198 | 
            +
                                attention_bias=attention_bias,
         | 
| 199 | 
            +
                                only_cross_attention=only_cross_attention,
         | 
| 200 | 
            +
                                upcast_attention=upcast_attention,
         | 
| 201 | 
            +
                                norm_type=norm_type,
         | 
| 202 | 
            +
                                norm_elementwise_affine=norm_elementwise_affine,
         | 
| 203 | 
            +
                                num_views=num_views,
         | 
| 204 | 
            +
                                joint_attention=joint_attention,
         | 
| 205 | 
            +
                                joint_attention_twice=joint_attention_twice,
         | 
| 206 | 
            +
                                multiview_attention=multiview_attention,
         | 
| 207 | 
            +
                                cross_domain_attention=cross_domain_attention
         | 
| 208 | 
            +
                            )
         | 
| 209 | 
            +
                            for d in range(num_layers)
         | 
| 210 | 
            +
                        ]
         | 
| 211 | 
            +
                    )
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                    # 4. Define output layers
         | 
| 214 | 
            +
                    self.out_channels = in_channels if out_channels is None else out_channels
         | 
| 215 | 
            +
                    if self.is_input_continuous:
         | 
| 216 | 
            +
                        # TODO: should use out_channels for continuous projections
         | 
| 217 | 
            +
                        if use_linear_projection:
         | 
| 218 | 
            +
                            self.proj_out = LoRACompatibleLinear(inner_dim, in_channels)
         | 
| 219 | 
            +
                        else:
         | 
| 220 | 
            +
                            self.proj_out = LoRACompatibleConv(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
         | 
| 221 | 
            +
                    elif self.is_input_vectorized:
         | 
| 222 | 
            +
                        self.norm_out = nn.LayerNorm(inner_dim)
         | 
| 223 | 
            +
                        self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
         | 
| 224 | 
            +
                    elif self.is_input_patches:
         | 
| 225 | 
            +
                        self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
         | 
| 226 | 
            +
                        self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
         | 
| 227 | 
            +
                        self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
         | 
| 228 | 
            +
             | 
| 229 | 
            +
                def forward(
         | 
| 230 | 
            +
                    self,
         | 
| 231 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 232 | 
            +
                    encoder_hidden_states: Optional[torch.Tensor] = None,
         | 
| 233 | 
            +
                    timestep: Optional[torch.LongTensor] = None,
         | 
| 234 | 
            +
                    class_labels: Optional[torch.LongTensor] = None,
         | 
| 235 | 
            +
                    cross_attention_kwargs: Dict[str, Any] = None,
         | 
| 236 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 237 | 
            +
                    encoder_attention_mask: Optional[torch.Tensor] = None,
         | 
| 238 | 
            +
                    return_dict: bool = True,
         | 
| 239 | 
            +
                ):
         | 
| 240 | 
            +
                    """
         | 
| 241 | 
            +
                    The [`Transformer2DModel`] forward method.
         | 
| 242 | 
            +
             | 
| 243 | 
            +
                    Args:
         | 
| 244 | 
            +
                        hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
         | 
| 245 | 
            +
                            Input `hidden_states`.
         | 
| 246 | 
            +
                        encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
         | 
| 247 | 
            +
                            Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
         | 
| 248 | 
            +
                            self-attention.
         | 
| 249 | 
            +
                        timestep ( `torch.LongTensor`, *optional*):
         | 
| 250 | 
            +
                            Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
         | 
| 251 | 
            +
                        class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
         | 
| 252 | 
            +
                            Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
         | 
| 253 | 
            +
                            `AdaLayerZeroNorm`.
         | 
| 254 | 
            +
                        encoder_attention_mask ( `torch.Tensor`, *optional*):
         | 
| 255 | 
            +
                            Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                                * Mask `(batch, sequence_length)` True = keep, False = discard.
         | 
| 258 | 
            +
                                * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
         | 
| 259 | 
            +
             | 
| 260 | 
            +
                            If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
         | 
| 261 | 
            +
                            above. This bias will be added to the cross-attention scores.
         | 
| 262 | 
            +
                        return_dict (`bool`, *optional*, defaults to `True`):
         | 
| 263 | 
            +
                            Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
         | 
| 264 | 
            +
                            tuple.
         | 
| 265 | 
            +
             | 
| 266 | 
            +
                    Returns:
         | 
| 267 | 
            +
                        If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
         | 
| 268 | 
            +
                        `tuple` where the first element is the sample tensor.
         | 
| 269 | 
            +
                    """
         | 
| 270 | 
            +
                    # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
         | 
| 271 | 
            +
                    #   we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
         | 
| 272 | 
            +
                    #   we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
         | 
| 273 | 
            +
                    # expects mask of shape:
         | 
| 274 | 
            +
                    #   [batch, key_tokens]
         | 
| 275 | 
            +
                    # adds singleton query_tokens dimension:
         | 
| 276 | 
            +
                    #   [batch,                    1, key_tokens]
         | 
| 277 | 
            +
                    # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
         | 
| 278 | 
            +
                    #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
         | 
| 279 | 
            +
                    #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
         | 
| 280 | 
            +
                    if attention_mask is not None and attention_mask.ndim == 2:
         | 
| 281 | 
            +
                        # assume that mask is expressed as:
         | 
| 282 | 
            +
                        #   (1 = keep,      0 = discard)
         | 
| 283 | 
            +
                        # convert mask into a bias that can be added to attention scores:
         | 
| 284 | 
            +
                        #       (keep = +0,     discard = -10000.0)
         | 
| 285 | 
            +
                        attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
         | 
| 286 | 
            +
                        attention_mask = attention_mask.unsqueeze(1)
         | 
| 287 | 
            +
             | 
| 288 | 
            +
                    # convert encoder_attention_mask to a bias the same way we do for attention_mask
         | 
| 289 | 
            +
                    if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
         | 
| 290 | 
            +
                        encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
         | 
| 291 | 
            +
                        encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
         | 
| 292 | 
            +
             | 
| 293 | 
            +
                    # 1. Input
         | 
| 294 | 
            +
                    if self.is_input_continuous:
         | 
| 295 | 
            +
                        batch, _, height, width = hidden_states.shape
         | 
| 296 | 
            +
                        residual = hidden_states
         | 
| 297 | 
            +
             | 
| 298 | 
            +
                        hidden_states = self.norm(hidden_states)
         | 
| 299 | 
            +
                        if not self.use_linear_projection:
         | 
| 300 | 
            +
                            hidden_states = self.proj_in(hidden_states)
         | 
| 301 | 
            +
                            inner_dim = hidden_states.shape[1]
         | 
| 302 | 
            +
                            hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
         | 
| 303 | 
            +
                        else:
         | 
| 304 | 
            +
                            inner_dim = hidden_states.shape[1]
         | 
| 305 | 
            +
                            hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
         | 
| 306 | 
            +
                            hidden_states = self.proj_in(hidden_states)
         | 
| 307 | 
            +
                    elif self.is_input_vectorized:
         | 
| 308 | 
            +
                        hidden_states = self.latent_image_embedding(hidden_states)
         | 
| 309 | 
            +
                    elif self.is_input_patches:
         | 
| 310 | 
            +
                        hidden_states = self.pos_embed(hidden_states)
         | 
| 311 | 
            +
             | 
| 312 | 
            +
                    # 2. Blocks
         | 
| 313 | 
            +
                    for block in self.transformer_blocks:
         | 
| 314 | 
            +
                        hidden_states = block(
         | 
| 315 | 
            +
                            hidden_states,
         | 
| 316 | 
            +
                            attention_mask=attention_mask,
         | 
| 317 | 
            +
                            encoder_hidden_states=encoder_hidden_states,
         | 
| 318 | 
            +
                            encoder_attention_mask=encoder_attention_mask,
         | 
| 319 | 
            +
                            timestep=timestep,
         | 
| 320 | 
            +
                            cross_attention_kwargs=cross_attention_kwargs,
         | 
| 321 | 
            +
                            class_labels=class_labels,
         | 
| 322 | 
            +
                        )
         | 
| 323 | 
            +
             | 
| 324 | 
            +
                    # 3. Output
         | 
| 325 | 
            +
                    if self.is_input_continuous:
         | 
| 326 | 
            +
                        if not self.use_linear_projection:
         | 
| 327 | 
            +
                            hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
         | 
| 328 | 
            +
                            hidden_states = self.proj_out(hidden_states)
         | 
| 329 | 
            +
                        else:
         | 
| 330 | 
            +
                            hidden_states = self.proj_out(hidden_states)
         | 
| 331 | 
            +
                            hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
         | 
| 332 | 
            +
             | 
| 333 | 
            +
                        output = hidden_states + residual
         | 
| 334 | 
            +
                    elif self.is_input_vectorized:
         | 
| 335 | 
            +
                        hidden_states = self.norm_out(hidden_states)
         | 
| 336 | 
            +
                        logits = self.out(hidden_states)
         | 
| 337 | 
            +
                        # (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
         | 
| 338 | 
            +
                        logits = logits.permute(0, 2, 1)
         | 
| 339 | 
            +
             | 
| 340 | 
            +
                        # log(p(x_0))
         | 
| 341 | 
            +
                        output = F.log_softmax(logits.double(), dim=1).float()
         | 
| 342 | 
            +
                    elif self.is_input_patches:
         | 
| 343 | 
            +
                        # TODO: cleanup!
         | 
| 344 | 
            +
                        conditioning = self.transformer_blocks[0].norm1.emb(
         | 
| 345 | 
            +
                            timestep, class_labels, hidden_dtype=hidden_states.dtype
         | 
| 346 | 
            +
                        )
         | 
| 347 | 
            +
                        shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
         | 
| 348 | 
            +
                        hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
         | 
| 349 | 
            +
                        hidden_states = self.proj_out_2(hidden_states)
         | 
| 350 | 
            +
             | 
| 351 | 
            +
                        # unpatchify
         | 
| 352 | 
            +
                        height = width = int(hidden_states.shape[1] ** 0.5)
         | 
| 353 | 
            +
                        hidden_states = hidden_states.reshape(
         | 
| 354 | 
            +
                            shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
         | 
| 355 | 
            +
                        )
         | 
| 356 | 
            +
                        hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
         | 
| 357 | 
            +
                        output = hidden_states.reshape(
         | 
| 358 | 
            +
                            shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
         | 
| 359 | 
            +
                        )
         | 
| 360 | 
            +
             | 
| 361 | 
            +
                    if not return_dict:
         | 
| 362 | 
            +
                        return (output,)
         | 
| 363 | 
            +
             | 
| 364 | 
            +
                    return TransformerMV2DModelOutput(sample=output)
         | 
| 365 | 
            +
             | 
| 366 | 
            +
             | 
| 367 | 
            +
            @maybe_allow_in_graph
         | 
| 368 | 
            +
            class BasicMVTransformerBlock(nn.Module):
         | 
| 369 | 
            +
                r"""
         | 
| 370 | 
            +
                A basic Transformer block.
         | 
| 371 | 
            +
             | 
| 372 | 
            +
                Parameters:
         | 
| 373 | 
            +
                    dim (`int`): The number of channels in the input and output.
         | 
| 374 | 
            +
                    num_attention_heads (`int`): The number of heads to use for multi-head attention.
         | 
| 375 | 
            +
                    attention_head_dim (`int`): The number of channels in each head.
         | 
| 376 | 
            +
                    dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
         | 
| 377 | 
            +
                    cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
         | 
| 378 | 
            +
                    only_cross_attention (`bool`, *optional*):
         | 
| 379 | 
            +
                        Whether to use only cross-attention layers. In this case two cross attention layers are used.
         | 
| 380 | 
            +
                    double_self_attention (`bool`, *optional*):
         | 
| 381 | 
            +
                        Whether to use two self-attention layers. In this case no cross attention layers are used.
         | 
| 382 | 
            +
                    activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
         | 
| 383 | 
            +
                    num_embeds_ada_norm (:
         | 
| 384 | 
            +
                        obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
         | 
| 385 | 
            +
                    attention_bias (:
         | 
| 386 | 
            +
                        obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
         | 
| 387 | 
            +
                """
         | 
| 388 | 
            +
             | 
| 389 | 
            +
                def __init__(
         | 
| 390 | 
            +
                    self,
         | 
| 391 | 
            +
                    dim: int,
         | 
| 392 | 
            +
                    num_attention_heads: int,
         | 
| 393 | 
            +
                    attention_head_dim: int,
         | 
| 394 | 
            +
                    dropout=0.0,
         | 
| 395 | 
            +
                    cross_attention_dim: Optional[int] = None,
         | 
| 396 | 
            +
                    activation_fn: str = "geglu",
         | 
| 397 | 
            +
                    num_embeds_ada_norm: Optional[int] = None,
         | 
| 398 | 
            +
                    attention_bias: bool = False,
         | 
| 399 | 
            +
                    only_cross_attention: bool = False,
         | 
| 400 | 
            +
                    double_self_attention: bool = False,
         | 
| 401 | 
            +
                    upcast_attention: bool = False,
         | 
| 402 | 
            +
                    norm_elementwise_affine: bool = True,
         | 
| 403 | 
            +
                    norm_type: str = "layer_norm",
         | 
| 404 | 
            +
                    final_dropout: bool = False,
         | 
| 405 | 
            +
                    num_views: int = 1,
         | 
| 406 | 
            +
                    joint_attention: bool = False,
         | 
| 407 | 
            +
                    joint_attention_twice: bool = False,
         | 
| 408 | 
            +
                    multiview_attention: bool = True,
         | 
| 409 | 
            +
                    cross_domain_attention: bool = False
         | 
| 410 | 
            +
                ):
         | 
| 411 | 
            +
                    super().__init__()
         | 
| 412 | 
            +
                    self.only_cross_attention = only_cross_attention
         | 
| 413 | 
            +
             | 
| 414 | 
            +
                    self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
         | 
| 415 | 
            +
                    self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
         | 
| 416 | 
            +
             | 
| 417 | 
            +
                    if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
         | 
| 418 | 
            +
                        raise ValueError(
         | 
| 419 | 
            +
                            f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
         | 
| 420 | 
            +
                            f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
         | 
| 421 | 
            +
                        )
         | 
| 422 | 
            +
             | 
| 423 | 
            +
                    # Define 3 blocks. Each block has its own normalization layer.
         | 
| 424 | 
            +
                    # 1. Self-Attn
         | 
| 425 | 
            +
                    if self.use_ada_layer_norm:
         | 
| 426 | 
            +
                        self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
         | 
| 427 | 
            +
                    elif self.use_ada_layer_norm_zero:
         | 
| 428 | 
            +
                        self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
         | 
| 429 | 
            +
                    else:
         | 
| 430 | 
            +
                        self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
         | 
| 431 | 
            +
             | 
| 432 | 
            +
                    self.multiview_attention = multiview_attention
         | 
| 433 | 
            +
                    self.cross_domain_attention = cross_domain_attention
         | 
| 434 | 
            +
                    
         | 
| 435 | 
            +
                    self.attn1 = CustomAttention(
         | 
| 436 | 
            +
                        query_dim=dim,
         | 
| 437 | 
            +
                        heads=num_attention_heads,
         | 
| 438 | 
            +
                        dim_head=attention_head_dim,
         | 
| 439 | 
            +
                        dropout=dropout,
         | 
| 440 | 
            +
                        bias=attention_bias,
         | 
| 441 | 
            +
                        cross_attention_dim=cross_attention_dim if only_cross_attention else None,
         | 
| 442 | 
            +
                        upcast_attention=upcast_attention,
         | 
| 443 | 
            +
                        processor=MVAttnProcessor()
         | 
| 444 | 
            +
                    )
         | 
| 445 | 
            +
             | 
| 446 | 
            +
                    # 2. Cross-Attn
         | 
| 447 | 
            +
                    if cross_attention_dim is not None or double_self_attention:
         | 
| 448 | 
            +
                        # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
         | 
| 449 | 
            +
                        # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
         | 
| 450 | 
            +
                        # the second cross attention block.
         | 
| 451 | 
            +
                        self.norm2 = (
         | 
| 452 | 
            +
                            AdaLayerNorm(dim, num_embeds_ada_norm)
         | 
| 453 | 
            +
                            if self.use_ada_layer_norm
         | 
| 454 | 
            +
                            else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
         | 
| 455 | 
            +
                        )
         | 
| 456 | 
            +
                        self.attn2 = Attention(
         | 
| 457 | 
            +
                            query_dim=dim,
         | 
| 458 | 
            +
                            cross_attention_dim=cross_attention_dim if not double_self_attention else None,
         | 
| 459 | 
            +
                            heads=num_attention_heads,
         | 
| 460 | 
            +
                            dim_head=attention_head_dim,
         | 
| 461 | 
            +
                            dropout=dropout,
         | 
| 462 | 
            +
                            bias=attention_bias,
         | 
| 463 | 
            +
                            upcast_attention=upcast_attention,
         | 
| 464 | 
            +
                        )  # is self-attn if encoder_hidden_states is none
         | 
| 465 | 
            +
                    else:
         | 
| 466 | 
            +
                        self.norm2 = None
         | 
| 467 | 
            +
                        self.attn2 = None
         | 
| 468 | 
            +
             | 
| 469 | 
            +
                    # 3. Feed-forward
         | 
| 470 | 
            +
                    self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
         | 
| 471 | 
            +
                    self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
         | 
| 472 | 
            +
             | 
| 473 | 
            +
                    # let chunk size default to None
         | 
| 474 | 
            +
                    self._chunk_size = None
         | 
| 475 | 
            +
                    self._chunk_dim = 0
         | 
| 476 | 
            +
             | 
| 477 | 
            +
                    self.num_views = num_views
         | 
| 478 | 
            +
             | 
| 479 | 
            +
                    self.joint_attention = joint_attention
         | 
| 480 | 
            +
             | 
| 481 | 
            +
                    if self.joint_attention:
         | 
| 482 | 
            +
                        # Joint task -Attn
         | 
| 483 | 
            +
                        self.attn_joint = CustomJointAttention(
         | 
| 484 | 
            +
                            query_dim=dim,
         | 
| 485 | 
            +
                            heads=num_attention_heads,
         | 
| 486 | 
            +
                            dim_head=attention_head_dim,
         | 
| 487 | 
            +
                            dropout=dropout,
         | 
| 488 | 
            +
                            bias=attention_bias,
         | 
| 489 | 
            +
                            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
         | 
| 490 | 
            +
                            upcast_attention=upcast_attention,
         | 
| 491 | 
            +
                            processor=JointAttnProcessor()
         | 
| 492 | 
            +
                        )
         | 
| 493 | 
            +
                        nn.init.zeros_(self.attn_joint.to_out[0].weight.data)
         | 
| 494 | 
            +
                        self.norm_joint = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
         | 
| 495 | 
            +
             | 
| 496 | 
            +
             | 
| 497 | 
            +
                    self.joint_attention_twice = joint_attention_twice
         | 
| 498 | 
            +
             | 
| 499 | 
            +
                    if self.joint_attention_twice:
         | 
| 500 | 
            +
                        print("joint twice")
         | 
| 501 | 
            +
                        # Joint task -Attn
         | 
| 502 | 
            +
                        self.attn_joint_twice = CustomJointAttention(
         | 
| 503 | 
            +
                            query_dim=dim,
         | 
| 504 | 
            +
                            heads=num_attention_heads,
         | 
| 505 | 
            +
                            dim_head=attention_head_dim,
         | 
| 506 | 
            +
                            dropout=dropout,
         | 
| 507 | 
            +
                            bias=attention_bias,
         | 
| 508 | 
            +
                            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
         | 
| 509 | 
            +
                            upcast_attention=upcast_attention,
         | 
| 510 | 
            +
                            processor=JointAttnProcessor()
         | 
| 511 | 
            +
                        )
         | 
| 512 | 
            +
                        nn.init.zeros_(self.attn_joint_twice.to_out[0].weight.data)
         | 
| 513 | 
            +
                        self.norm_joint_twice = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
         | 
| 514 | 
            +
             | 
| 515 | 
            +
                def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
         | 
| 516 | 
            +
                    # Sets chunk feed-forward
         | 
| 517 | 
            +
                    self._chunk_size = chunk_size
         | 
| 518 | 
            +
                    self._chunk_dim = dim
         | 
| 519 | 
            +
             | 
| 520 | 
            +
                def forward(
         | 
| 521 | 
            +
                    self,
         | 
| 522 | 
            +
                    hidden_states: torch.FloatTensor,
         | 
| 523 | 
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 524 | 
            +
                    encoder_hidden_states: Optional[torch.FloatTensor] = None,
         | 
| 525 | 
            +
                    encoder_attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 526 | 
            +
                    timestep: Optional[torch.LongTensor] = None,
         | 
| 527 | 
            +
                    cross_attention_kwargs: Dict[str, Any] = None,
         | 
| 528 | 
            +
                    class_labels: Optional[torch.LongTensor] = None,
         | 
| 529 | 
            +
                ):
         | 
| 530 | 
            +
                    assert attention_mask is None # not supported yet
         | 
| 531 | 
            +
                    # Notice that normalization is always applied before the real computation in the following blocks.
         | 
| 532 | 
            +
                    # 1. Self-Attention
         | 
| 533 | 
            +
                    if self.use_ada_layer_norm:
         | 
| 534 | 
            +
                        norm_hidden_states = self.norm1(hidden_states, timestep)
         | 
| 535 | 
            +
                    elif self.use_ada_layer_norm_zero:
         | 
| 536 | 
            +
                        norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
         | 
| 537 | 
            +
                            hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
         | 
| 538 | 
            +
                        )
         | 
| 539 | 
            +
                    else:
         | 
| 540 | 
            +
                        norm_hidden_states = self.norm1(hidden_states)
         | 
| 541 | 
            +
             | 
| 542 | 
            +
                    cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
         | 
| 543 | 
            +
             | 
| 544 | 
            +
                    attn_output = self.attn1(
         | 
| 545 | 
            +
                        norm_hidden_states,
         | 
| 546 | 
            +
                        encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
         | 
| 547 | 
            +
                        attention_mask=attention_mask,
         | 
| 548 | 
            +
                        num_views=self.num_views,
         | 
| 549 | 
            +
                        multiview_attention=self.multiview_attention,
         | 
| 550 | 
            +
                        cross_domain_attention=self.cross_domain_attention,
         | 
| 551 | 
            +
                        **cross_attention_kwargs,
         | 
| 552 | 
            +
                    )
         | 
| 553 | 
            +
             | 
| 554 | 
            +
             | 
| 555 | 
            +
                    if self.use_ada_layer_norm_zero:
         | 
| 556 | 
            +
                        attn_output = gate_msa.unsqueeze(1) * attn_output
         | 
| 557 | 
            +
                    hidden_states = attn_output + hidden_states
         | 
| 558 | 
            +
             | 
| 559 | 
            +
                    # joint attention twice
         | 
| 560 | 
            +
                    if self.joint_attention_twice:
         | 
| 561 | 
            +
                        norm_hidden_states = (
         | 
| 562 | 
            +
                            self.norm_joint_twice(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_joint_twice(hidden_states)
         | 
| 563 | 
            +
                        )
         | 
| 564 | 
            +
                        hidden_states = self.attn_joint_twice(norm_hidden_states) + hidden_states
         | 
| 565 | 
            +
             | 
| 566 | 
            +
                    # 2. Cross-Attention
         | 
| 567 | 
            +
                    if self.attn2 is not None:
         | 
| 568 | 
            +
                        norm_hidden_states = (
         | 
| 569 | 
            +
                            self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
         | 
| 570 | 
            +
                        )
         | 
| 571 | 
            +
             | 
| 572 | 
            +
                        attn_output = self.attn2(
         | 
| 573 | 
            +
                            norm_hidden_states,
         | 
| 574 | 
            +
                            encoder_hidden_states=encoder_hidden_states,
         | 
| 575 | 
            +
                            attention_mask=encoder_attention_mask,
         | 
| 576 | 
            +
                            **cross_attention_kwargs,
         | 
| 577 | 
            +
                        )
         | 
| 578 | 
            +
                        hidden_states = attn_output + hidden_states
         | 
| 579 | 
            +
             | 
| 580 | 
            +
                    # 3. Feed-forward
         | 
| 581 | 
            +
                    norm_hidden_states = self.norm3(hidden_states)
         | 
| 582 | 
            +
             | 
| 583 | 
            +
                    if self.use_ada_layer_norm_zero:
         | 
| 584 | 
            +
                        norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
         | 
| 585 | 
            +
             | 
| 586 | 
            +
                    if self._chunk_size is not None:
         | 
| 587 | 
            +
                        # "feed_forward_chunk_size" can be used to save memory
         | 
| 588 | 
            +
                        if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
         | 
| 589 | 
            +
                            raise ValueError(
         | 
| 590 | 
            +
                                f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
         | 
| 591 | 
            +
                            )
         | 
| 592 | 
            +
             | 
| 593 | 
            +
                        num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
         | 
| 594 | 
            +
                        ff_output = torch.cat(
         | 
| 595 | 
            +
                            [self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)],
         | 
| 596 | 
            +
                            dim=self._chunk_dim,
         | 
| 597 | 
            +
                        )
         | 
| 598 | 
            +
                    else:
         | 
| 599 | 
            +
                        ff_output = self.ff(norm_hidden_states)
         | 
| 600 | 
            +
             | 
| 601 | 
            +
                    if self.use_ada_layer_norm_zero:
         | 
| 602 | 
            +
                        ff_output = gate_mlp.unsqueeze(1) * ff_output
         | 
| 603 | 
            +
             | 
| 604 | 
            +
                    hidden_states = ff_output + hidden_states
         | 
| 605 | 
            +
             | 
| 606 | 
            +
                    if self.joint_attention:
         | 
| 607 | 
            +
                        norm_hidden_states = (
         | 
| 608 | 
            +
                            self.norm_joint(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_joint(hidden_states)
         | 
| 609 | 
            +
                        )
         | 
| 610 | 
            +
                        hidden_states = self.attn_joint(norm_hidden_states) + hidden_states
         | 
| 611 | 
            +
             | 
| 612 | 
            +
                    return hidden_states
         | 
| 613 | 
            +
                
         | 
| 614 | 
            +
             | 
| 615 | 
            +
            class CustomAttention(Attention):
         | 
| 616 | 
            +
                def set_use_memory_efficient_attention_xformers(
         | 
| 617 | 
            +
                    self, use_memory_efficient_attention_xformers: bool, *args, **kwargs
         | 
| 618 | 
            +
                ):
         | 
| 619 | 
            +
                    processor = XFormersMVAttnProcessor()
         | 
| 620 | 
            +
                    self.set_processor(processor)
         | 
| 621 | 
            +
                    # print("using xformers attention processor")
         | 
| 622 | 
            +
             | 
| 623 | 
            +
             | 
| 624 | 
            +
            class CustomJointAttention(Attention):
         | 
| 625 | 
            +
                def set_use_memory_efficient_attention_xformers(
         | 
| 626 | 
            +
                    self, use_memory_efficient_attention_xformers: bool, *args, **kwargs
         | 
| 627 | 
            +
                ):
         | 
| 628 | 
            +
                    processor = XFormersJointAttnProcessor()
         | 
| 629 | 
            +
                    self.set_processor(processor)
         | 
| 630 | 
            +
                    # print("using xformers attention processor")
         | 
| 631 | 
            +
             | 
| 632 | 
            +
            class MVAttnProcessor:
         | 
| 633 | 
            +
                r"""
         | 
| 634 | 
            +
                Default processor for performing attention-related computations.
         | 
| 635 | 
            +
                """
         | 
| 636 | 
            +
             | 
| 637 | 
            +
                def __call__(
         | 
| 638 | 
            +
                    self,
         | 
| 639 | 
            +
                    attn: Attention,
         | 
| 640 | 
            +
                    hidden_states,
         | 
| 641 | 
            +
                    encoder_hidden_states=None,
         | 
| 642 | 
            +
                    attention_mask=None,
         | 
| 643 | 
            +
                    temb=None,
         | 
| 644 | 
            +
                    num_views=1,
         | 
| 645 | 
            +
                    multiview_attention=True
         | 
| 646 | 
            +
                ):
         | 
| 647 | 
            +
                    residual = hidden_states
         | 
| 648 | 
            +
             | 
| 649 | 
            +
                    if attn.spatial_norm is not None:
         | 
| 650 | 
            +
                        hidden_states = attn.spatial_norm(hidden_states, temb)
         | 
| 651 | 
            +
             | 
| 652 | 
            +
                    input_ndim = hidden_states.ndim
         | 
| 653 | 
            +
             | 
| 654 | 
            +
                    if input_ndim == 4:
         | 
| 655 | 
            +
                        batch_size, channel, height, width = hidden_states.shape
         | 
| 656 | 
            +
                        hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
         | 
| 657 | 
            +
             | 
| 658 | 
            +
                    batch_size, sequence_length, _ = (
         | 
| 659 | 
            +
                        hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
         | 
| 660 | 
            +
                    )
         | 
| 661 | 
            +
                    attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
         | 
| 662 | 
            +
             | 
| 663 | 
            +
                    if attn.group_norm is not None:
         | 
| 664 | 
            +
                        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
         | 
| 665 | 
            +
             | 
| 666 | 
            +
                    query = attn.to_q(hidden_states)
         | 
| 667 | 
            +
             | 
| 668 | 
            +
                    if encoder_hidden_states is None:
         | 
| 669 | 
            +
                        encoder_hidden_states = hidden_states
         | 
| 670 | 
            +
                    elif attn.norm_cross:
         | 
| 671 | 
            +
                        encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
         | 
| 672 | 
            +
             | 
| 673 | 
            +
                    key = attn.to_k(encoder_hidden_states)
         | 
| 674 | 
            +
                    value = attn.to_v(encoder_hidden_states)
         | 
| 675 | 
            +
             | 
| 676 | 
            +
                    # print('query', query.shape, 'key', key.shape, 'value', value.shape)
         | 
| 677 | 
            +
                    #([bx4, 1024, 320]) key torch.Size([bx4, 1024, 320]) value torch.Size([bx4, 1024, 320])
         | 
| 678 | 
            +
                    # pdb.set_trace()
         | 
| 679 | 
            +
                    # multi-view self-attention
         | 
| 680 | 
            +
                    if multiview_attention:
         | 
| 681 | 
            +
                        if num_views <= 6:
         | 
| 682 | 
            +
                            # after use xformer; possible to train with 6 views
         | 
| 683 | 
            +
                            key = rearrange(key, "(b t) d c -> b (t d) c", t=num_views).repeat_interleave(num_views, dim=0)
         | 
| 684 | 
            +
                            value = rearrange(value, "(b t) d c -> b (t d) c", t=num_views).repeat_interleave(num_views, dim=0)
         | 
| 685 | 
            +
                        else:# apply sparse attention
         | 
| 686 | 
            +
                            pass
         | 
| 687 | 
            +
                            # print("use sparse attention")  
         | 
| 688 | 
            +
                            # # seems that the sparse random sampling cause problems
         | 
| 689 | 
            +
                            # # don't use random sampling, just fix the indexes
         | 
| 690 | 
            +
                            # onekey = rearrange(key, "(b t) d c -> b t d c", t=num_views) 
         | 
| 691 | 
            +
                            # onevalue = rearrange(value, "(b t) d c -> b t d c", t=num_views)
         | 
| 692 | 
            +
                            # allkeys = []
         | 
| 693 | 
            +
                            # allvalues = []
         | 
| 694 | 
            +
                            # all_indexes = {
         | 
| 695 | 
            +
                            #     0 : [0, 2, 3, 4],
         | 
| 696 | 
            +
                            #     1: [0, 1, 3, 5],
         | 
| 697 | 
            +
                            #     2: [0, 2, 3, 4],
         | 
| 698 | 
            +
                            #     3: [0, 2, 3, 4],
         | 
| 699 | 
            +
                            #     4: [0, 2, 3, 4],
         | 
| 700 | 
            +
                            #     5: [0, 1, 3, 5]
         | 
| 701 | 
            +
                            # }
         | 
| 702 | 
            +
                            # for jj in range(num_views):
         | 
| 703 | 
            +
                            #     # valid_index = [x for x in range(0, num_views) if x!= jj]
         | 
| 704 | 
            +
                            #     # indexes = random.sample(valid_index, 3) + [jj] + [0]
         | 
| 705 | 
            +
                            #     indexes = all_indexes[jj]
         | 
| 706 | 
            +
             | 
| 707 | 
            +
                            #     indexes = torch.tensor(indexes).long().to(key.device)
         | 
| 708 | 
            +
                            #     allkeys.append(onekey[:, indexes])
         | 
| 709 | 
            +
                            #     allvalues.append(onevalue[:, indexes])
         | 
| 710 | 
            +
                            # keys = torch.stack(allkeys, dim=1) # checked, should be dim=1
         | 
| 711 | 
            +
                            # values = torch.stack(allvalues, dim=1) 
         | 
| 712 | 
            +
                            # key = rearrange(keys, 'b t f d c -> (b t) (f d) c')
         | 
| 713 | 
            +
                            # value = rearrange(values, 'b t f d c -> (b t) (f d) c')
         | 
| 714 | 
            +
             | 
| 715 | 
            +
             | 
| 716 | 
            +
                    query = attn.head_to_batch_dim(query).contiguous()
         | 
| 717 | 
            +
                    key = attn.head_to_batch_dim(key).contiguous()
         | 
| 718 | 
            +
                    value = attn.head_to_batch_dim(value).contiguous()
         | 
| 719 | 
            +
                    
         | 
| 720 | 
            +
                    attention_probs = attn.get_attention_scores(query, key, attention_mask)
         | 
| 721 | 
            +
                    hidden_states = torch.bmm(attention_probs, value)
         | 
| 722 | 
            +
                    hidden_states = attn.batch_to_head_dim(hidden_states)
         | 
| 723 | 
            +
             | 
| 724 | 
            +
                    # linear proj
         | 
| 725 | 
            +
                    hidden_states = attn.to_out[0](hidden_states)
         | 
| 726 | 
            +
                    # dropout
         | 
| 727 | 
            +
                    hidden_states = attn.to_out[1](hidden_states)
         | 
| 728 | 
            +
             | 
| 729 | 
            +
                    if input_ndim == 4:
         | 
| 730 | 
            +
                        hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
         | 
| 731 | 
            +
             | 
| 732 | 
            +
                    if attn.residual_connection:
         | 
| 733 | 
            +
                        hidden_states = hidden_states + residual
         | 
| 734 | 
            +
             | 
| 735 | 
            +
                    hidden_states = hidden_states / attn.rescale_output_factor
         | 
| 736 | 
            +
                    
         | 
| 737 | 
            +
                    return hidden_states
         | 
| 738 | 
            +
             | 
| 739 | 
            +
             | 
| 740 | 
            +
            class XFormersMVAttnProcessor:
         | 
| 741 | 
            +
                r"""
         | 
| 742 | 
            +
                Default processor for performing attention-related computations.
         | 
| 743 | 
            +
                """
         | 
| 744 | 
            +
             | 
| 745 | 
            +
                def __call__(
         | 
| 746 | 
            +
                    self,
         | 
| 747 | 
            +
                    attn: Attention,
         | 
| 748 | 
            +
                    hidden_states,
         | 
| 749 | 
            +
                    encoder_hidden_states=None,
         | 
| 750 | 
            +
                    attention_mask=None,
         | 
| 751 | 
            +
                    temb=None,
         | 
| 752 | 
            +
                    num_views=1.,
         | 
| 753 | 
            +
                    multiview_attention=True,
         | 
| 754 | 
            +
                    cross_domain_attention=False,
         | 
| 755 | 
            +
                ):
         | 
| 756 | 
            +
                    residual = hidden_states
         | 
| 757 | 
            +
             | 
| 758 | 
            +
                    if attn.spatial_norm is not None:
         | 
| 759 | 
            +
                        hidden_states = attn.spatial_norm(hidden_states, temb)
         | 
| 760 | 
            +
             | 
| 761 | 
            +
                    input_ndim = hidden_states.ndim
         | 
| 762 | 
            +
             | 
| 763 | 
            +
                    if input_ndim == 4:
         | 
| 764 | 
            +
                        batch_size, channel, height, width = hidden_states.shape
         | 
| 765 | 
            +
                        hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
         | 
| 766 | 
            +
             | 
| 767 | 
            +
                    batch_size, sequence_length, _ = (
         | 
| 768 | 
            +
                        hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
         | 
| 769 | 
            +
                    )
         | 
| 770 | 
            +
                    attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
         | 
| 771 | 
            +
             | 
| 772 | 
            +
                    # from yuancheng; here attention_mask is None
         | 
| 773 | 
            +
                    if attention_mask is not None:
         | 
| 774 | 
            +
                        # expand our mask's singleton query_tokens dimension:
         | 
| 775 | 
            +
                        #   [batch*heads,            1, key_tokens] ->
         | 
| 776 | 
            +
                        #   [batch*heads, query_tokens, key_tokens]
         | 
| 777 | 
            +
                        # so that it can be added as a bias onto the attention scores that xformers computes:
         | 
| 778 | 
            +
                        #   [batch*heads, query_tokens, key_tokens]
         | 
| 779 | 
            +
                        # we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
         | 
| 780 | 
            +
                        _, query_tokens, _ = hidden_states.shape
         | 
| 781 | 
            +
                        attention_mask = attention_mask.expand(-1, query_tokens, -1)
         | 
| 782 | 
            +
             | 
| 783 | 
            +
                    if attn.group_norm is not None:
         | 
| 784 | 
            +
                        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
         | 
| 785 | 
            +
             | 
| 786 | 
            +
                    query = attn.to_q(hidden_states)
         | 
| 787 | 
            +
             | 
| 788 | 
            +
                    if encoder_hidden_states is None:
         | 
| 789 | 
            +
                        encoder_hidden_states = hidden_states
         | 
| 790 | 
            +
                    elif attn.norm_cross:
         | 
| 791 | 
            +
                        encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
         | 
| 792 | 
            +
             | 
| 793 | 
            +
                    key_raw = attn.to_k(encoder_hidden_states)
         | 
| 794 | 
            +
                    value_raw = attn.to_v(encoder_hidden_states)
         | 
| 795 | 
            +
             | 
| 796 | 
            +
                    # print('query', query.shape, 'key', key.shape, 'value', value.shape)
         | 
| 797 | 
            +
                    #([bx4, 1024, 320]) key torch.Size([bx4, 1024, 320]) value torch.Size([bx4, 1024, 320])
         | 
| 798 | 
            +
                    # pdb.set_trace()
         | 
| 799 | 
            +
                    # multi-view self-attention
         | 
| 800 | 
            +
                    if multiview_attention:
         | 
| 801 | 
            +
                        key = rearrange(key_raw, "(b t) d c -> b (t d) c", t=num_views).repeat_interleave(num_views, dim=0)
         | 
| 802 | 
            +
                        value = rearrange(value_raw, "(b t) d c -> b (t d) c", t=num_views).repeat_interleave(num_views, dim=0)
         | 
| 803 | 
            +
             | 
| 804 | 
            +
                        if cross_domain_attention:
         | 
| 805 | 
            +
                            # memory efficient, cross domain attention
         | 
| 806 | 
            +
                            key_0, key_1 = torch.chunk(key_raw, dim=0, chunks=2)  # keys shape (b t) d c
         | 
| 807 | 
            +
                            value_0, value_1 = torch.chunk(value_raw, dim=0, chunks=2)
         | 
| 808 | 
            +
                            key_cross = torch.concat([key_1, key_0], dim=0)
         | 
| 809 | 
            +
                            value_cross = torch.concat([value_1, value_0], dim=0) #  shape (b t) d c
         | 
| 810 | 
            +
                            key = torch.cat([key, key_cross], dim=1)
         | 
| 811 | 
            +
                            value = torch.cat([value, value_cross], dim=1)  #  shape (b t) (t+1 d) c
         | 
| 812 | 
            +
                    else:
         | 
| 813 | 
            +
                        # print("don't use multiview attention.")
         | 
| 814 | 
            +
                        key = key_raw
         | 
| 815 | 
            +
                        value = value_raw
         | 
| 816 | 
            +
             | 
| 817 | 
            +
                    query = attn.head_to_batch_dim(query)
         | 
| 818 | 
            +
                    key = attn.head_to_batch_dim(key)
         | 
| 819 | 
            +
                    value = attn.head_to_batch_dim(value)
         | 
| 820 | 
            +
             | 
| 821 | 
            +
                    hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
         | 
| 822 | 
            +
                    hidden_states = attn.batch_to_head_dim(hidden_states)
         | 
| 823 | 
            +
             | 
| 824 | 
            +
                    # linear proj
         | 
| 825 | 
            +
                    hidden_states = attn.to_out[0](hidden_states)
         | 
| 826 | 
            +
                    # dropout
         | 
| 827 | 
            +
                    hidden_states = attn.to_out[1](hidden_states)
         | 
| 828 | 
            +
             | 
| 829 | 
            +
                    if input_ndim == 4:
         | 
| 830 | 
            +
                        hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
         | 
| 831 | 
            +
             | 
| 832 | 
            +
                    if attn.residual_connection:
         | 
| 833 | 
            +
                        hidden_states = hidden_states + residual
         | 
| 834 | 
            +
             | 
| 835 | 
            +
                    hidden_states = hidden_states / attn.rescale_output_factor
         | 
| 836 | 
            +
                    
         | 
| 837 | 
            +
                    return hidden_states
         | 
| 838 | 
            +
             | 
| 839 | 
            +
             | 
| 840 | 
            +
             | 
| 841 | 
            +
            class XFormersJointAttnProcessor:
         | 
| 842 | 
            +
                r"""
         | 
| 843 | 
            +
                Default processor for performing attention-related computations.
         | 
| 844 | 
            +
                """
         | 
| 845 | 
            +
             | 
| 846 | 
            +
                def __call__(
         | 
| 847 | 
            +
                    self,
         | 
| 848 | 
            +
                    attn: Attention,
         | 
| 849 | 
            +
                    hidden_states,
         | 
| 850 | 
            +
                    encoder_hidden_states=None,
         | 
| 851 | 
            +
                    attention_mask=None,
         | 
| 852 | 
            +
                    temb=None,
         | 
| 853 | 
            +
                    num_tasks=2
         | 
| 854 | 
            +
                ):
         | 
| 855 | 
            +
                    
         | 
| 856 | 
            +
                    residual = hidden_states
         | 
| 857 | 
            +
             | 
| 858 | 
            +
                    if attn.spatial_norm is not None:
         | 
| 859 | 
            +
                        hidden_states = attn.spatial_norm(hidden_states, temb)
         | 
| 860 | 
            +
             | 
| 861 | 
            +
                    input_ndim = hidden_states.ndim
         | 
| 862 | 
            +
             | 
| 863 | 
            +
                    if input_ndim == 4:
         | 
| 864 | 
            +
                        batch_size, channel, height, width = hidden_states.shape
         | 
| 865 | 
            +
                        hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
         | 
| 866 | 
            +
             | 
| 867 | 
            +
                    batch_size, sequence_length, _ = (
         | 
| 868 | 
            +
                        hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
         | 
| 869 | 
            +
                    )
         | 
| 870 | 
            +
                    attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
         | 
| 871 | 
            +
             | 
| 872 | 
            +
                    # from yuancheng; here attention_mask is None
         | 
| 873 | 
            +
                    if attention_mask is not None:
         | 
| 874 | 
            +
                        # expand our mask's singleton query_tokens dimension:
         | 
| 875 | 
            +
                        #   [batch*heads,            1, key_tokens] ->
         | 
| 876 | 
            +
                        #   [batch*heads, query_tokens, key_tokens]
         | 
| 877 | 
            +
                        # so that it can be added as a bias onto the attention scores that xformers computes:
         | 
| 878 | 
            +
                        #   [batch*heads, query_tokens, key_tokens]
         | 
| 879 | 
            +
                        # we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
         | 
| 880 | 
            +
                        _, query_tokens, _ = hidden_states.shape
         | 
| 881 | 
            +
                        attention_mask = attention_mask.expand(-1, query_tokens, -1)
         | 
| 882 | 
            +
             | 
| 883 | 
            +
                    if attn.group_norm is not None:
         | 
| 884 | 
            +
                        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
         | 
| 885 | 
            +
             | 
| 886 | 
            +
                    query = attn.to_q(hidden_states)
         | 
| 887 | 
            +
             | 
| 888 | 
            +
                    if encoder_hidden_states is None:
         | 
| 889 | 
            +
                        encoder_hidden_states = hidden_states
         | 
| 890 | 
            +
                    elif attn.norm_cross:
         | 
| 891 | 
            +
                        encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
         | 
| 892 | 
            +
             | 
| 893 | 
            +
                    key = attn.to_k(encoder_hidden_states)
         | 
| 894 | 
            +
                    value = attn.to_v(encoder_hidden_states)
         | 
| 895 | 
            +
             | 
| 896 | 
            +
                    assert num_tasks == 2  # only support two tasks now
         | 
| 897 | 
            +
             | 
| 898 | 
            +
                    key_0, key_1 = torch.chunk(key, dim=0, chunks=2)  # keys shape (b t) d c
         | 
| 899 | 
            +
                    value_0, value_1 = torch.chunk(value, dim=0, chunks=2)
         | 
| 900 | 
            +
                    key = torch.cat([key_0, key_1], dim=1)  # (b t) 2d c
         | 
| 901 | 
            +
                    value = torch.cat([value_0, value_1], dim=1)  # (b t) 2d c
         | 
| 902 | 
            +
                    key = torch.cat([key]*2, dim=0)   # ( 2 b t) 2d c
         | 
| 903 | 
            +
                    value = torch.cat([value]*2, dim=0)  # (2 b t) 2d c
         | 
| 904 | 
            +
             | 
| 905 | 
            +
                    
         | 
| 906 | 
            +
                    query = attn.head_to_batch_dim(query).contiguous()
         | 
| 907 | 
            +
                    key = attn.head_to_batch_dim(key).contiguous()
         | 
| 908 | 
            +
                    value = attn.head_to_batch_dim(value).contiguous()
         | 
| 909 | 
            +
             | 
| 910 | 
            +
                    hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
         | 
| 911 | 
            +
                    hidden_states = attn.batch_to_head_dim(hidden_states)
         | 
| 912 | 
            +
             | 
| 913 | 
            +
                    # linear proj
         | 
| 914 | 
            +
                    hidden_states = attn.to_out[0](hidden_states)
         | 
| 915 | 
            +
                    # dropout
         | 
| 916 | 
            +
                    hidden_states = attn.to_out[1](hidden_states)
         | 
| 917 | 
            +
             | 
| 918 | 
            +
                    if input_ndim == 4:
         | 
| 919 | 
            +
                        hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
         | 
| 920 | 
            +
             | 
| 921 | 
            +
                    if attn.residual_connection:
         | 
| 922 | 
            +
                        hidden_states = hidden_states + residual
         | 
| 923 | 
            +
             | 
| 924 | 
            +
                    hidden_states = hidden_states / attn.rescale_output_factor
         | 
| 925 | 
            +
                    
         | 
| 926 | 
            +
                    return hidden_states
         | 
| 927 | 
            +
             | 
| 928 | 
            +
             | 
| 929 | 
            +
            class JointAttnProcessor:
         | 
| 930 | 
            +
                r"""
         | 
| 931 | 
            +
                Default processor for performing attention-related computations.
         | 
| 932 | 
            +
                """
         | 
| 933 | 
            +
             | 
| 934 | 
            +
                def __call__(
         | 
| 935 | 
            +
                    self,
         | 
| 936 | 
            +
                    attn: Attention,
         | 
| 937 | 
            +
                    hidden_states,
         | 
| 938 | 
            +
                    encoder_hidden_states=None,
         | 
| 939 | 
            +
                    attention_mask=None,
         | 
| 940 | 
            +
                    temb=None,
         | 
| 941 | 
            +
                    num_tasks=2
         | 
| 942 | 
            +
                ):
         | 
| 943 | 
            +
                    
         | 
| 944 | 
            +
                    residual = hidden_states
         | 
| 945 | 
            +
             | 
| 946 | 
            +
                    if attn.spatial_norm is not None:
         | 
| 947 | 
            +
                        hidden_states = attn.spatial_norm(hidden_states, temb)
         | 
| 948 | 
            +
             | 
| 949 | 
            +
                    input_ndim = hidden_states.ndim
         | 
| 950 | 
            +
             | 
| 951 | 
            +
                    if input_ndim == 4:
         | 
| 952 | 
            +
                        batch_size, channel, height, width = hidden_states.shape
         | 
| 953 | 
            +
                        hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
         | 
| 954 | 
            +
             | 
| 955 | 
            +
                    batch_size, sequence_length, _ = (
         | 
| 956 | 
            +
                        hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
         | 
| 957 | 
            +
                    )
         | 
| 958 | 
            +
                    attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
         | 
| 959 | 
            +
             | 
| 960 | 
            +
             | 
| 961 | 
            +
                    if attn.group_norm is not None:
         | 
| 962 | 
            +
                        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
         | 
| 963 | 
            +
             | 
| 964 | 
            +
                    query = attn.to_q(hidden_states)
         | 
| 965 | 
            +
             | 
| 966 | 
            +
                    if encoder_hidden_states is None:
         | 
| 967 | 
            +
                        encoder_hidden_states = hidden_states
         | 
| 968 | 
            +
                    elif attn.norm_cross:
         | 
| 969 | 
            +
                        encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
         | 
| 970 | 
            +
             | 
| 971 | 
            +
                    key = attn.to_k(encoder_hidden_states)
         | 
| 972 | 
            +
                    value = attn.to_v(encoder_hidden_states)
         | 
| 973 | 
            +
             | 
| 974 | 
            +
                    assert num_tasks == 2  # only support two tasks now
         | 
| 975 | 
            +
             | 
| 976 | 
            +
                    key_0, key_1 = torch.chunk(key, dim=0, chunks=2)  # keys shape (b t) d c
         | 
| 977 | 
            +
                    value_0, value_1 = torch.chunk(value, dim=0, chunks=2)
         | 
| 978 | 
            +
                    key = torch.cat([key_0, key_1], dim=1)  # (b t) 2d c
         | 
| 979 | 
            +
                    value = torch.cat([value_0, value_1], dim=1)  # (b t) 2d c
         | 
| 980 | 
            +
                    key = torch.cat([key]*2, dim=0)   # ( 2 b t) 2d c
         | 
| 981 | 
            +
                    value = torch.cat([value]*2, dim=0)  # (2 b t) 2d c
         | 
| 982 | 
            +
             | 
| 983 | 
            +
                    
         | 
| 984 | 
            +
                    query = attn.head_to_batch_dim(query).contiguous()
         | 
| 985 | 
            +
                    key = attn.head_to_batch_dim(key).contiguous()
         | 
| 986 | 
            +
                    value = attn.head_to_batch_dim(value).contiguous()
         | 
| 987 | 
            +
             | 
| 988 | 
            +
                    attention_probs = attn.get_attention_scores(query, key, attention_mask)
         | 
| 989 | 
            +
                    hidden_states = torch.bmm(attention_probs, value)
         | 
| 990 | 
            +
                    hidden_states = attn.batch_to_head_dim(hidden_states)
         | 
| 991 | 
            +
             | 
| 992 | 
            +
                    # linear proj
         | 
| 993 | 
            +
                    hidden_states = attn.to_out[0](hidden_states)
         | 
| 994 | 
            +
                    # dropout
         | 
| 995 | 
            +
                    hidden_states = attn.to_out[1](hidden_states)
         | 
| 996 | 
            +
             | 
| 997 | 
            +
                    if input_ndim == 4:
         | 
| 998 | 
            +
                        hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
         | 
| 999 | 
            +
             | 
| 1000 | 
            +
                    if attn.residual_connection:
         | 
| 1001 | 
            +
                        hidden_states = hidden_states + residual
         | 
| 1002 | 
            +
             | 
| 1003 | 
            +
                    hidden_states = hidden_states / attn.rescale_output_factor
         | 
| 1004 | 
            +
                    
         | 
| 1005 | 
            +
                    return hidden_states
         | 
    	
        mvdiffusion/models/unet_mv2d_blocks.py
    ADDED
    
    | @@ -0,0 +1,880 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2023 The HuggingFace Team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
            from typing import Any, Dict, Optional, Tuple
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            import numpy as np
         | 
| 17 | 
            +
            import torch
         | 
| 18 | 
            +
            import torch.nn.functional as F
         | 
| 19 | 
            +
            from torch import nn
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            from diffusers.utils import is_torch_version, logging
         | 
| 22 | 
            +
            from diffusers.models.attention import AdaGroupNorm
         | 
| 23 | 
            +
            from diffusers.models.attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0
         | 
| 24 | 
            +
            from diffusers.models.dual_transformer_2d import DualTransformer2DModel
         | 
| 25 | 
            +
            from diffusers.models.resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D
         | 
| 26 | 
            +
            from mvdiffusion.models.transformer_mv2d import TransformerMV2DModel
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            from diffusers.models.unet_2d_blocks import DownBlock2D, ResnetDownsampleBlock2D, AttnDownBlock2D, CrossAttnDownBlock2D, SimpleCrossAttnDownBlock2D, SkipDownBlock2D, AttnSkipDownBlock2D, DownEncoderBlock2D, AttnDownEncoderBlock2D, KDownBlock2D, KCrossAttnDownBlock2D
         | 
| 29 | 
            +
            from diffusers.models.unet_2d_blocks import UpBlock2D, ResnetUpsampleBlock2D, CrossAttnUpBlock2D, SimpleCrossAttnUpBlock2D, AttnUpBlock2D, SkipUpBlock2D, AttnSkipUpBlock2D, UpDecoderBlock2D, AttnUpDecoderBlock2D, KUpBlock2D, KCrossAttnUpBlock2D
         | 
| 30 | 
            +
             | 
| 31 | 
            +
             | 
| 32 | 
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 33 | 
            +
             | 
| 34 | 
            +
             | 
| 35 | 
            +
            def get_down_block(
         | 
| 36 | 
            +
                down_block_type,
         | 
| 37 | 
            +
                num_layers,
         | 
| 38 | 
            +
                in_channels,
         | 
| 39 | 
            +
                out_channels,
         | 
| 40 | 
            +
                temb_channels,
         | 
| 41 | 
            +
                add_downsample,
         | 
| 42 | 
            +
                resnet_eps,
         | 
| 43 | 
            +
                resnet_act_fn,
         | 
| 44 | 
            +
                transformer_layers_per_block=1,
         | 
| 45 | 
            +
                num_attention_heads=None,
         | 
| 46 | 
            +
                resnet_groups=None,
         | 
| 47 | 
            +
                cross_attention_dim=None,
         | 
| 48 | 
            +
                downsample_padding=None,
         | 
| 49 | 
            +
                dual_cross_attention=False,
         | 
| 50 | 
            +
                use_linear_projection=False,
         | 
| 51 | 
            +
                only_cross_attention=False,
         | 
| 52 | 
            +
                upcast_attention=False,
         | 
| 53 | 
            +
                resnet_time_scale_shift="default",
         | 
| 54 | 
            +
                resnet_skip_time_act=False,
         | 
| 55 | 
            +
                resnet_out_scale_factor=1.0,
         | 
| 56 | 
            +
                cross_attention_norm=None,
         | 
| 57 | 
            +
                attention_head_dim=None,
         | 
| 58 | 
            +
                downsample_type=None,
         | 
| 59 | 
            +
                num_views=1
         | 
| 60 | 
            +
            ):
         | 
| 61 | 
            +
                # If attn head dim is not defined, we default it to the number of heads
         | 
| 62 | 
            +
                if attention_head_dim is None:
         | 
| 63 | 
            +
                    logger.warn(
         | 
| 64 | 
            +
                        f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
         | 
| 65 | 
            +
                    )
         | 
| 66 | 
            +
                    attention_head_dim = num_attention_heads
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
         | 
| 69 | 
            +
                if down_block_type == "DownBlock2D":
         | 
| 70 | 
            +
                    return DownBlock2D(
         | 
| 71 | 
            +
                        num_layers=num_layers,
         | 
| 72 | 
            +
                        in_channels=in_channels,
         | 
| 73 | 
            +
                        out_channels=out_channels,
         | 
| 74 | 
            +
                        temb_channels=temb_channels,
         | 
| 75 | 
            +
                        add_downsample=add_downsample,
         | 
| 76 | 
            +
                        resnet_eps=resnet_eps,
         | 
| 77 | 
            +
                        resnet_act_fn=resnet_act_fn,
         | 
| 78 | 
            +
                        resnet_groups=resnet_groups,
         | 
| 79 | 
            +
                        downsample_padding=downsample_padding,
         | 
| 80 | 
            +
                        resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 81 | 
            +
                    )
         | 
| 82 | 
            +
                elif down_block_type == "ResnetDownsampleBlock2D":
         | 
| 83 | 
            +
                    return ResnetDownsampleBlock2D(
         | 
| 84 | 
            +
                        num_layers=num_layers,
         | 
| 85 | 
            +
                        in_channels=in_channels,
         | 
| 86 | 
            +
                        out_channels=out_channels,
         | 
| 87 | 
            +
                        temb_channels=temb_channels,
         | 
| 88 | 
            +
                        add_downsample=add_downsample,
         | 
| 89 | 
            +
                        resnet_eps=resnet_eps,
         | 
| 90 | 
            +
                        resnet_act_fn=resnet_act_fn,
         | 
| 91 | 
            +
                        resnet_groups=resnet_groups,
         | 
| 92 | 
            +
                        resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 93 | 
            +
                        skip_time_act=resnet_skip_time_act,
         | 
| 94 | 
            +
                        output_scale_factor=resnet_out_scale_factor,
         | 
| 95 | 
            +
                    )
         | 
| 96 | 
            +
                elif down_block_type == "AttnDownBlock2D":
         | 
| 97 | 
            +
                    if add_downsample is False:
         | 
| 98 | 
            +
                        downsample_type = None
         | 
| 99 | 
            +
                    else:
         | 
| 100 | 
            +
                        downsample_type = downsample_type or "conv"  # default to 'conv'
         | 
| 101 | 
            +
                    return AttnDownBlock2D(
         | 
| 102 | 
            +
                        num_layers=num_layers,
         | 
| 103 | 
            +
                        in_channels=in_channels,
         | 
| 104 | 
            +
                        out_channels=out_channels,
         | 
| 105 | 
            +
                        temb_channels=temb_channels,
         | 
| 106 | 
            +
                        resnet_eps=resnet_eps,
         | 
| 107 | 
            +
                        resnet_act_fn=resnet_act_fn,
         | 
| 108 | 
            +
                        resnet_groups=resnet_groups,
         | 
| 109 | 
            +
                        downsample_padding=downsample_padding,
         | 
| 110 | 
            +
                        attention_head_dim=attention_head_dim,
         | 
| 111 | 
            +
                        resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 112 | 
            +
                        downsample_type=downsample_type,
         | 
| 113 | 
            +
                    )
         | 
| 114 | 
            +
                elif down_block_type == "CrossAttnDownBlock2D":
         | 
| 115 | 
            +
                    if cross_attention_dim is None:
         | 
| 116 | 
            +
                        raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
         | 
| 117 | 
            +
                    return CrossAttnDownBlock2D(
         | 
| 118 | 
            +
                        num_layers=num_layers,
         | 
| 119 | 
            +
                        transformer_layers_per_block=transformer_layers_per_block,
         | 
| 120 | 
            +
                        in_channels=in_channels,
         | 
| 121 | 
            +
                        out_channels=out_channels,
         | 
| 122 | 
            +
                        temb_channels=temb_channels,
         | 
| 123 | 
            +
                        add_downsample=add_downsample,
         | 
| 124 | 
            +
                        resnet_eps=resnet_eps,
         | 
| 125 | 
            +
                        resnet_act_fn=resnet_act_fn,
         | 
| 126 | 
            +
                        resnet_groups=resnet_groups,
         | 
| 127 | 
            +
                        downsample_padding=downsample_padding,
         | 
| 128 | 
            +
                        cross_attention_dim=cross_attention_dim,
         | 
| 129 | 
            +
                        num_attention_heads=num_attention_heads,
         | 
| 130 | 
            +
                        dual_cross_attention=dual_cross_attention,
         | 
| 131 | 
            +
                        use_linear_projection=use_linear_projection,
         | 
| 132 | 
            +
                        only_cross_attention=only_cross_attention,
         | 
| 133 | 
            +
                        upcast_attention=upcast_attention,
         | 
| 134 | 
            +
                        resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 135 | 
            +
                    )
         | 
| 136 | 
            +
                # custom MV2D attention block
         | 
| 137 | 
            +
                elif down_block_type == "CrossAttnDownBlockMV2D":
         | 
| 138 | 
            +
                    if cross_attention_dim is None:
         | 
| 139 | 
            +
                        raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlockMV2D")
         | 
| 140 | 
            +
                    return CrossAttnDownBlockMV2D(
         | 
| 141 | 
            +
                        num_layers=num_layers,
         | 
| 142 | 
            +
                        transformer_layers_per_block=transformer_layers_per_block,
         | 
| 143 | 
            +
                        in_channels=in_channels,
         | 
| 144 | 
            +
                        out_channels=out_channels,
         | 
| 145 | 
            +
                        temb_channels=temb_channels,
         | 
| 146 | 
            +
                        add_downsample=add_downsample,
         | 
| 147 | 
            +
                        resnet_eps=resnet_eps,
         | 
| 148 | 
            +
                        resnet_act_fn=resnet_act_fn,
         | 
| 149 | 
            +
                        resnet_groups=resnet_groups,
         | 
| 150 | 
            +
                        downsample_padding=downsample_padding,
         | 
| 151 | 
            +
                        cross_attention_dim=cross_attention_dim,
         | 
| 152 | 
            +
                        num_attention_heads=num_attention_heads,
         | 
| 153 | 
            +
                        dual_cross_attention=dual_cross_attention,
         | 
| 154 | 
            +
                        use_linear_projection=use_linear_projection,
         | 
| 155 | 
            +
                        only_cross_attention=only_cross_attention,
         | 
| 156 | 
            +
                        upcast_attention=upcast_attention,
         | 
| 157 | 
            +
                        resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 158 | 
            +
                        num_views=num_views
         | 
| 159 | 
            +
                    )
         | 
| 160 | 
            +
                elif down_block_type == "SimpleCrossAttnDownBlock2D":
         | 
| 161 | 
            +
                    if cross_attention_dim is None:
         | 
| 162 | 
            +
                        raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D")
         | 
| 163 | 
            +
                    return SimpleCrossAttnDownBlock2D(
         | 
| 164 | 
            +
                        num_layers=num_layers,
         | 
| 165 | 
            +
                        in_channels=in_channels,
         | 
| 166 | 
            +
                        out_channels=out_channels,
         | 
| 167 | 
            +
                        temb_channels=temb_channels,
         | 
| 168 | 
            +
                        add_downsample=add_downsample,
         | 
| 169 | 
            +
                        resnet_eps=resnet_eps,
         | 
| 170 | 
            +
                        resnet_act_fn=resnet_act_fn,
         | 
| 171 | 
            +
                        resnet_groups=resnet_groups,
         | 
| 172 | 
            +
                        cross_attention_dim=cross_attention_dim,
         | 
| 173 | 
            +
                        attention_head_dim=attention_head_dim,
         | 
| 174 | 
            +
                        resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 175 | 
            +
                        skip_time_act=resnet_skip_time_act,
         | 
| 176 | 
            +
                        output_scale_factor=resnet_out_scale_factor,
         | 
| 177 | 
            +
                        only_cross_attention=only_cross_attention,
         | 
| 178 | 
            +
                        cross_attention_norm=cross_attention_norm,
         | 
| 179 | 
            +
                    )
         | 
| 180 | 
            +
                elif down_block_type == "SkipDownBlock2D":
         | 
| 181 | 
            +
                    return SkipDownBlock2D(
         | 
| 182 | 
            +
                        num_layers=num_layers,
         | 
| 183 | 
            +
                        in_channels=in_channels,
         | 
| 184 | 
            +
                        out_channels=out_channels,
         | 
| 185 | 
            +
                        temb_channels=temb_channels,
         | 
| 186 | 
            +
                        add_downsample=add_downsample,
         | 
| 187 | 
            +
                        resnet_eps=resnet_eps,
         | 
| 188 | 
            +
                        resnet_act_fn=resnet_act_fn,
         | 
| 189 | 
            +
                        downsample_padding=downsample_padding,
         | 
| 190 | 
            +
                        resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 191 | 
            +
                    )
         | 
| 192 | 
            +
                elif down_block_type == "AttnSkipDownBlock2D":
         | 
| 193 | 
            +
                    return AttnSkipDownBlock2D(
         | 
| 194 | 
            +
                        num_layers=num_layers,
         | 
| 195 | 
            +
                        in_channels=in_channels,
         | 
| 196 | 
            +
                        out_channels=out_channels,
         | 
| 197 | 
            +
                        temb_channels=temb_channels,
         | 
| 198 | 
            +
                        add_downsample=add_downsample,
         | 
| 199 | 
            +
                        resnet_eps=resnet_eps,
         | 
| 200 | 
            +
                        resnet_act_fn=resnet_act_fn,
         | 
| 201 | 
            +
                        attention_head_dim=attention_head_dim,
         | 
| 202 | 
            +
                        resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 203 | 
            +
                    )
         | 
| 204 | 
            +
                elif down_block_type == "DownEncoderBlock2D":
         | 
| 205 | 
            +
                    return DownEncoderBlock2D(
         | 
| 206 | 
            +
                        num_layers=num_layers,
         | 
| 207 | 
            +
                        in_channels=in_channels,
         | 
| 208 | 
            +
                        out_channels=out_channels,
         | 
| 209 | 
            +
                        add_downsample=add_downsample,
         | 
| 210 | 
            +
                        resnet_eps=resnet_eps,
         | 
| 211 | 
            +
                        resnet_act_fn=resnet_act_fn,
         | 
| 212 | 
            +
                        resnet_groups=resnet_groups,
         | 
| 213 | 
            +
                        downsample_padding=downsample_padding,
         | 
| 214 | 
            +
                        resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 215 | 
            +
                    )
         | 
| 216 | 
            +
                elif down_block_type == "AttnDownEncoderBlock2D":
         | 
| 217 | 
            +
                    return AttnDownEncoderBlock2D(
         | 
| 218 | 
            +
                        num_layers=num_layers,
         | 
| 219 | 
            +
                        in_channels=in_channels,
         | 
| 220 | 
            +
                        out_channels=out_channels,
         | 
| 221 | 
            +
                        add_downsample=add_downsample,
         | 
| 222 | 
            +
                        resnet_eps=resnet_eps,
         | 
| 223 | 
            +
                        resnet_act_fn=resnet_act_fn,
         | 
| 224 | 
            +
                        resnet_groups=resnet_groups,
         | 
| 225 | 
            +
                        downsample_padding=downsample_padding,
         | 
| 226 | 
            +
                        attention_head_dim=attention_head_dim,
         | 
| 227 | 
            +
                        resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 228 | 
            +
                    )
         | 
| 229 | 
            +
                elif down_block_type == "KDownBlock2D":
         | 
| 230 | 
            +
                    return KDownBlock2D(
         | 
| 231 | 
            +
                        num_layers=num_layers,
         | 
| 232 | 
            +
                        in_channels=in_channels,
         | 
| 233 | 
            +
                        out_channels=out_channels,
         | 
| 234 | 
            +
                        temb_channels=temb_channels,
         | 
| 235 | 
            +
                        add_downsample=add_downsample,
         | 
| 236 | 
            +
                        resnet_eps=resnet_eps,
         | 
| 237 | 
            +
                        resnet_act_fn=resnet_act_fn,
         | 
| 238 | 
            +
                    )
         | 
| 239 | 
            +
                elif down_block_type == "KCrossAttnDownBlock2D":
         | 
| 240 | 
            +
                    return KCrossAttnDownBlock2D(
         | 
| 241 | 
            +
                        num_layers=num_layers,
         | 
| 242 | 
            +
                        in_channels=in_channels,
         | 
| 243 | 
            +
                        out_channels=out_channels,
         | 
| 244 | 
            +
                        temb_channels=temb_channels,
         | 
| 245 | 
            +
                        add_downsample=add_downsample,
         | 
| 246 | 
            +
                        resnet_eps=resnet_eps,
         | 
| 247 | 
            +
                        resnet_act_fn=resnet_act_fn,
         | 
| 248 | 
            +
                        cross_attention_dim=cross_attention_dim,
         | 
| 249 | 
            +
                        attention_head_dim=attention_head_dim,
         | 
| 250 | 
            +
                        add_self_attention=True if not add_downsample else False,
         | 
| 251 | 
            +
                    )
         | 
| 252 | 
            +
                raise ValueError(f"{down_block_type} does not exist.")
         | 
| 253 | 
            +
             | 
| 254 | 
            +
             | 
| 255 | 
            +
            def get_up_block(
         | 
| 256 | 
            +
                up_block_type,
         | 
| 257 | 
            +
                num_layers,
         | 
| 258 | 
            +
                in_channels,
         | 
| 259 | 
            +
                out_channels,
         | 
| 260 | 
            +
                prev_output_channel,
         | 
| 261 | 
            +
                temb_channels,
         | 
| 262 | 
            +
                add_upsample,
         | 
| 263 | 
            +
                resnet_eps,
         | 
| 264 | 
            +
                resnet_act_fn,
         | 
| 265 | 
            +
                transformer_layers_per_block=1,
         | 
| 266 | 
            +
                num_attention_heads=None,
         | 
| 267 | 
            +
                resnet_groups=None,
         | 
| 268 | 
            +
                cross_attention_dim=None,
         | 
| 269 | 
            +
                dual_cross_attention=False,
         | 
| 270 | 
            +
                use_linear_projection=False,
         | 
| 271 | 
            +
                only_cross_attention=False,
         | 
| 272 | 
            +
                upcast_attention=False,
         | 
| 273 | 
            +
                resnet_time_scale_shift="default",
         | 
| 274 | 
            +
                resnet_skip_time_act=False,
         | 
| 275 | 
            +
                resnet_out_scale_factor=1.0,
         | 
| 276 | 
            +
                cross_attention_norm=None,
         | 
| 277 | 
            +
                attention_head_dim=None,
         | 
| 278 | 
            +
                upsample_type=None,
         | 
| 279 | 
            +
                num_views=1
         | 
| 280 | 
            +
            ):
         | 
| 281 | 
            +
                # If attn head dim is not defined, we default it to the number of heads
         | 
| 282 | 
            +
                if attention_head_dim is None:
         | 
| 283 | 
            +
                    logger.warn(
         | 
| 284 | 
            +
                        f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
         | 
| 285 | 
            +
                    )
         | 
| 286 | 
            +
                    attention_head_dim = num_attention_heads
         | 
| 287 | 
            +
             | 
| 288 | 
            +
                up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
         | 
| 289 | 
            +
                if up_block_type == "UpBlock2D":
         | 
| 290 | 
            +
                    return UpBlock2D(
         | 
| 291 | 
            +
                        num_layers=num_layers,
         | 
| 292 | 
            +
                        in_channels=in_channels,
         | 
| 293 | 
            +
                        out_channels=out_channels,
         | 
| 294 | 
            +
                        prev_output_channel=prev_output_channel,
         | 
| 295 | 
            +
                        temb_channels=temb_channels,
         | 
| 296 | 
            +
                        add_upsample=add_upsample,
         | 
| 297 | 
            +
                        resnet_eps=resnet_eps,
         | 
| 298 | 
            +
                        resnet_act_fn=resnet_act_fn,
         | 
| 299 | 
            +
                        resnet_groups=resnet_groups,
         | 
| 300 | 
            +
                        resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 301 | 
            +
                    )
         | 
| 302 | 
            +
                elif up_block_type == "ResnetUpsampleBlock2D":
         | 
| 303 | 
            +
                    return ResnetUpsampleBlock2D(
         | 
| 304 | 
            +
                        num_layers=num_layers,
         | 
| 305 | 
            +
                        in_channels=in_channels,
         | 
| 306 | 
            +
                        out_channels=out_channels,
         | 
| 307 | 
            +
                        prev_output_channel=prev_output_channel,
         | 
| 308 | 
            +
                        temb_channels=temb_channels,
         | 
| 309 | 
            +
                        add_upsample=add_upsample,
         | 
| 310 | 
            +
                        resnet_eps=resnet_eps,
         | 
| 311 | 
            +
                        resnet_act_fn=resnet_act_fn,
         | 
| 312 | 
            +
                        resnet_groups=resnet_groups,
         | 
| 313 | 
            +
                        resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 314 | 
            +
                        skip_time_act=resnet_skip_time_act,
         | 
| 315 | 
            +
                        output_scale_factor=resnet_out_scale_factor,
         | 
| 316 | 
            +
                    )
         | 
| 317 | 
            +
                elif up_block_type == "CrossAttnUpBlock2D":
         | 
| 318 | 
            +
                    if cross_attention_dim is None:
         | 
| 319 | 
            +
                        raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
         | 
| 320 | 
            +
                    return CrossAttnUpBlock2D(
         | 
| 321 | 
            +
                        num_layers=num_layers,
         | 
| 322 | 
            +
                        transformer_layers_per_block=transformer_layers_per_block,
         | 
| 323 | 
            +
                        in_channels=in_channels,
         | 
| 324 | 
            +
                        out_channels=out_channels,
         | 
| 325 | 
            +
                        prev_output_channel=prev_output_channel,
         | 
| 326 | 
            +
                        temb_channels=temb_channels,
         | 
| 327 | 
            +
                        add_upsample=add_upsample,
         | 
| 328 | 
            +
                        resnet_eps=resnet_eps,
         | 
| 329 | 
            +
                        resnet_act_fn=resnet_act_fn,
         | 
| 330 | 
            +
                        resnet_groups=resnet_groups,
         | 
| 331 | 
            +
                        cross_attention_dim=cross_attention_dim,
         | 
| 332 | 
            +
                        num_attention_heads=num_attention_heads,
         | 
| 333 | 
            +
                        dual_cross_attention=dual_cross_attention,
         | 
| 334 | 
            +
                        use_linear_projection=use_linear_projection,
         | 
| 335 | 
            +
                        only_cross_attention=only_cross_attention,
         | 
| 336 | 
            +
                        upcast_attention=upcast_attention,
         | 
| 337 | 
            +
                        resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 338 | 
            +
                    )
         | 
| 339 | 
            +
                # custom MV2D attention block
         | 
| 340 | 
            +
                elif up_block_type == "CrossAttnUpBlockMV2D":
         | 
| 341 | 
            +
                    if cross_attention_dim is None:
         | 
| 342 | 
            +
                        raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlockMV2D")
         | 
| 343 | 
            +
                    return CrossAttnUpBlockMV2D(
         | 
| 344 | 
            +
                        num_layers=num_layers,
         | 
| 345 | 
            +
                        transformer_layers_per_block=transformer_layers_per_block,
         | 
| 346 | 
            +
                        in_channels=in_channels,
         | 
| 347 | 
            +
                        out_channels=out_channels,
         | 
| 348 | 
            +
                        prev_output_channel=prev_output_channel,
         | 
| 349 | 
            +
                        temb_channels=temb_channels,
         | 
| 350 | 
            +
                        add_upsample=add_upsample,
         | 
| 351 | 
            +
                        resnet_eps=resnet_eps,
         | 
| 352 | 
            +
                        resnet_act_fn=resnet_act_fn,
         | 
| 353 | 
            +
                        resnet_groups=resnet_groups,
         | 
| 354 | 
            +
                        cross_attention_dim=cross_attention_dim,
         | 
| 355 | 
            +
                        num_attention_heads=num_attention_heads,
         | 
| 356 | 
            +
                        dual_cross_attention=dual_cross_attention,
         | 
| 357 | 
            +
                        use_linear_projection=use_linear_projection,
         | 
| 358 | 
            +
                        only_cross_attention=only_cross_attention,
         | 
| 359 | 
            +
                        upcast_attention=upcast_attention,
         | 
| 360 | 
            +
                        resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 361 | 
            +
                        num_views=num_views
         | 
| 362 | 
            +
                    )    
         | 
| 363 | 
            +
                elif up_block_type == "SimpleCrossAttnUpBlock2D":
         | 
| 364 | 
            +
                    if cross_attention_dim is None:
         | 
| 365 | 
            +
                        raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D")
         | 
| 366 | 
            +
                    return SimpleCrossAttnUpBlock2D(
         | 
| 367 | 
            +
                        num_layers=num_layers,
         | 
| 368 | 
            +
                        in_channels=in_channels,
         | 
| 369 | 
            +
                        out_channels=out_channels,
         | 
| 370 | 
            +
                        prev_output_channel=prev_output_channel,
         | 
| 371 | 
            +
                        temb_channels=temb_channels,
         | 
| 372 | 
            +
                        add_upsample=add_upsample,
         | 
| 373 | 
            +
                        resnet_eps=resnet_eps,
         | 
| 374 | 
            +
                        resnet_act_fn=resnet_act_fn,
         | 
| 375 | 
            +
                        resnet_groups=resnet_groups,
         | 
| 376 | 
            +
                        cross_attention_dim=cross_attention_dim,
         | 
| 377 | 
            +
                        attention_head_dim=attention_head_dim,
         | 
| 378 | 
            +
                        resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 379 | 
            +
                        skip_time_act=resnet_skip_time_act,
         | 
| 380 | 
            +
                        output_scale_factor=resnet_out_scale_factor,
         | 
| 381 | 
            +
                        only_cross_attention=only_cross_attention,
         | 
| 382 | 
            +
                        cross_attention_norm=cross_attention_norm,
         | 
| 383 | 
            +
                    )
         | 
| 384 | 
            +
                elif up_block_type == "AttnUpBlock2D":
         | 
| 385 | 
            +
                    if add_upsample is False:
         | 
| 386 | 
            +
                        upsample_type = None
         | 
| 387 | 
            +
                    else:
         | 
| 388 | 
            +
                        upsample_type = upsample_type or "conv"  # default to 'conv'
         | 
| 389 | 
            +
             | 
| 390 | 
            +
                    return AttnUpBlock2D(
         | 
| 391 | 
            +
                        num_layers=num_layers,
         | 
| 392 | 
            +
                        in_channels=in_channels,
         | 
| 393 | 
            +
                        out_channels=out_channels,
         | 
| 394 | 
            +
                        prev_output_channel=prev_output_channel,
         | 
| 395 | 
            +
                        temb_channels=temb_channels,
         | 
| 396 | 
            +
                        resnet_eps=resnet_eps,
         | 
| 397 | 
            +
                        resnet_act_fn=resnet_act_fn,
         | 
| 398 | 
            +
                        resnet_groups=resnet_groups,
         | 
| 399 | 
            +
                        attention_head_dim=attention_head_dim,
         | 
| 400 | 
            +
                        resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 401 | 
            +
                        upsample_type=upsample_type,
         | 
| 402 | 
            +
                    )
         | 
| 403 | 
            +
                elif up_block_type == "SkipUpBlock2D":
         | 
| 404 | 
            +
                    return SkipUpBlock2D(
         | 
| 405 | 
            +
                        num_layers=num_layers,
         | 
| 406 | 
            +
                        in_channels=in_channels,
         | 
| 407 | 
            +
                        out_channels=out_channels,
         | 
| 408 | 
            +
                        prev_output_channel=prev_output_channel,
         | 
| 409 | 
            +
                        temb_channels=temb_channels,
         | 
| 410 | 
            +
                        add_upsample=add_upsample,
         | 
| 411 | 
            +
                        resnet_eps=resnet_eps,
         | 
| 412 | 
            +
                        resnet_act_fn=resnet_act_fn,
         | 
| 413 | 
            +
                        resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 414 | 
            +
                    )
         | 
| 415 | 
            +
                elif up_block_type == "AttnSkipUpBlock2D":
         | 
| 416 | 
            +
                    return AttnSkipUpBlock2D(
         | 
| 417 | 
            +
                        num_layers=num_layers,
         | 
| 418 | 
            +
                        in_channels=in_channels,
         | 
| 419 | 
            +
                        out_channels=out_channels,
         | 
| 420 | 
            +
                        prev_output_channel=prev_output_channel,
         | 
| 421 | 
            +
                        temb_channels=temb_channels,
         | 
| 422 | 
            +
                        add_upsample=add_upsample,
         | 
| 423 | 
            +
                        resnet_eps=resnet_eps,
         | 
| 424 | 
            +
                        resnet_act_fn=resnet_act_fn,
         | 
| 425 | 
            +
                        attention_head_dim=attention_head_dim,
         | 
| 426 | 
            +
                        resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 427 | 
            +
                    )
         | 
| 428 | 
            +
                elif up_block_type == "UpDecoderBlock2D":
         | 
| 429 | 
            +
                    return UpDecoderBlock2D(
         | 
| 430 | 
            +
                        num_layers=num_layers,
         | 
| 431 | 
            +
                        in_channels=in_channels,
         | 
| 432 | 
            +
                        out_channels=out_channels,
         | 
| 433 | 
            +
                        add_upsample=add_upsample,
         | 
| 434 | 
            +
                        resnet_eps=resnet_eps,
         | 
| 435 | 
            +
                        resnet_act_fn=resnet_act_fn,
         | 
| 436 | 
            +
                        resnet_groups=resnet_groups,
         | 
| 437 | 
            +
                        resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 438 | 
            +
                        temb_channels=temb_channels,
         | 
| 439 | 
            +
                    )
         | 
| 440 | 
            +
                elif up_block_type == "AttnUpDecoderBlock2D":
         | 
| 441 | 
            +
                    return AttnUpDecoderBlock2D(
         | 
| 442 | 
            +
                        num_layers=num_layers,
         | 
| 443 | 
            +
                        in_channels=in_channels,
         | 
| 444 | 
            +
                        out_channels=out_channels,
         | 
| 445 | 
            +
                        add_upsample=add_upsample,
         | 
| 446 | 
            +
                        resnet_eps=resnet_eps,
         | 
| 447 | 
            +
                        resnet_act_fn=resnet_act_fn,
         | 
| 448 | 
            +
                        resnet_groups=resnet_groups,
         | 
| 449 | 
            +
                        attention_head_dim=attention_head_dim,
         | 
| 450 | 
            +
                        resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 451 | 
            +
                        temb_channels=temb_channels,
         | 
| 452 | 
            +
                    )
         | 
| 453 | 
            +
                elif up_block_type == "KUpBlock2D":
         | 
| 454 | 
            +
                    return KUpBlock2D(
         | 
| 455 | 
            +
                        num_layers=num_layers,
         | 
| 456 | 
            +
                        in_channels=in_channels,
         | 
| 457 | 
            +
                        out_channels=out_channels,
         | 
| 458 | 
            +
                        temb_channels=temb_channels,
         | 
| 459 | 
            +
                        add_upsample=add_upsample,
         | 
| 460 | 
            +
                        resnet_eps=resnet_eps,
         | 
| 461 | 
            +
                        resnet_act_fn=resnet_act_fn,
         | 
| 462 | 
            +
                    )
         | 
| 463 | 
            +
                elif up_block_type == "KCrossAttnUpBlock2D":
         | 
| 464 | 
            +
                    return KCrossAttnUpBlock2D(
         | 
| 465 | 
            +
                        num_layers=num_layers,
         | 
| 466 | 
            +
                        in_channels=in_channels,
         | 
| 467 | 
            +
                        out_channels=out_channels,
         | 
| 468 | 
            +
                        temb_channels=temb_channels,
         | 
| 469 | 
            +
                        add_upsample=add_upsample,
         | 
| 470 | 
            +
                        resnet_eps=resnet_eps,
         | 
| 471 | 
            +
                        resnet_act_fn=resnet_act_fn,
         | 
| 472 | 
            +
                        cross_attention_dim=cross_attention_dim,
         | 
| 473 | 
            +
                        attention_head_dim=attention_head_dim,
         | 
| 474 | 
            +
                    )
         | 
| 475 | 
            +
             | 
| 476 | 
            +
                raise ValueError(f"{up_block_type} does not exist.")
         | 
| 477 | 
            +
             | 
| 478 | 
            +
             | 
| 479 | 
            +
            class UNetMidBlockMV2DCrossAttn(nn.Module):
         | 
| 480 | 
            +
                def __init__(
         | 
| 481 | 
            +
                    self,
         | 
| 482 | 
            +
                    in_channels: int,
         | 
| 483 | 
            +
                    temb_channels: int,
         | 
| 484 | 
            +
                    dropout: float = 0.0,
         | 
| 485 | 
            +
                    num_layers: int = 1,
         | 
| 486 | 
            +
                    transformer_layers_per_block: int = 1,
         | 
| 487 | 
            +
                    resnet_eps: float = 1e-6,
         | 
| 488 | 
            +
                    resnet_time_scale_shift: str = "default",
         | 
| 489 | 
            +
                    resnet_act_fn: str = "swish",
         | 
| 490 | 
            +
                    resnet_groups: int = 32,
         | 
| 491 | 
            +
                    resnet_pre_norm: bool = True,
         | 
| 492 | 
            +
                    num_attention_heads=1,
         | 
| 493 | 
            +
                    output_scale_factor=1.0,
         | 
| 494 | 
            +
                    cross_attention_dim=1280,
         | 
| 495 | 
            +
                    dual_cross_attention=False,
         | 
| 496 | 
            +
                    use_linear_projection=False,
         | 
| 497 | 
            +
                    upcast_attention=False,
         | 
| 498 | 
            +
                    num_views: int = 1,
         | 
| 499 | 
            +
                    joint_attention: bool = False,
         | 
| 500 | 
            +
                    joint_attention_twice: bool = False,
         | 
| 501 | 
            +
                    multiview_attention: bool = True,
         | 
| 502 | 
            +
                    cross_domain_attention: bool=False
         | 
| 503 | 
            +
                ):
         | 
| 504 | 
            +
                    super().__init__()
         | 
| 505 | 
            +
             | 
| 506 | 
            +
                    self.has_cross_attention = True
         | 
| 507 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 508 | 
            +
                    resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
         | 
| 509 | 
            +
             | 
| 510 | 
            +
                    # there is always at least one resnet
         | 
| 511 | 
            +
                    resnets = [
         | 
| 512 | 
            +
                        ResnetBlock2D(
         | 
| 513 | 
            +
                            in_channels=in_channels,
         | 
| 514 | 
            +
                            out_channels=in_channels,
         | 
| 515 | 
            +
                            temb_channels=temb_channels,
         | 
| 516 | 
            +
                            eps=resnet_eps,
         | 
| 517 | 
            +
                            groups=resnet_groups,
         | 
| 518 | 
            +
                            dropout=dropout,
         | 
| 519 | 
            +
                            time_embedding_norm=resnet_time_scale_shift,
         | 
| 520 | 
            +
                            non_linearity=resnet_act_fn,
         | 
| 521 | 
            +
                            output_scale_factor=output_scale_factor,
         | 
| 522 | 
            +
                            pre_norm=resnet_pre_norm,
         | 
| 523 | 
            +
                        )
         | 
| 524 | 
            +
                    ]
         | 
| 525 | 
            +
                    attentions = []
         | 
| 526 | 
            +
             | 
| 527 | 
            +
                    for _ in range(num_layers):
         | 
| 528 | 
            +
                        if not dual_cross_attention:
         | 
| 529 | 
            +
                            attentions.append(
         | 
| 530 | 
            +
                                TransformerMV2DModel(
         | 
| 531 | 
            +
                                    num_attention_heads,
         | 
| 532 | 
            +
                                    in_channels // num_attention_heads,
         | 
| 533 | 
            +
                                    in_channels=in_channels,
         | 
| 534 | 
            +
                                    num_layers=transformer_layers_per_block,
         | 
| 535 | 
            +
                                    cross_attention_dim=cross_attention_dim,
         | 
| 536 | 
            +
                                    norm_num_groups=resnet_groups,
         | 
| 537 | 
            +
                                    use_linear_projection=use_linear_projection,
         | 
| 538 | 
            +
                                    upcast_attention=upcast_attention,
         | 
| 539 | 
            +
                                    num_views=num_views,
         | 
| 540 | 
            +
                                    joint_attention=joint_attention,
         | 
| 541 | 
            +
                                    joint_attention_twice=joint_attention_twice,
         | 
| 542 | 
            +
                                    multiview_attention=multiview_attention,
         | 
| 543 | 
            +
                                    cross_domain_attention=cross_domain_attention
         | 
| 544 | 
            +
                                )
         | 
| 545 | 
            +
                            )
         | 
| 546 | 
            +
                        else:
         | 
| 547 | 
            +
                            raise NotImplementedError
         | 
| 548 | 
            +
                        resnets.append(
         | 
| 549 | 
            +
                            ResnetBlock2D(
         | 
| 550 | 
            +
                                in_channels=in_channels,
         | 
| 551 | 
            +
                                out_channels=in_channels,
         | 
| 552 | 
            +
                                temb_channels=temb_channels,
         | 
| 553 | 
            +
                                eps=resnet_eps,
         | 
| 554 | 
            +
                                groups=resnet_groups,
         | 
| 555 | 
            +
                                dropout=dropout,
         | 
| 556 | 
            +
                                time_embedding_norm=resnet_time_scale_shift,
         | 
| 557 | 
            +
                                non_linearity=resnet_act_fn,
         | 
| 558 | 
            +
                                output_scale_factor=output_scale_factor,
         | 
| 559 | 
            +
                                pre_norm=resnet_pre_norm,
         | 
| 560 | 
            +
                            )
         | 
| 561 | 
            +
                        )
         | 
| 562 | 
            +
             | 
| 563 | 
            +
                    self.attentions = nn.ModuleList(attentions)
         | 
| 564 | 
            +
                    self.resnets = nn.ModuleList(resnets)
         | 
| 565 | 
            +
             | 
| 566 | 
            +
                def forward(
         | 
| 567 | 
            +
                    self,
         | 
| 568 | 
            +
                    hidden_states: torch.FloatTensor,
         | 
| 569 | 
            +
                    temb: Optional[torch.FloatTensor] = None,
         | 
| 570 | 
            +
                    encoder_hidden_states: Optional[torch.FloatTensor] = None,
         | 
| 571 | 
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 572 | 
            +
                    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 573 | 
            +
                    encoder_attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 574 | 
            +
                ) -> torch.FloatTensor:
         | 
| 575 | 
            +
                    hidden_states = self.resnets[0](hidden_states, temb)
         | 
| 576 | 
            +
                    for attn, resnet in zip(self.attentions, self.resnets[1:]):
         | 
| 577 | 
            +
                        hidden_states = attn(
         | 
| 578 | 
            +
                            hidden_states,
         | 
| 579 | 
            +
                            encoder_hidden_states=encoder_hidden_states,
         | 
| 580 | 
            +
                            cross_attention_kwargs=cross_attention_kwargs,
         | 
| 581 | 
            +
                            attention_mask=attention_mask,
         | 
| 582 | 
            +
                            encoder_attention_mask=encoder_attention_mask,
         | 
| 583 | 
            +
                            return_dict=False,
         | 
| 584 | 
            +
                        )[0]
         | 
| 585 | 
            +
                        hidden_states = resnet(hidden_states, temb)
         | 
| 586 | 
            +
             | 
| 587 | 
            +
                    return hidden_states
         | 
| 588 | 
            +
             | 
| 589 | 
            +
             | 
| 590 | 
            +
            class CrossAttnUpBlockMV2D(nn.Module):
         | 
| 591 | 
            +
                def __init__(
         | 
| 592 | 
            +
                    self,
         | 
| 593 | 
            +
                    in_channels: int,
         | 
| 594 | 
            +
                    out_channels: int,
         | 
| 595 | 
            +
                    prev_output_channel: int,
         | 
| 596 | 
            +
                    temb_channels: int,
         | 
| 597 | 
            +
                    dropout: float = 0.0,
         | 
| 598 | 
            +
                    num_layers: int = 1,
         | 
| 599 | 
            +
                    transformer_layers_per_block: int = 1,
         | 
| 600 | 
            +
                    resnet_eps: float = 1e-6,
         | 
| 601 | 
            +
                    resnet_time_scale_shift: str = "default",
         | 
| 602 | 
            +
                    resnet_act_fn: str = "swish",
         | 
| 603 | 
            +
                    resnet_groups: int = 32,
         | 
| 604 | 
            +
                    resnet_pre_norm: bool = True,
         | 
| 605 | 
            +
                    num_attention_heads=1,
         | 
| 606 | 
            +
                    cross_attention_dim=1280,
         | 
| 607 | 
            +
                    output_scale_factor=1.0,
         | 
| 608 | 
            +
                    add_upsample=True,
         | 
| 609 | 
            +
                    dual_cross_attention=False,
         | 
| 610 | 
            +
                    use_linear_projection=False,
         | 
| 611 | 
            +
                    only_cross_attention=False,
         | 
| 612 | 
            +
                    upcast_attention=False,
         | 
| 613 | 
            +
                    num_views: int = 1
         | 
| 614 | 
            +
                ):
         | 
| 615 | 
            +
                    super().__init__()
         | 
| 616 | 
            +
                    resnets = []
         | 
| 617 | 
            +
                    attentions = []
         | 
| 618 | 
            +
             | 
| 619 | 
            +
                    self.has_cross_attention = True
         | 
| 620 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 621 | 
            +
             | 
| 622 | 
            +
                    for i in range(num_layers):
         | 
| 623 | 
            +
                        res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
         | 
| 624 | 
            +
                        resnet_in_channels = prev_output_channel if i == 0 else out_channels
         | 
| 625 | 
            +
             | 
| 626 | 
            +
                        resnets.append(
         | 
| 627 | 
            +
                            ResnetBlock2D(
         | 
| 628 | 
            +
                                in_channels=resnet_in_channels + res_skip_channels,
         | 
| 629 | 
            +
                                out_channels=out_channels,
         | 
| 630 | 
            +
                                temb_channels=temb_channels,
         | 
| 631 | 
            +
                                eps=resnet_eps,
         | 
| 632 | 
            +
                                groups=resnet_groups,
         | 
| 633 | 
            +
                                dropout=dropout,
         | 
| 634 | 
            +
                                time_embedding_norm=resnet_time_scale_shift,
         | 
| 635 | 
            +
                                non_linearity=resnet_act_fn,
         | 
| 636 | 
            +
                                output_scale_factor=output_scale_factor,
         | 
| 637 | 
            +
                                pre_norm=resnet_pre_norm,
         | 
| 638 | 
            +
                            )
         | 
| 639 | 
            +
                        )
         | 
| 640 | 
            +
                        if not dual_cross_attention:
         | 
| 641 | 
            +
                            attentions.append(
         | 
| 642 | 
            +
                                TransformerMV2DModel(
         | 
| 643 | 
            +
                                    num_attention_heads,
         | 
| 644 | 
            +
                                    out_channels // num_attention_heads,
         | 
| 645 | 
            +
                                    in_channels=out_channels,
         | 
| 646 | 
            +
                                    num_layers=transformer_layers_per_block,
         | 
| 647 | 
            +
                                    cross_attention_dim=cross_attention_dim,
         | 
| 648 | 
            +
                                    norm_num_groups=resnet_groups,
         | 
| 649 | 
            +
                                    use_linear_projection=use_linear_projection,
         | 
| 650 | 
            +
                                    only_cross_attention=only_cross_attention,
         | 
| 651 | 
            +
                                    upcast_attention=upcast_attention,
         | 
| 652 | 
            +
                                    num_views=num_views
         | 
| 653 | 
            +
                                )
         | 
| 654 | 
            +
                            )
         | 
| 655 | 
            +
                        else:
         | 
| 656 | 
            +
                            raise NotImplementedError
         | 
| 657 | 
            +
                    self.attentions = nn.ModuleList(attentions)
         | 
| 658 | 
            +
                    self.resnets = nn.ModuleList(resnets)
         | 
| 659 | 
            +
             | 
| 660 | 
            +
                    if add_upsample:
         | 
| 661 | 
            +
                        self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
         | 
| 662 | 
            +
                    else:
         | 
| 663 | 
            +
                        self.upsamplers = None
         | 
| 664 | 
            +
             | 
| 665 | 
            +
                    self.gradient_checkpointing = False
         | 
| 666 | 
            +
             | 
| 667 | 
            +
                def forward(
         | 
| 668 | 
            +
                    self,
         | 
| 669 | 
            +
                    hidden_states: torch.FloatTensor,
         | 
| 670 | 
            +
                    res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
         | 
| 671 | 
            +
                    temb: Optional[torch.FloatTensor] = None,
         | 
| 672 | 
            +
                    encoder_hidden_states: Optional[torch.FloatTensor] = None,
         | 
| 673 | 
            +
                    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 674 | 
            +
                    upsample_size: Optional[int] = None,
         | 
| 675 | 
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 676 | 
            +
                    encoder_attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 677 | 
            +
                ):
         | 
| 678 | 
            +
                    for resnet, attn in zip(self.resnets, self.attentions):
         | 
| 679 | 
            +
                        # pop res hidden states
         | 
| 680 | 
            +
                        res_hidden_states = res_hidden_states_tuple[-1]
         | 
| 681 | 
            +
                        res_hidden_states_tuple = res_hidden_states_tuple[:-1]
         | 
| 682 | 
            +
                        hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
         | 
| 683 | 
            +
             | 
| 684 | 
            +
                        if self.training and self.gradient_checkpointing:
         | 
| 685 | 
            +
             | 
| 686 | 
            +
                            def create_custom_forward(module, return_dict=None):
         | 
| 687 | 
            +
                                def custom_forward(*inputs):
         | 
| 688 | 
            +
                                    if return_dict is not None:
         | 
| 689 | 
            +
                                        return module(*inputs, return_dict=return_dict)
         | 
| 690 | 
            +
                                    else:
         | 
| 691 | 
            +
                                        return module(*inputs)
         | 
| 692 | 
            +
             | 
| 693 | 
            +
                                return custom_forward
         | 
| 694 | 
            +
             | 
| 695 | 
            +
                            ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
         | 
| 696 | 
            +
                            hidden_states = torch.utils.checkpoint.checkpoint(
         | 
| 697 | 
            +
                                create_custom_forward(resnet),
         | 
| 698 | 
            +
                                hidden_states,
         | 
| 699 | 
            +
                                temb,
         | 
| 700 | 
            +
                                **ckpt_kwargs,
         | 
| 701 | 
            +
                            )
         | 
| 702 | 
            +
                            hidden_states = torch.utils.checkpoint.checkpoint(
         | 
| 703 | 
            +
                                create_custom_forward(attn, return_dict=False),
         | 
| 704 | 
            +
                                hidden_states,
         | 
| 705 | 
            +
                                encoder_hidden_states,
         | 
| 706 | 
            +
                                None,  # timestep
         | 
| 707 | 
            +
                                None,  # class_labels
         | 
| 708 | 
            +
                                cross_attention_kwargs,
         | 
| 709 | 
            +
                                attention_mask,
         | 
| 710 | 
            +
                                encoder_attention_mask,
         | 
| 711 | 
            +
                                **ckpt_kwargs,
         | 
| 712 | 
            +
                            )[0]
         | 
| 713 | 
            +
                        else:
         | 
| 714 | 
            +
                            hidden_states = resnet(hidden_states, temb)
         | 
| 715 | 
            +
                            hidden_states = attn(
         | 
| 716 | 
            +
                                hidden_states,
         | 
| 717 | 
            +
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 718 | 
            +
                                cross_attention_kwargs=cross_attention_kwargs,
         | 
| 719 | 
            +
                                attention_mask=attention_mask,
         | 
| 720 | 
            +
                                encoder_attention_mask=encoder_attention_mask,
         | 
| 721 | 
            +
                                return_dict=False,
         | 
| 722 | 
            +
                            )[0]
         | 
| 723 | 
            +
             | 
| 724 | 
            +
                    if self.upsamplers is not None:
         | 
| 725 | 
            +
                        for upsampler in self.upsamplers:
         | 
| 726 | 
            +
                            hidden_states = upsampler(hidden_states, upsample_size)
         | 
| 727 | 
            +
             | 
| 728 | 
            +
                    return hidden_states
         | 
| 729 | 
            +
             | 
| 730 | 
            +
             | 
| 731 | 
            +
            class CrossAttnDownBlockMV2D(nn.Module):
         | 
| 732 | 
            +
                def __init__(
         | 
| 733 | 
            +
                    self,
         | 
| 734 | 
            +
                    in_channels: int,
         | 
| 735 | 
            +
                    out_channels: int,
         | 
| 736 | 
            +
                    temb_channels: int,
         | 
| 737 | 
            +
                    dropout: float = 0.0,
         | 
| 738 | 
            +
                    num_layers: int = 1,
         | 
| 739 | 
            +
                    transformer_layers_per_block: int = 1,
         | 
| 740 | 
            +
                    resnet_eps: float = 1e-6,
         | 
| 741 | 
            +
                    resnet_time_scale_shift: str = "default",
         | 
| 742 | 
            +
                    resnet_act_fn: str = "swish",
         | 
| 743 | 
            +
                    resnet_groups: int = 32,
         | 
| 744 | 
            +
                    resnet_pre_norm: bool = True,
         | 
| 745 | 
            +
                    num_attention_heads=1,
         | 
| 746 | 
            +
                    cross_attention_dim=1280,
         | 
| 747 | 
            +
                    output_scale_factor=1.0,
         | 
| 748 | 
            +
                    downsample_padding=1,
         | 
| 749 | 
            +
                    add_downsample=True,
         | 
| 750 | 
            +
                    dual_cross_attention=False,
         | 
| 751 | 
            +
                    use_linear_projection=False,
         | 
| 752 | 
            +
                    only_cross_attention=False,
         | 
| 753 | 
            +
                    upcast_attention=False,
         | 
| 754 | 
            +
                    num_views: int = 1
         | 
| 755 | 
            +
                ):
         | 
| 756 | 
            +
                    super().__init__()
         | 
| 757 | 
            +
                    resnets = []
         | 
| 758 | 
            +
                    attentions = []
         | 
| 759 | 
            +
             | 
| 760 | 
            +
                    self.has_cross_attention = True
         | 
| 761 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 762 | 
            +
             | 
| 763 | 
            +
                    for i in range(num_layers):
         | 
| 764 | 
            +
                        in_channels = in_channels if i == 0 else out_channels
         | 
| 765 | 
            +
                        resnets.append(
         | 
| 766 | 
            +
                            ResnetBlock2D(
         | 
| 767 | 
            +
                                in_channels=in_channels,
         | 
| 768 | 
            +
                                out_channels=out_channels,
         | 
| 769 | 
            +
                                temb_channels=temb_channels,
         | 
| 770 | 
            +
                                eps=resnet_eps,
         | 
| 771 | 
            +
                                groups=resnet_groups,
         | 
| 772 | 
            +
                                dropout=dropout,
         | 
| 773 | 
            +
                                time_embedding_norm=resnet_time_scale_shift,
         | 
| 774 | 
            +
                                non_linearity=resnet_act_fn,
         | 
| 775 | 
            +
                                output_scale_factor=output_scale_factor,
         | 
| 776 | 
            +
                                pre_norm=resnet_pre_norm,
         | 
| 777 | 
            +
                            )
         | 
| 778 | 
            +
                        )
         | 
| 779 | 
            +
                        if not dual_cross_attention:
         | 
| 780 | 
            +
                            attentions.append(
         | 
| 781 | 
            +
                                TransformerMV2DModel(
         | 
| 782 | 
            +
                                    num_attention_heads,
         | 
| 783 | 
            +
                                    out_channels // num_attention_heads,
         | 
| 784 | 
            +
                                    in_channels=out_channels,
         | 
| 785 | 
            +
                                    num_layers=transformer_layers_per_block,
         | 
| 786 | 
            +
                                    cross_attention_dim=cross_attention_dim,
         | 
| 787 | 
            +
                                    norm_num_groups=resnet_groups,
         | 
| 788 | 
            +
                                    use_linear_projection=use_linear_projection,
         | 
| 789 | 
            +
                                    only_cross_attention=only_cross_attention,
         | 
| 790 | 
            +
                                    upcast_attention=upcast_attention,
         | 
| 791 | 
            +
                                    num_views=num_views
         | 
| 792 | 
            +
                                )
         | 
| 793 | 
            +
                            )
         | 
| 794 | 
            +
                        else:
         | 
| 795 | 
            +
                            raise NotImplementedError
         | 
| 796 | 
            +
                    self.attentions = nn.ModuleList(attentions)
         | 
| 797 | 
            +
                    self.resnets = nn.ModuleList(resnets)
         | 
| 798 | 
            +
             | 
| 799 | 
            +
                    if add_downsample:
         | 
| 800 | 
            +
                        self.downsamplers = nn.ModuleList(
         | 
| 801 | 
            +
                            [
         | 
| 802 | 
            +
                                Downsample2D(
         | 
| 803 | 
            +
                                    out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
         | 
| 804 | 
            +
                                )
         | 
| 805 | 
            +
                            ]
         | 
| 806 | 
            +
                        )
         | 
| 807 | 
            +
                    else:
         | 
| 808 | 
            +
                        self.downsamplers = None
         | 
| 809 | 
            +
             | 
| 810 | 
            +
                    self.gradient_checkpointing = False
         | 
| 811 | 
            +
             | 
| 812 | 
            +
                def forward(
         | 
| 813 | 
            +
                    self,
         | 
| 814 | 
            +
                    hidden_states: torch.FloatTensor,
         | 
| 815 | 
            +
                    temb: Optional[torch.FloatTensor] = None,
         | 
| 816 | 
            +
                    encoder_hidden_states: Optional[torch.FloatTensor] = None,
         | 
| 817 | 
            +
                    attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 818 | 
            +
                    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 819 | 
            +
                    encoder_attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 820 | 
            +
                    additional_residuals=None,
         | 
| 821 | 
            +
                ):
         | 
| 822 | 
            +
                    output_states = ()
         | 
| 823 | 
            +
             | 
| 824 | 
            +
                    blocks = list(zip(self.resnets, self.attentions))
         | 
| 825 | 
            +
             | 
| 826 | 
            +
                    for i, (resnet, attn) in enumerate(blocks):
         | 
| 827 | 
            +
                        if self.training and self.gradient_checkpointing:
         | 
| 828 | 
            +
             | 
| 829 | 
            +
                            def create_custom_forward(module, return_dict=None):
         | 
| 830 | 
            +
                                def custom_forward(*inputs):
         | 
| 831 | 
            +
                                    if return_dict is not None:
         | 
| 832 | 
            +
                                        return module(*inputs, return_dict=return_dict)
         | 
| 833 | 
            +
                                    else:
         | 
| 834 | 
            +
                                        return module(*inputs)
         | 
| 835 | 
            +
             | 
| 836 | 
            +
                                return custom_forward
         | 
| 837 | 
            +
             | 
| 838 | 
            +
                            ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
         | 
| 839 | 
            +
                            hidden_states = torch.utils.checkpoint.checkpoint(
         | 
| 840 | 
            +
                                create_custom_forward(resnet),
         | 
| 841 | 
            +
                                hidden_states,
         | 
| 842 | 
            +
                                temb,
         | 
| 843 | 
            +
                                **ckpt_kwargs,
         | 
| 844 | 
            +
                            )
         | 
| 845 | 
            +
                            hidden_states = torch.utils.checkpoint.checkpoint(
         | 
| 846 | 
            +
                                create_custom_forward(attn, return_dict=False),
         | 
| 847 | 
            +
                                hidden_states,
         | 
| 848 | 
            +
                                encoder_hidden_states,
         | 
| 849 | 
            +
                                None,  # timestep
         | 
| 850 | 
            +
                                None,  # class_labels
         | 
| 851 | 
            +
                                cross_attention_kwargs,
         | 
| 852 | 
            +
                                attention_mask,
         | 
| 853 | 
            +
                                encoder_attention_mask,
         | 
| 854 | 
            +
                                **ckpt_kwargs,
         | 
| 855 | 
            +
                            )[0]
         | 
| 856 | 
            +
                        else:
         | 
| 857 | 
            +
                            hidden_states = resnet(hidden_states, temb)
         | 
| 858 | 
            +
                            hidden_states = attn(
         | 
| 859 | 
            +
                                hidden_states,
         | 
| 860 | 
            +
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 861 | 
            +
                                cross_attention_kwargs=cross_attention_kwargs,
         | 
| 862 | 
            +
                                attention_mask=attention_mask,
         | 
| 863 | 
            +
                                encoder_attention_mask=encoder_attention_mask,
         | 
| 864 | 
            +
                                return_dict=False,
         | 
| 865 | 
            +
                            )[0]
         | 
| 866 | 
            +
             | 
| 867 | 
            +
                        # apply additional residuals to the output of the last pair of resnet and attention blocks
         | 
| 868 | 
            +
                        if i == len(blocks) - 1 and additional_residuals is not None:
         | 
| 869 | 
            +
                            hidden_states = hidden_states + additional_residuals
         | 
| 870 | 
            +
             | 
| 871 | 
            +
                        output_states = output_states + (hidden_states,)
         | 
| 872 | 
            +
             | 
| 873 | 
            +
                    if self.downsamplers is not None:
         | 
| 874 | 
            +
                        for downsampler in self.downsamplers:
         | 
| 875 | 
            +
                            hidden_states = downsampler(hidden_states)
         | 
| 876 | 
            +
             | 
| 877 | 
            +
                        output_states = output_states + (hidden_states,)
         | 
| 878 | 
            +
             | 
| 879 | 
            +
                    return hidden_states, output_states
         | 
| 880 | 
            +
             | 
    	
        mvdiffusion/models/unet_mv2d_condition.py
    ADDED
    
    | @@ -0,0 +1,1462 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2023 The HuggingFace Team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
            from dataclasses import dataclass
         | 
| 15 | 
            +
            from typing import Any, Dict, List, Optional, Tuple, Union
         | 
| 16 | 
            +
            import os
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            import torch
         | 
| 19 | 
            +
            import torch.nn as nn
         | 
| 20 | 
            +
            import torch.utils.checkpoint
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            from diffusers.configuration_utils import ConfigMixin, register_to_config
         | 
| 23 | 
            +
            from diffusers.loaders import UNet2DConditionLoadersMixin
         | 
| 24 | 
            +
            from diffusers.utils import BaseOutput, logging
         | 
| 25 | 
            +
            from diffusers.models.activations import get_activation
         | 
| 26 | 
            +
            from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
         | 
| 27 | 
            +
            from diffusers.models.embeddings import (
         | 
| 28 | 
            +
                GaussianFourierProjection,
         | 
| 29 | 
            +
                ImageHintTimeEmbedding,
         | 
| 30 | 
            +
                ImageProjection,
         | 
| 31 | 
            +
                ImageTimeEmbedding,
         | 
| 32 | 
            +
                TextImageProjection,
         | 
| 33 | 
            +
                TextImageTimeEmbedding,
         | 
| 34 | 
            +
                TextTimeEmbedding,
         | 
| 35 | 
            +
                TimestepEmbedding,
         | 
| 36 | 
            +
                Timesteps,
         | 
| 37 | 
            +
            )
         | 
| 38 | 
            +
            from diffusers.models.modeling_utils import ModelMixin, load_state_dict, _load_state_dict_into_model
         | 
| 39 | 
            +
            from diffusers.models.unet_2d_blocks import (
         | 
| 40 | 
            +
                CrossAttnDownBlock2D,
         | 
| 41 | 
            +
                CrossAttnUpBlock2D,
         | 
| 42 | 
            +
                DownBlock2D,
         | 
| 43 | 
            +
                UNetMidBlock2DCrossAttn,
         | 
| 44 | 
            +
                UNetMidBlock2DSimpleCrossAttn,
         | 
| 45 | 
            +
                UpBlock2D,
         | 
| 46 | 
            +
            )
         | 
| 47 | 
            +
            from diffusers.utils import (
         | 
| 48 | 
            +
                CONFIG_NAME,
         | 
| 49 | 
            +
                DIFFUSERS_CACHE,
         | 
| 50 | 
            +
                FLAX_WEIGHTS_NAME,
         | 
| 51 | 
            +
                HF_HUB_OFFLINE,
         | 
| 52 | 
            +
                SAFETENSORS_WEIGHTS_NAME,
         | 
| 53 | 
            +
                WEIGHTS_NAME,
         | 
| 54 | 
            +
                _add_variant,
         | 
| 55 | 
            +
                _get_model_file,
         | 
| 56 | 
            +
                deprecate,
         | 
| 57 | 
            +
                is_accelerate_available,
         | 
| 58 | 
            +
                is_safetensors_available,
         | 
| 59 | 
            +
                is_torch_version,
         | 
| 60 | 
            +
                logging,
         | 
| 61 | 
            +
            )
         | 
| 62 | 
            +
            from diffusers import __version__
         | 
| 63 | 
            +
            from mvdiffusion.models.unet_mv2d_blocks import (
         | 
| 64 | 
            +
                CrossAttnDownBlockMV2D,
         | 
| 65 | 
            +
                CrossAttnUpBlockMV2D,
         | 
| 66 | 
            +
                UNetMidBlockMV2DCrossAttn,
         | 
| 67 | 
            +
                get_down_block,
         | 
| 68 | 
            +
                get_up_block,
         | 
| 69 | 
            +
            )
         | 
| 70 | 
            +
             | 
| 71 | 
            +
             | 
| 72 | 
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 73 | 
            +
             | 
| 74 | 
            +
             | 
| 75 | 
            +
            @dataclass
         | 
| 76 | 
            +
            class UNetMV2DConditionOutput(BaseOutput):
         | 
| 77 | 
            +
                """
         | 
| 78 | 
            +
                The output of [`UNet2DConditionModel`].
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                Args:
         | 
| 81 | 
            +
                    sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
         | 
| 82 | 
            +
                        The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
         | 
| 83 | 
            +
                """
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                sample: torch.FloatTensor = None
         | 
| 86 | 
            +
             | 
| 87 | 
            +
             | 
| 88 | 
            +
            class UNetMV2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
         | 
| 89 | 
            +
                r"""
         | 
| 90 | 
            +
                A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
         | 
| 91 | 
            +
                shaped output.
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
         | 
| 94 | 
            +
                for all models (such as downloading or saving).
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                Parameters:
         | 
| 97 | 
            +
                    sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
         | 
| 98 | 
            +
                        Height and width of input/output sample.
         | 
| 99 | 
            +
                    in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
         | 
| 100 | 
            +
                    out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
         | 
| 101 | 
            +
                    center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
         | 
| 102 | 
            +
                    flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
         | 
| 103 | 
            +
                        Whether to flip the sin to cos in the time embedding.
         | 
| 104 | 
            +
                    freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
         | 
| 105 | 
            +
                    down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
         | 
| 106 | 
            +
                        The tuple of downsample blocks to use.
         | 
| 107 | 
            +
                    mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
         | 
| 108 | 
            +
                        Block type for middle of UNet, it can be either `UNetMidBlock2DCrossAttn` or
         | 
| 109 | 
            +
                        `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
         | 
| 110 | 
            +
                    up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
         | 
| 111 | 
            +
                        The tuple of upsample blocks to use.
         | 
| 112 | 
            +
                    only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
         | 
| 113 | 
            +
                        Whether to include self-attention in the basic transformer blocks, see
         | 
| 114 | 
            +
                        [`~models.attention.BasicTransformerBlock`].
         | 
| 115 | 
            +
                    block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
         | 
| 116 | 
            +
                        The tuple of output channels for each block.
         | 
| 117 | 
            +
                    layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
         | 
| 118 | 
            +
                    downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
         | 
| 119 | 
            +
                    mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
         | 
| 120 | 
            +
                    act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
         | 
| 121 | 
            +
                    norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
         | 
| 122 | 
            +
                        If `None`, normalization and activation layers is skipped in post-processing.
         | 
| 123 | 
            +
                    norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
         | 
| 124 | 
            +
                    cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
         | 
| 125 | 
            +
                        The dimension of the cross attention features.
         | 
| 126 | 
            +
                    transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
         | 
| 127 | 
            +
                        The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
         | 
| 128 | 
            +
                        [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
         | 
| 129 | 
            +
                        [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
         | 
| 130 | 
            +
                    encoder_hid_dim (`int`, *optional*, defaults to None):
         | 
| 131 | 
            +
                        If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
         | 
| 132 | 
            +
                        dimension to `cross_attention_dim`.
         | 
| 133 | 
            +
                    encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
         | 
| 134 | 
            +
                        If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
         | 
| 135 | 
            +
                        embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
         | 
| 136 | 
            +
                    attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
         | 
| 137 | 
            +
                    num_attention_heads (`int`, *optional*):
         | 
| 138 | 
            +
                        The number of attention heads. If not defined, defaults to `attention_head_dim`
         | 
| 139 | 
            +
                    resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
         | 
| 140 | 
            +
                        for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
         | 
| 141 | 
            +
                    class_embed_type (`str`, *optional*, defaults to `None`):
         | 
| 142 | 
            +
                        The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
         | 
| 143 | 
            +
                        `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
         | 
| 144 | 
            +
                    addition_embed_type (`str`, *optional*, defaults to `None`):
         | 
| 145 | 
            +
                        Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
         | 
| 146 | 
            +
                        "text". "text" will use the `TextTimeEmbedding` layer.
         | 
| 147 | 
            +
                    addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
         | 
| 148 | 
            +
                        Dimension for the timestep embeddings.
         | 
| 149 | 
            +
                    num_class_embeds (`int`, *optional*, defaults to `None`):
         | 
| 150 | 
            +
                        Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
         | 
| 151 | 
            +
                        class conditioning with `class_embed_type` equal to `None`.
         | 
| 152 | 
            +
                    time_embedding_type (`str`, *optional*, defaults to `positional`):
         | 
| 153 | 
            +
                        The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
         | 
| 154 | 
            +
                    time_embedding_dim (`int`, *optional*, defaults to `None`):
         | 
| 155 | 
            +
                        An optional override for the dimension of the projected time embedding.
         | 
| 156 | 
            +
                    time_embedding_act_fn (`str`, *optional*, defaults to `None`):
         | 
| 157 | 
            +
                        Optional activation function to use only once on the time embeddings before they are passed to the rest of
         | 
| 158 | 
            +
                        the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
         | 
| 159 | 
            +
                    timestep_post_act (`str`, *optional*, defaults to `None`):
         | 
| 160 | 
            +
                        The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
         | 
| 161 | 
            +
                    time_cond_proj_dim (`int`, *optional*, defaults to `None`):
         | 
| 162 | 
            +
                        The dimension of `cond_proj` layer in the timestep embedding.
         | 
| 163 | 
            +
                    conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
         | 
| 164 | 
            +
                    conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
         | 
| 165 | 
            +
                    projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
         | 
| 166 | 
            +
                        `class_embed_type="projection"`. Required when `class_embed_type="projection"`.
         | 
| 167 | 
            +
                    class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
         | 
| 168 | 
            +
                        embeddings with the class embeddings.
         | 
| 169 | 
            +
                    mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
         | 
| 170 | 
            +
                        Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
         | 
| 171 | 
            +
                        `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
         | 
| 172 | 
            +
                        `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
         | 
| 173 | 
            +
                        otherwise.
         | 
| 174 | 
            +
                """
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                _supports_gradient_checkpointing = True
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                @register_to_config
         | 
| 179 | 
            +
                def __init__(
         | 
| 180 | 
            +
                    self,
         | 
| 181 | 
            +
                    sample_size: Optional[int] = None,
         | 
| 182 | 
            +
                    in_channels: int = 4,
         | 
| 183 | 
            +
                    out_channels: int = 4,
         | 
| 184 | 
            +
                    center_input_sample: bool = False,
         | 
| 185 | 
            +
                    flip_sin_to_cos: bool = True,
         | 
| 186 | 
            +
                    freq_shift: int = 0,
         | 
| 187 | 
            +
                    down_block_types: Tuple[str] = (
         | 
| 188 | 
            +
                        "CrossAttnDownBlockMV2D",
         | 
| 189 | 
            +
                        "CrossAttnDownBlockMV2D",
         | 
| 190 | 
            +
                        "CrossAttnDownBlockMV2D",
         | 
| 191 | 
            +
                        "DownBlock2D",
         | 
| 192 | 
            +
                    ),
         | 
| 193 | 
            +
                    mid_block_type: Optional[str] = "UNetMidBlockMV2DCrossAttn",
         | 
| 194 | 
            +
                    up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlockMV2D", "CrossAttnUpBlockMV2D", "CrossAttnUpBlockMV2D"),
         | 
| 195 | 
            +
                    only_cross_attention: Union[bool, Tuple[bool]] = False,
         | 
| 196 | 
            +
                    block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
         | 
| 197 | 
            +
                    layers_per_block: Union[int, Tuple[int]] = 2,
         | 
| 198 | 
            +
                    downsample_padding: int = 1,
         | 
| 199 | 
            +
                    mid_block_scale_factor: float = 1,
         | 
| 200 | 
            +
                    act_fn: str = "silu",
         | 
| 201 | 
            +
                    norm_num_groups: Optional[int] = 32,
         | 
| 202 | 
            +
                    norm_eps: float = 1e-5,
         | 
| 203 | 
            +
                    cross_attention_dim: Union[int, Tuple[int]] = 1280,
         | 
| 204 | 
            +
                    transformer_layers_per_block: Union[int, Tuple[int]] = 1,
         | 
| 205 | 
            +
                    encoder_hid_dim: Optional[int] = None,
         | 
| 206 | 
            +
                    encoder_hid_dim_type: Optional[str] = None,
         | 
| 207 | 
            +
                    attention_head_dim: Union[int, Tuple[int]] = 8,
         | 
| 208 | 
            +
                    num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
         | 
| 209 | 
            +
                    dual_cross_attention: bool = False,
         | 
| 210 | 
            +
                    use_linear_projection: bool = False,
         | 
| 211 | 
            +
                    class_embed_type: Optional[str] = None,
         | 
| 212 | 
            +
                    addition_embed_type: Optional[str] = None,
         | 
| 213 | 
            +
                    addition_time_embed_dim: Optional[int] = None,
         | 
| 214 | 
            +
                    num_class_embeds: Optional[int] = None,
         | 
| 215 | 
            +
                    upcast_attention: bool = False,
         | 
| 216 | 
            +
                    resnet_time_scale_shift: str = "default",
         | 
| 217 | 
            +
                    resnet_skip_time_act: bool = False,
         | 
| 218 | 
            +
                    resnet_out_scale_factor: int = 1.0,
         | 
| 219 | 
            +
                    time_embedding_type: str = "positional",
         | 
| 220 | 
            +
                    time_embedding_dim: Optional[int] = None,
         | 
| 221 | 
            +
                    time_embedding_act_fn: Optional[str] = None,
         | 
| 222 | 
            +
                    timestep_post_act: Optional[str] = None,
         | 
| 223 | 
            +
                    time_cond_proj_dim: Optional[int] = None,
         | 
| 224 | 
            +
                    conv_in_kernel: int = 3,
         | 
| 225 | 
            +
                    conv_out_kernel: int = 3,
         | 
| 226 | 
            +
                    projection_class_embeddings_input_dim: Optional[int] = None,
         | 
| 227 | 
            +
                    class_embeddings_concat: bool = False,
         | 
| 228 | 
            +
                    mid_block_only_cross_attention: Optional[bool] = None,
         | 
| 229 | 
            +
                    cross_attention_norm: Optional[str] = None,
         | 
| 230 | 
            +
                    addition_embed_type_num_heads=64,
         | 
| 231 | 
            +
                    num_views: int = 1,
         | 
| 232 | 
            +
                    joint_attention: bool = False,
         | 
| 233 | 
            +
                    joint_attention_twice: bool = False,
         | 
| 234 | 
            +
                    multiview_attention: bool = True,
         | 
| 235 | 
            +
                    cross_domain_attention: bool = False
         | 
| 236 | 
            +
                ):
         | 
| 237 | 
            +
                    super().__init__()
         | 
| 238 | 
            +
             | 
| 239 | 
            +
                    self.sample_size = sample_size
         | 
| 240 | 
            +
             | 
| 241 | 
            +
                    if num_attention_heads is not None:
         | 
| 242 | 
            +
                        raise ValueError(
         | 
| 243 | 
            +
                            "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
         | 
| 244 | 
            +
                        )
         | 
| 245 | 
            +
             | 
| 246 | 
            +
                    # If `num_attention_heads` is not defined (which is the case for most models)
         | 
| 247 | 
            +
                    # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
         | 
| 248 | 
            +
                    # The reason for this behavior is to correct for incorrectly named variables that were introduced
         | 
| 249 | 
            +
                    # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
         | 
| 250 | 
            +
                    # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
         | 
| 251 | 
            +
                    # which is why we correct for the naming here.
         | 
| 252 | 
            +
                    num_attention_heads = num_attention_heads or attention_head_dim
         | 
| 253 | 
            +
             | 
| 254 | 
            +
                    # Check inputs
         | 
| 255 | 
            +
                    if len(down_block_types) != len(up_block_types):
         | 
| 256 | 
            +
                        raise ValueError(
         | 
| 257 | 
            +
                            f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
         | 
| 258 | 
            +
                        )
         | 
| 259 | 
            +
             | 
| 260 | 
            +
                    if len(block_out_channels) != len(down_block_types):
         | 
| 261 | 
            +
                        raise ValueError(
         | 
| 262 | 
            +
                            f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
         | 
| 263 | 
            +
                        )
         | 
| 264 | 
            +
             | 
| 265 | 
            +
                    if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
         | 
| 266 | 
            +
                        raise ValueError(
         | 
| 267 | 
            +
                            f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
         | 
| 268 | 
            +
                        )
         | 
| 269 | 
            +
             | 
| 270 | 
            +
                    if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
         | 
| 271 | 
            +
                        raise ValueError(
         | 
| 272 | 
            +
                            f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
         | 
| 273 | 
            +
                        )
         | 
| 274 | 
            +
             | 
| 275 | 
            +
                    if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
         | 
| 276 | 
            +
                        raise ValueError(
         | 
| 277 | 
            +
                            f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
         | 
| 278 | 
            +
                        )
         | 
| 279 | 
            +
             | 
| 280 | 
            +
                    if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
         | 
| 281 | 
            +
                        raise ValueError(
         | 
| 282 | 
            +
                            f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
         | 
| 283 | 
            +
                        )
         | 
| 284 | 
            +
             | 
| 285 | 
            +
                    if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
         | 
| 286 | 
            +
                        raise ValueError(
         | 
| 287 | 
            +
                            f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
         | 
| 288 | 
            +
                        )
         | 
| 289 | 
            +
             | 
| 290 | 
            +
                    # input
         | 
| 291 | 
            +
                    conv_in_padding = (conv_in_kernel - 1) // 2
         | 
| 292 | 
            +
                    self.conv_in = nn.Conv2d(
         | 
| 293 | 
            +
                        in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
         | 
| 294 | 
            +
                    )
         | 
| 295 | 
            +
             | 
| 296 | 
            +
                    # time
         | 
| 297 | 
            +
                    if time_embedding_type == "fourier":
         | 
| 298 | 
            +
                        time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
         | 
| 299 | 
            +
                        if time_embed_dim % 2 != 0:
         | 
| 300 | 
            +
                            raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
         | 
| 301 | 
            +
                        self.time_proj = GaussianFourierProjection(
         | 
| 302 | 
            +
                            time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
         | 
| 303 | 
            +
                        )
         | 
| 304 | 
            +
                        timestep_input_dim = time_embed_dim
         | 
| 305 | 
            +
                    elif time_embedding_type == "positional":
         | 
| 306 | 
            +
                        time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
         | 
| 307 | 
            +
             | 
| 308 | 
            +
                        self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
         | 
| 309 | 
            +
                        timestep_input_dim = block_out_channels[0]
         | 
| 310 | 
            +
                    else:
         | 
| 311 | 
            +
                        raise ValueError(
         | 
| 312 | 
            +
                            f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
         | 
| 313 | 
            +
                        )
         | 
| 314 | 
            +
             | 
| 315 | 
            +
                    self.time_embedding = TimestepEmbedding(
         | 
| 316 | 
            +
                        timestep_input_dim,
         | 
| 317 | 
            +
                        time_embed_dim,
         | 
| 318 | 
            +
                        act_fn=act_fn,
         | 
| 319 | 
            +
                        post_act_fn=timestep_post_act,
         | 
| 320 | 
            +
                        cond_proj_dim=time_cond_proj_dim,
         | 
| 321 | 
            +
                    )
         | 
| 322 | 
            +
             | 
| 323 | 
            +
                    if encoder_hid_dim_type is None and encoder_hid_dim is not None:
         | 
| 324 | 
            +
                        encoder_hid_dim_type = "text_proj"
         | 
| 325 | 
            +
                        self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
         | 
| 326 | 
            +
                        logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
         | 
| 327 | 
            +
             | 
| 328 | 
            +
                    if encoder_hid_dim is None and encoder_hid_dim_type is not None:
         | 
| 329 | 
            +
                        raise ValueError(
         | 
| 330 | 
            +
                            f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
         | 
| 331 | 
            +
                        )
         | 
| 332 | 
            +
             | 
| 333 | 
            +
                    if encoder_hid_dim_type == "text_proj":
         | 
| 334 | 
            +
                        self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
         | 
| 335 | 
            +
                    elif encoder_hid_dim_type == "text_image_proj":
         | 
| 336 | 
            +
                        # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
         | 
| 337 | 
            +
                        # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
         | 
| 338 | 
            +
                        # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
         | 
| 339 | 
            +
                        self.encoder_hid_proj = TextImageProjection(
         | 
| 340 | 
            +
                            text_embed_dim=encoder_hid_dim,
         | 
| 341 | 
            +
                            image_embed_dim=cross_attention_dim,
         | 
| 342 | 
            +
                            cross_attention_dim=cross_attention_dim,
         | 
| 343 | 
            +
                        )
         | 
| 344 | 
            +
                    elif encoder_hid_dim_type == "image_proj":
         | 
| 345 | 
            +
                        # Kandinsky 2.2
         | 
| 346 | 
            +
                        self.encoder_hid_proj = ImageProjection(
         | 
| 347 | 
            +
                            image_embed_dim=encoder_hid_dim,
         | 
| 348 | 
            +
                            cross_attention_dim=cross_attention_dim,
         | 
| 349 | 
            +
                        )
         | 
| 350 | 
            +
                    elif encoder_hid_dim_type is not None:
         | 
| 351 | 
            +
                        raise ValueError(
         | 
| 352 | 
            +
                            f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
         | 
| 353 | 
            +
                        )
         | 
| 354 | 
            +
                    else:
         | 
| 355 | 
            +
                        self.encoder_hid_proj = None
         | 
| 356 | 
            +
             | 
| 357 | 
            +
                    # class embedding
         | 
| 358 | 
            +
                    if class_embed_type is None and num_class_embeds is not None:
         | 
| 359 | 
            +
                        self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
         | 
| 360 | 
            +
                    elif class_embed_type == "timestep":
         | 
| 361 | 
            +
                        self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
         | 
| 362 | 
            +
                    elif class_embed_type == "identity":
         | 
| 363 | 
            +
                        self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
         | 
| 364 | 
            +
                    elif class_embed_type == "projection":
         | 
| 365 | 
            +
                        if projection_class_embeddings_input_dim is None:
         | 
| 366 | 
            +
                            raise ValueError(
         | 
| 367 | 
            +
                                "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
         | 
| 368 | 
            +
                            )
         | 
| 369 | 
            +
                        # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
         | 
| 370 | 
            +
                        # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
         | 
| 371 | 
            +
                        # 2. it projects from an arbitrary input dimension.
         | 
| 372 | 
            +
                        #
         | 
| 373 | 
            +
                        # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
         | 
| 374 | 
            +
                        # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
         | 
| 375 | 
            +
                        # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
         | 
| 376 | 
            +
                        self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
         | 
| 377 | 
            +
                    elif class_embed_type == "simple_projection":
         | 
| 378 | 
            +
                        if projection_class_embeddings_input_dim is None:
         | 
| 379 | 
            +
                            raise ValueError(
         | 
| 380 | 
            +
                                "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
         | 
| 381 | 
            +
                            )
         | 
| 382 | 
            +
                        self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
         | 
| 383 | 
            +
                    else:
         | 
| 384 | 
            +
                        self.class_embedding = None
         | 
| 385 | 
            +
             | 
| 386 | 
            +
                    if addition_embed_type == "text":
         | 
| 387 | 
            +
                        if encoder_hid_dim is not None:
         | 
| 388 | 
            +
                            text_time_embedding_from_dim = encoder_hid_dim
         | 
| 389 | 
            +
                        else:
         | 
| 390 | 
            +
                            text_time_embedding_from_dim = cross_attention_dim
         | 
| 391 | 
            +
             | 
| 392 | 
            +
                        self.add_embedding = TextTimeEmbedding(
         | 
| 393 | 
            +
                            text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
         | 
| 394 | 
            +
                        )
         | 
| 395 | 
            +
                    elif addition_embed_type == "text_image":
         | 
| 396 | 
            +
                        # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
         | 
| 397 | 
            +
                        # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
         | 
| 398 | 
            +
                        # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
         | 
| 399 | 
            +
                        self.add_embedding = TextImageTimeEmbedding(
         | 
| 400 | 
            +
                            text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
         | 
| 401 | 
            +
                        )
         | 
| 402 | 
            +
                    elif addition_embed_type == "text_time":
         | 
| 403 | 
            +
                        self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
         | 
| 404 | 
            +
                        self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
         | 
| 405 | 
            +
                    elif addition_embed_type == "image":
         | 
| 406 | 
            +
                        # Kandinsky 2.2
         | 
| 407 | 
            +
                        self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
         | 
| 408 | 
            +
                    elif addition_embed_type == "image_hint":
         | 
| 409 | 
            +
                        # Kandinsky 2.2 ControlNet
         | 
| 410 | 
            +
                        self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
         | 
| 411 | 
            +
                    elif addition_embed_type is not None:
         | 
| 412 | 
            +
                        raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
         | 
| 413 | 
            +
             | 
| 414 | 
            +
                    if time_embedding_act_fn is None:
         | 
| 415 | 
            +
                        self.time_embed_act = None
         | 
| 416 | 
            +
                    else:
         | 
| 417 | 
            +
                        self.time_embed_act = get_activation(time_embedding_act_fn)
         | 
| 418 | 
            +
             | 
| 419 | 
            +
                    self.down_blocks = nn.ModuleList([])
         | 
| 420 | 
            +
                    self.up_blocks = nn.ModuleList([])
         | 
| 421 | 
            +
             | 
| 422 | 
            +
                    if isinstance(only_cross_attention, bool):
         | 
| 423 | 
            +
                        if mid_block_only_cross_attention is None:
         | 
| 424 | 
            +
                            mid_block_only_cross_attention = only_cross_attention
         | 
| 425 | 
            +
             | 
| 426 | 
            +
                        only_cross_attention = [only_cross_attention] * len(down_block_types)
         | 
| 427 | 
            +
             | 
| 428 | 
            +
                    if mid_block_only_cross_attention is None:
         | 
| 429 | 
            +
                        mid_block_only_cross_attention = False
         | 
| 430 | 
            +
             | 
| 431 | 
            +
                    if isinstance(num_attention_heads, int):
         | 
| 432 | 
            +
                        num_attention_heads = (num_attention_heads,) * len(down_block_types)
         | 
| 433 | 
            +
             | 
| 434 | 
            +
                    if isinstance(attention_head_dim, int):
         | 
| 435 | 
            +
                        attention_head_dim = (attention_head_dim,) * len(down_block_types)
         | 
| 436 | 
            +
             | 
| 437 | 
            +
                    if isinstance(cross_attention_dim, int):
         | 
| 438 | 
            +
                        cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
         | 
| 439 | 
            +
             | 
| 440 | 
            +
                    if isinstance(layers_per_block, int):
         | 
| 441 | 
            +
                        layers_per_block = [layers_per_block] * len(down_block_types)
         | 
| 442 | 
            +
             | 
| 443 | 
            +
                    if isinstance(transformer_layers_per_block, int):
         | 
| 444 | 
            +
                        transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
         | 
| 445 | 
            +
             | 
| 446 | 
            +
                    if class_embeddings_concat:
         | 
| 447 | 
            +
                        # The time embeddings are concatenated with the class embeddings. The dimension of the
         | 
| 448 | 
            +
                        # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
         | 
| 449 | 
            +
                        # regular time embeddings
         | 
| 450 | 
            +
                        blocks_time_embed_dim = time_embed_dim * 2
         | 
| 451 | 
            +
                    else:
         | 
| 452 | 
            +
                        blocks_time_embed_dim = time_embed_dim
         | 
| 453 | 
            +
             | 
| 454 | 
            +
                    # down
         | 
| 455 | 
            +
                    output_channel = block_out_channels[0]
         | 
| 456 | 
            +
                    for i, down_block_type in enumerate(down_block_types):
         | 
| 457 | 
            +
                        input_channel = output_channel
         | 
| 458 | 
            +
                        output_channel = block_out_channels[i]
         | 
| 459 | 
            +
                        is_final_block = i == len(block_out_channels) - 1
         | 
| 460 | 
            +
             | 
| 461 | 
            +
                        down_block = get_down_block(
         | 
| 462 | 
            +
                            down_block_type,
         | 
| 463 | 
            +
                            num_layers=layers_per_block[i],
         | 
| 464 | 
            +
                            transformer_layers_per_block=transformer_layers_per_block[i],
         | 
| 465 | 
            +
                            in_channels=input_channel,
         | 
| 466 | 
            +
                            out_channels=output_channel,
         | 
| 467 | 
            +
                            temb_channels=blocks_time_embed_dim,
         | 
| 468 | 
            +
                            add_downsample=not is_final_block,
         | 
| 469 | 
            +
                            resnet_eps=norm_eps,
         | 
| 470 | 
            +
                            resnet_act_fn=act_fn,
         | 
| 471 | 
            +
                            resnet_groups=norm_num_groups,
         | 
| 472 | 
            +
                            cross_attention_dim=cross_attention_dim[i],
         | 
| 473 | 
            +
                            num_attention_heads=num_attention_heads[i],
         | 
| 474 | 
            +
                            downsample_padding=downsample_padding,
         | 
| 475 | 
            +
                            dual_cross_attention=dual_cross_attention,
         | 
| 476 | 
            +
                            use_linear_projection=use_linear_projection,
         | 
| 477 | 
            +
                            only_cross_attention=only_cross_attention[i],
         | 
| 478 | 
            +
                            upcast_attention=upcast_attention,
         | 
| 479 | 
            +
                            resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 480 | 
            +
                            resnet_skip_time_act=resnet_skip_time_act,
         | 
| 481 | 
            +
                            resnet_out_scale_factor=resnet_out_scale_factor,
         | 
| 482 | 
            +
                            cross_attention_norm=cross_attention_norm,
         | 
| 483 | 
            +
                            attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
         | 
| 484 | 
            +
                            num_views=num_views
         | 
| 485 | 
            +
                        )
         | 
| 486 | 
            +
                        self.down_blocks.append(down_block)
         | 
| 487 | 
            +
             | 
| 488 | 
            +
                    # mid
         | 
| 489 | 
            +
                    if mid_block_type == "UNetMidBlock2DCrossAttn":
         | 
| 490 | 
            +
                        self.mid_block = UNetMidBlock2DCrossAttn(
         | 
| 491 | 
            +
                            transformer_layers_per_block=transformer_layers_per_block[-1],
         | 
| 492 | 
            +
                            in_channels=block_out_channels[-1],
         | 
| 493 | 
            +
                            temb_channels=blocks_time_embed_dim,
         | 
| 494 | 
            +
                            resnet_eps=norm_eps,
         | 
| 495 | 
            +
                            resnet_act_fn=act_fn,
         | 
| 496 | 
            +
                            output_scale_factor=mid_block_scale_factor,
         | 
| 497 | 
            +
                            resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 498 | 
            +
                            cross_attention_dim=cross_attention_dim[-1],
         | 
| 499 | 
            +
                            num_attention_heads=num_attention_heads[-1],
         | 
| 500 | 
            +
                            resnet_groups=norm_num_groups,
         | 
| 501 | 
            +
                            dual_cross_attention=dual_cross_attention,
         | 
| 502 | 
            +
                            use_linear_projection=use_linear_projection,
         | 
| 503 | 
            +
                            upcast_attention=upcast_attention,
         | 
| 504 | 
            +
                        )
         | 
| 505 | 
            +
                    # custom MV2D attention block  
         | 
| 506 | 
            +
                    elif mid_block_type == "UNetMidBlockMV2DCrossAttn":
         | 
| 507 | 
            +
                        self.mid_block = UNetMidBlockMV2DCrossAttn(
         | 
| 508 | 
            +
                            transformer_layers_per_block=transformer_layers_per_block[-1],
         | 
| 509 | 
            +
                            in_channels=block_out_channels[-1],
         | 
| 510 | 
            +
                            temb_channels=blocks_time_embed_dim,
         | 
| 511 | 
            +
                            resnet_eps=norm_eps,
         | 
| 512 | 
            +
                            resnet_act_fn=act_fn,
         | 
| 513 | 
            +
                            output_scale_factor=mid_block_scale_factor,
         | 
| 514 | 
            +
                            resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 515 | 
            +
                            cross_attention_dim=cross_attention_dim[-1],
         | 
| 516 | 
            +
                            num_attention_heads=num_attention_heads[-1],
         | 
| 517 | 
            +
                            resnet_groups=norm_num_groups,
         | 
| 518 | 
            +
                            dual_cross_attention=dual_cross_attention,
         | 
| 519 | 
            +
                            use_linear_projection=use_linear_projection,
         | 
| 520 | 
            +
                            upcast_attention=upcast_attention,
         | 
| 521 | 
            +
                            num_views=num_views,
         | 
| 522 | 
            +
                            joint_attention=joint_attention,
         | 
| 523 | 
            +
                            joint_attention_twice=joint_attention_twice,
         | 
| 524 | 
            +
                            multiview_attention=multiview_attention,
         | 
| 525 | 
            +
                            cross_domain_attention=cross_domain_attention
         | 
| 526 | 
            +
                        )
         | 
| 527 | 
            +
                    elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
         | 
| 528 | 
            +
                        self.mid_block = UNetMidBlock2DSimpleCrossAttn(
         | 
| 529 | 
            +
                            in_channels=block_out_channels[-1],
         | 
| 530 | 
            +
                            temb_channels=blocks_time_embed_dim,
         | 
| 531 | 
            +
                            resnet_eps=norm_eps,
         | 
| 532 | 
            +
                            resnet_act_fn=act_fn,
         | 
| 533 | 
            +
                            output_scale_factor=mid_block_scale_factor,
         | 
| 534 | 
            +
                            cross_attention_dim=cross_attention_dim[-1],
         | 
| 535 | 
            +
                            attention_head_dim=attention_head_dim[-1],
         | 
| 536 | 
            +
                            resnet_groups=norm_num_groups,
         | 
| 537 | 
            +
                            resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 538 | 
            +
                            skip_time_act=resnet_skip_time_act,
         | 
| 539 | 
            +
                            only_cross_attention=mid_block_only_cross_attention,
         | 
| 540 | 
            +
                            cross_attention_norm=cross_attention_norm,
         | 
| 541 | 
            +
                        )
         | 
| 542 | 
            +
                    elif mid_block_type is None:
         | 
| 543 | 
            +
                        self.mid_block = None
         | 
| 544 | 
            +
                    else:
         | 
| 545 | 
            +
                        raise ValueError(f"unknown mid_block_type : {mid_block_type}")
         | 
| 546 | 
            +
             | 
| 547 | 
            +
                    # count how many layers upsample the images
         | 
| 548 | 
            +
                    self.num_upsamplers = 0
         | 
| 549 | 
            +
             | 
| 550 | 
            +
                    # up
         | 
| 551 | 
            +
                    reversed_block_out_channels = list(reversed(block_out_channels))
         | 
| 552 | 
            +
                    reversed_num_attention_heads = list(reversed(num_attention_heads))
         | 
| 553 | 
            +
                    reversed_layers_per_block = list(reversed(layers_per_block))
         | 
| 554 | 
            +
                    reversed_cross_attention_dim = list(reversed(cross_attention_dim))
         | 
| 555 | 
            +
                    reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
         | 
| 556 | 
            +
                    only_cross_attention = list(reversed(only_cross_attention))
         | 
| 557 | 
            +
             | 
| 558 | 
            +
                    output_channel = reversed_block_out_channels[0]
         | 
| 559 | 
            +
                    for i, up_block_type in enumerate(up_block_types):
         | 
| 560 | 
            +
                        is_final_block = i == len(block_out_channels) - 1
         | 
| 561 | 
            +
             | 
| 562 | 
            +
                        prev_output_channel = output_channel
         | 
| 563 | 
            +
                        output_channel = reversed_block_out_channels[i]
         | 
| 564 | 
            +
                        input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
         | 
| 565 | 
            +
             | 
| 566 | 
            +
                        # add upsample block for all BUT final layer
         | 
| 567 | 
            +
                        if not is_final_block:
         | 
| 568 | 
            +
                            add_upsample = True
         | 
| 569 | 
            +
                            self.num_upsamplers += 1
         | 
| 570 | 
            +
                        else:
         | 
| 571 | 
            +
                            add_upsample = False
         | 
| 572 | 
            +
             | 
| 573 | 
            +
                        up_block = get_up_block(
         | 
| 574 | 
            +
                            up_block_type,
         | 
| 575 | 
            +
                            num_layers=reversed_layers_per_block[i] + 1,
         | 
| 576 | 
            +
                            transformer_layers_per_block=reversed_transformer_layers_per_block[i],
         | 
| 577 | 
            +
                            in_channels=input_channel,
         | 
| 578 | 
            +
                            out_channels=output_channel,
         | 
| 579 | 
            +
                            prev_output_channel=prev_output_channel,
         | 
| 580 | 
            +
                            temb_channels=blocks_time_embed_dim,
         | 
| 581 | 
            +
                            add_upsample=add_upsample,
         | 
| 582 | 
            +
                            resnet_eps=norm_eps,
         | 
| 583 | 
            +
                            resnet_act_fn=act_fn,
         | 
| 584 | 
            +
                            resnet_groups=norm_num_groups,
         | 
| 585 | 
            +
                            cross_attention_dim=reversed_cross_attention_dim[i],
         | 
| 586 | 
            +
                            num_attention_heads=reversed_num_attention_heads[i],
         | 
| 587 | 
            +
                            dual_cross_attention=dual_cross_attention,
         | 
| 588 | 
            +
                            use_linear_projection=use_linear_projection,
         | 
| 589 | 
            +
                            only_cross_attention=only_cross_attention[i],
         | 
| 590 | 
            +
                            upcast_attention=upcast_attention,
         | 
| 591 | 
            +
                            resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 592 | 
            +
                            resnet_skip_time_act=resnet_skip_time_act,
         | 
| 593 | 
            +
                            resnet_out_scale_factor=resnet_out_scale_factor,
         | 
| 594 | 
            +
                            cross_attention_norm=cross_attention_norm,
         | 
| 595 | 
            +
                            attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
         | 
| 596 | 
            +
                            num_views=num_views
         | 
| 597 | 
            +
                        )
         | 
| 598 | 
            +
                        self.up_blocks.append(up_block)
         | 
| 599 | 
            +
                        prev_output_channel = output_channel
         | 
| 600 | 
            +
             | 
| 601 | 
            +
                    # out
         | 
| 602 | 
            +
                    if norm_num_groups is not None:
         | 
| 603 | 
            +
                        self.conv_norm_out = nn.GroupNorm(
         | 
| 604 | 
            +
                            num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
         | 
| 605 | 
            +
                        )
         | 
| 606 | 
            +
             | 
| 607 | 
            +
                        self.conv_act = get_activation(act_fn)
         | 
| 608 | 
            +
             | 
| 609 | 
            +
                    else:
         | 
| 610 | 
            +
                        self.conv_norm_out = None
         | 
| 611 | 
            +
                        self.conv_act = None
         | 
| 612 | 
            +
             | 
| 613 | 
            +
                    conv_out_padding = (conv_out_kernel - 1) // 2
         | 
| 614 | 
            +
                    self.conv_out = nn.Conv2d(
         | 
| 615 | 
            +
                        block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
         | 
| 616 | 
            +
                    )
         | 
| 617 | 
            +
             | 
| 618 | 
            +
                @property
         | 
| 619 | 
            +
                def attn_processors(self) -> Dict[str, AttentionProcessor]:
         | 
| 620 | 
            +
                    r"""
         | 
| 621 | 
            +
                    Returns:
         | 
| 622 | 
            +
                        `dict` of attention processors: A dictionary containing all attention processors used in the model with
         | 
| 623 | 
            +
                        indexed by its weight name.
         | 
| 624 | 
            +
                    """
         | 
| 625 | 
            +
                    # set recursively
         | 
| 626 | 
            +
                    processors = {}
         | 
| 627 | 
            +
             | 
| 628 | 
            +
                    def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
         | 
| 629 | 
            +
                        if hasattr(module, "set_processor"):
         | 
| 630 | 
            +
                            processors[f"{name}.processor"] = module.processor
         | 
| 631 | 
            +
             | 
| 632 | 
            +
                        for sub_name, child in module.named_children():
         | 
| 633 | 
            +
                            fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
         | 
| 634 | 
            +
             | 
| 635 | 
            +
                        return processors
         | 
| 636 | 
            +
             | 
| 637 | 
            +
                    for name, module in self.named_children():
         | 
| 638 | 
            +
                        fn_recursive_add_processors(name, module, processors)
         | 
| 639 | 
            +
             | 
| 640 | 
            +
                    return processors
         | 
| 641 | 
            +
             | 
| 642 | 
            +
                def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
         | 
| 643 | 
            +
                    r"""
         | 
| 644 | 
            +
                    Sets the attention processor to use to compute attention.
         | 
| 645 | 
            +
             | 
| 646 | 
            +
                    Parameters:
         | 
| 647 | 
            +
                        processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
         | 
| 648 | 
            +
                            The instantiated processor class or a dictionary of processor classes that will be set as the processor
         | 
| 649 | 
            +
                            for **all** `Attention` layers.
         | 
| 650 | 
            +
             | 
| 651 | 
            +
                            If `processor` is a dict, the key needs to define the path to the corresponding cross attention
         | 
| 652 | 
            +
                            processor. This is strongly recommended when setting trainable attention processors.
         | 
| 653 | 
            +
             | 
| 654 | 
            +
                    """
         | 
| 655 | 
            +
                    count = len(self.attn_processors.keys())
         | 
| 656 | 
            +
             | 
| 657 | 
            +
                    if isinstance(processor, dict) and len(processor) != count:
         | 
| 658 | 
            +
                        raise ValueError(
         | 
| 659 | 
            +
                            f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
         | 
| 660 | 
            +
                            f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
         | 
| 661 | 
            +
                        )
         | 
| 662 | 
            +
             | 
| 663 | 
            +
                    def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
         | 
| 664 | 
            +
                        if hasattr(module, "set_processor"):
         | 
| 665 | 
            +
                            if not isinstance(processor, dict):
         | 
| 666 | 
            +
                                module.set_processor(processor)
         | 
| 667 | 
            +
                            else:
         | 
| 668 | 
            +
                                module.set_processor(processor.pop(f"{name}.processor"))
         | 
| 669 | 
            +
             | 
| 670 | 
            +
                        for sub_name, child in module.named_children():
         | 
| 671 | 
            +
                            fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
         | 
| 672 | 
            +
             | 
| 673 | 
            +
                    for name, module in self.named_children():
         | 
| 674 | 
            +
                        fn_recursive_attn_processor(name, module, processor)
         | 
| 675 | 
            +
             | 
| 676 | 
            +
                def set_default_attn_processor(self):
         | 
| 677 | 
            +
                    """
         | 
| 678 | 
            +
                    Disables custom attention processors and sets the default attention implementation.
         | 
| 679 | 
            +
                    """
         | 
| 680 | 
            +
                    self.set_attn_processor(AttnProcessor())
         | 
| 681 | 
            +
             | 
| 682 | 
            +
                def set_attention_slice(self, slice_size):
         | 
| 683 | 
            +
                    r"""
         | 
| 684 | 
            +
                    Enable sliced attention computation.
         | 
| 685 | 
            +
             | 
| 686 | 
            +
                    When this option is enabled, the attention module splits the input tensor in slices to compute attention in
         | 
| 687 | 
            +
                    several steps. This is useful for saving some memory in exchange for a small decrease in speed.
         | 
| 688 | 
            +
             | 
| 689 | 
            +
                    Args:
         | 
| 690 | 
            +
                        slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
         | 
| 691 | 
            +
                            When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
         | 
| 692 | 
            +
                            `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
         | 
| 693 | 
            +
                            provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
         | 
| 694 | 
            +
                            must be a multiple of `slice_size`.
         | 
| 695 | 
            +
                    """
         | 
| 696 | 
            +
                    sliceable_head_dims = []
         | 
| 697 | 
            +
             | 
| 698 | 
            +
                    def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
         | 
| 699 | 
            +
                        if hasattr(module, "set_attention_slice"):
         | 
| 700 | 
            +
                            sliceable_head_dims.append(module.sliceable_head_dim)
         | 
| 701 | 
            +
             | 
| 702 | 
            +
                        for child in module.children():
         | 
| 703 | 
            +
                            fn_recursive_retrieve_sliceable_dims(child)
         | 
| 704 | 
            +
             | 
| 705 | 
            +
                    # retrieve number of attention layers
         | 
| 706 | 
            +
                    for module in self.children():
         | 
| 707 | 
            +
                        fn_recursive_retrieve_sliceable_dims(module)
         | 
| 708 | 
            +
             | 
| 709 | 
            +
                    num_sliceable_layers = len(sliceable_head_dims)
         | 
| 710 | 
            +
             | 
| 711 | 
            +
                    if slice_size == "auto":
         | 
| 712 | 
            +
                        # half the attention head size is usually a good trade-off between
         | 
| 713 | 
            +
                        # speed and memory
         | 
| 714 | 
            +
                        slice_size = [dim // 2 for dim in sliceable_head_dims]
         | 
| 715 | 
            +
                    elif slice_size == "max":
         | 
| 716 | 
            +
                        # make smallest slice possible
         | 
| 717 | 
            +
                        slice_size = num_sliceable_layers * [1]
         | 
| 718 | 
            +
             | 
| 719 | 
            +
                    slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
         | 
| 720 | 
            +
             | 
| 721 | 
            +
                    if len(slice_size) != len(sliceable_head_dims):
         | 
| 722 | 
            +
                        raise ValueError(
         | 
| 723 | 
            +
                            f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
         | 
| 724 | 
            +
                            f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
         | 
| 725 | 
            +
                        )
         | 
| 726 | 
            +
             | 
| 727 | 
            +
                    for i in range(len(slice_size)):
         | 
| 728 | 
            +
                        size = slice_size[i]
         | 
| 729 | 
            +
                        dim = sliceable_head_dims[i]
         | 
| 730 | 
            +
                        if size is not None and size > dim:
         | 
| 731 | 
            +
                            raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
         | 
| 732 | 
            +
             | 
| 733 | 
            +
                    # Recursively walk through all the children.
         | 
| 734 | 
            +
                    # Any children which exposes the set_attention_slice method
         | 
| 735 | 
            +
                    # gets the message
         | 
| 736 | 
            +
                    def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
         | 
| 737 | 
            +
                        if hasattr(module, "set_attention_slice"):
         | 
| 738 | 
            +
                            module.set_attention_slice(slice_size.pop())
         | 
| 739 | 
            +
             | 
| 740 | 
            +
                        for child in module.children():
         | 
| 741 | 
            +
                            fn_recursive_set_attention_slice(child, slice_size)
         | 
| 742 | 
            +
             | 
| 743 | 
            +
                    reversed_slice_size = list(reversed(slice_size))
         | 
| 744 | 
            +
                    for module in self.children():
         | 
| 745 | 
            +
                        fn_recursive_set_attention_slice(module, reversed_slice_size)
         | 
| 746 | 
            +
             | 
| 747 | 
            +
                def _set_gradient_checkpointing(self, module, value=False):
         | 
| 748 | 
            +
                    if isinstance(module, (CrossAttnDownBlock2D, CrossAttnDownBlockMV2D, DownBlock2D, CrossAttnUpBlock2D, CrossAttnUpBlockMV2D, UpBlock2D)):
         | 
| 749 | 
            +
                        module.gradient_checkpointing = value
         | 
| 750 | 
            +
             | 
| 751 | 
            +
                def forward(
         | 
| 752 | 
            +
                    self,
         | 
| 753 | 
            +
                    sample: torch.FloatTensor,
         | 
| 754 | 
            +
                    timestep: Union[torch.Tensor, float, int],
         | 
| 755 | 
            +
                    encoder_hidden_states: torch.Tensor,
         | 
| 756 | 
            +
                    class_labels: Optional[torch.Tensor] = None,
         | 
| 757 | 
            +
                    timestep_cond: Optional[torch.Tensor] = None,
         | 
| 758 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 759 | 
            +
                    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 760 | 
            +
                    added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
         | 
| 761 | 
            +
                    down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
         | 
| 762 | 
            +
                    mid_block_additional_residual: Optional[torch.Tensor] = None,
         | 
| 763 | 
            +
                    encoder_attention_mask: Optional[torch.Tensor] = None,
         | 
| 764 | 
            +
                    return_dict: bool = True,
         | 
| 765 | 
            +
                ) -> Union[UNetMV2DConditionOutput, Tuple]:
         | 
| 766 | 
            +
                    r"""
         | 
| 767 | 
            +
                    The [`UNet2DConditionModel`] forward method.
         | 
| 768 | 
            +
             | 
| 769 | 
            +
                    Args:
         | 
| 770 | 
            +
                        sample (`torch.FloatTensor`):
         | 
| 771 | 
            +
                            The noisy input tensor with the following shape `(batch, channel, height, width)`.
         | 
| 772 | 
            +
                        timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
         | 
| 773 | 
            +
                        encoder_hidden_states (`torch.FloatTensor`):
         | 
| 774 | 
            +
                            The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
         | 
| 775 | 
            +
                        encoder_attention_mask (`torch.Tensor`):
         | 
| 776 | 
            +
                            A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
         | 
| 777 | 
            +
                            `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
         | 
| 778 | 
            +
                            which adds large negative values to the attention scores corresponding to "discard" tokens.
         | 
| 779 | 
            +
                        return_dict (`bool`, *optional*, defaults to `True`):
         | 
| 780 | 
            +
                            Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
         | 
| 781 | 
            +
                            tuple.
         | 
| 782 | 
            +
                        cross_attention_kwargs (`dict`, *optional*):
         | 
| 783 | 
            +
                            A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
         | 
| 784 | 
            +
                        added_cond_kwargs: (`dict`, *optional*):
         | 
| 785 | 
            +
                            A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
         | 
| 786 | 
            +
                            are passed along to the UNet blocks.
         | 
| 787 | 
            +
             | 
| 788 | 
            +
                    Returns:
         | 
| 789 | 
            +
                        [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
         | 
| 790 | 
            +
                            If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
         | 
| 791 | 
            +
                            a `tuple` is returned where the first element is the sample tensor.
         | 
| 792 | 
            +
                    """
         | 
| 793 | 
            +
                    # By default samples have to be AT least a multiple of the overall upsampling factor.
         | 
| 794 | 
            +
                    # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
         | 
| 795 | 
            +
                    # However, the upsampling interpolation output size can be forced to fit any upsampling size
         | 
| 796 | 
            +
                    # on the fly if necessary.
         | 
| 797 | 
            +
                    default_overall_up_factor = 2**self.num_upsamplers
         | 
| 798 | 
            +
             | 
| 799 | 
            +
                    # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
         | 
| 800 | 
            +
                    forward_upsample_size = False
         | 
| 801 | 
            +
                    upsample_size = None
         | 
| 802 | 
            +
             | 
| 803 | 
            +
                    if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
         | 
| 804 | 
            +
                        logger.info("Forward upsample size to force interpolation output size.")
         | 
| 805 | 
            +
                        forward_upsample_size = True
         | 
| 806 | 
            +
             | 
| 807 | 
            +
                    # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
         | 
| 808 | 
            +
                    # expects mask of shape:
         | 
| 809 | 
            +
                    #   [batch, key_tokens]
         | 
| 810 | 
            +
                    # adds singleton query_tokens dimension:
         | 
| 811 | 
            +
                    #   [batch,                    1, key_tokens]
         | 
| 812 | 
            +
                    # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
         | 
| 813 | 
            +
                    #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
         | 
| 814 | 
            +
                    #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
         | 
| 815 | 
            +
                    if attention_mask is not None:
         | 
| 816 | 
            +
                        # assume that mask is expressed as:
         | 
| 817 | 
            +
                        #   (1 = keep,      0 = discard)
         | 
| 818 | 
            +
                        # convert mask into a bias that can be added to attention scores:
         | 
| 819 | 
            +
                        #       (keep = +0,     discard = -10000.0)
         | 
| 820 | 
            +
                        attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
         | 
| 821 | 
            +
                        attention_mask = attention_mask.unsqueeze(1)
         | 
| 822 | 
            +
             | 
| 823 | 
            +
                    # convert encoder_attention_mask to a bias the same way we do for attention_mask
         | 
| 824 | 
            +
                    if encoder_attention_mask is not None:
         | 
| 825 | 
            +
                        encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
         | 
| 826 | 
            +
                        encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
         | 
| 827 | 
            +
             | 
| 828 | 
            +
                    # 0. center input if necessary
         | 
| 829 | 
            +
                    if self.config.center_input_sample:
         | 
| 830 | 
            +
                        sample = 2 * sample - 1.0
         | 
| 831 | 
            +
             | 
| 832 | 
            +
                    # 1. time
         | 
| 833 | 
            +
                    timesteps = timestep
         | 
| 834 | 
            +
                    if not torch.is_tensor(timesteps):
         | 
| 835 | 
            +
                        # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
         | 
| 836 | 
            +
                        # This would be a good case for the `match` statement (Python 3.10+)
         | 
| 837 | 
            +
                        is_mps = sample.device.type == "mps"
         | 
| 838 | 
            +
                        if isinstance(timestep, float):
         | 
| 839 | 
            +
                            dtype = torch.float32 if is_mps else torch.float64
         | 
| 840 | 
            +
                        else:
         | 
| 841 | 
            +
                            dtype = torch.int32 if is_mps else torch.int64
         | 
| 842 | 
            +
                        timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
         | 
| 843 | 
            +
                    elif len(timesteps.shape) == 0:
         | 
| 844 | 
            +
                        timesteps = timesteps[None].to(sample.device)
         | 
| 845 | 
            +
             | 
| 846 | 
            +
                    # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
         | 
| 847 | 
            +
                    timesteps = timesteps.expand(sample.shape[0])
         | 
| 848 | 
            +
             | 
| 849 | 
            +
                    t_emb = self.time_proj(timesteps)
         | 
| 850 | 
            +
             | 
| 851 | 
            +
                    # `Timesteps` does not contain any weights and will always return f32 tensors
         | 
| 852 | 
            +
                    # but time_embedding might actually be running in fp16. so we need to cast here.
         | 
| 853 | 
            +
                    # there might be better ways to encapsulate this.
         | 
| 854 | 
            +
                    t_emb = t_emb.to(dtype=sample.dtype)
         | 
| 855 | 
            +
             | 
| 856 | 
            +
                    emb = self.time_embedding(t_emb, timestep_cond)
         | 
| 857 | 
            +
                    aug_emb = None
         | 
| 858 | 
            +
             | 
| 859 | 
            +
                    if self.class_embedding is not None:
         | 
| 860 | 
            +
                        if class_labels is None:
         | 
| 861 | 
            +
                            raise ValueError("class_labels should be provided when num_class_embeds > 0")
         | 
| 862 | 
            +
             | 
| 863 | 
            +
                        if self.config.class_embed_type == "timestep":
         | 
| 864 | 
            +
                            class_labels = self.time_proj(class_labels)
         | 
| 865 | 
            +
             | 
| 866 | 
            +
                            # `Timesteps` does not contain any weights and will always return f32 tensors
         | 
| 867 | 
            +
                            # there might be better ways to encapsulate this.
         | 
| 868 | 
            +
                            class_labels = class_labels.to(dtype=sample.dtype)
         | 
| 869 | 
            +
             | 
| 870 | 
            +
                        class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
         | 
| 871 | 
            +
             | 
| 872 | 
            +
                        if self.config.class_embeddings_concat:
         | 
| 873 | 
            +
                            emb = torch.cat([emb, class_emb], dim=-1)
         | 
| 874 | 
            +
                        else:
         | 
| 875 | 
            +
                            emb = emb + class_emb
         | 
| 876 | 
            +
             | 
| 877 | 
            +
                    if self.config.addition_embed_type == "text":
         | 
| 878 | 
            +
                        aug_emb = self.add_embedding(encoder_hidden_states)
         | 
| 879 | 
            +
                    elif self.config.addition_embed_type == "text_image":
         | 
| 880 | 
            +
                        # Kandinsky 2.1 - style
         | 
| 881 | 
            +
                        if "image_embeds" not in added_cond_kwargs:
         | 
| 882 | 
            +
                            raise ValueError(
         | 
| 883 | 
            +
                                f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
         | 
| 884 | 
            +
                            )
         | 
| 885 | 
            +
             | 
| 886 | 
            +
                        image_embs = added_cond_kwargs.get("image_embeds")
         | 
| 887 | 
            +
                        text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
         | 
| 888 | 
            +
                        aug_emb = self.add_embedding(text_embs, image_embs)
         | 
| 889 | 
            +
                    elif self.config.addition_embed_type == "text_time":
         | 
| 890 | 
            +
                        # SDXL - style
         | 
| 891 | 
            +
                        if "text_embeds" not in added_cond_kwargs:
         | 
| 892 | 
            +
                            raise ValueError(
         | 
| 893 | 
            +
                                f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
         | 
| 894 | 
            +
                            )
         | 
| 895 | 
            +
                        text_embeds = added_cond_kwargs.get("text_embeds")
         | 
| 896 | 
            +
                        if "time_ids" not in added_cond_kwargs:
         | 
| 897 | 
            +
                            raise ValueError(
         | 
| 898 | 
            +
                                f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
         | 
| 899 | 
            +
                            )
         | 
| 900 | 
            +
                        time_ids = added_cond_kwargs.get("time_ids")
         | 
| 901 | 
            +
                        time_embeds = self.add_time_proj(time_ids.flatten())
         | 
| 902 | 
            +
                        time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
         | 
| 903 | 
            +
             | 
| 904 | 
            +
                        add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
         | 
| 905 | 
            +
                        add_embeds = add_embeds.to(emb.dtype)
         | 
| 906 | 
            +
                        aug_emb = self.add_embedding(add_embeds)
         | 
| 907 | 
            +
                    elif self.config.addition_embed_type == "image":
         | 
| 908 | 
            +
                        # Kandinsky 2.2 - style
         | 
| 909 | 
            +
                        if "image_embeds" not in added_cond_kwargs:
         | 
| 910 | 
            +
                            raise ValueError(
         | 
| 911 | 
            +
                                f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
         | 
| 912 | 
            +
                            )
         | 
| 913 | 
            +
                        image_embs = added_cond_kwargs.get("image_embeds")
         | 
| 914 | 
            +
                        aug_emb = self.add_embedding(image_embs)
         | 
| 915 | 
            +
                    elif self.config.addition_embed_type == "image_hint":
         | 
| 916 | 
            +
                        # Kandinsky 2.2 - style
         | 
| 917 | 
            +
                        if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
         | 
| 918 | 
            +
                            raise ValueError(
         | 
| 919 | 
            +
                                f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
         | 
| 920 | 
            +
                            )
         | 
| 921 | 
            +
                        image_embs = added_cond_kwargs.get("image_embeds")
         | 
| 922 | 
            +
                        hint = added_cond_kwargs.get("hint")
         | 
| 923 | 
            +
                        aug_emb, hint = self.add_embedding(image_embs, hint)
         | 
| 924 | 
            +
                        sample = torch.cat([sample, hint], dim=1)
         | 
| 925 | 
            +
             | 
| 926 | 
            +
                    emb = emb + aug_emb if aug_emb is not None else emb
         | 
| 927 | 
            +
             | 
| 928 | 
            +
                    if self.time_embed_act is not None:
         | 
| 929 | 
            +
                        emb = self.time_embed_act(emb)
         | 
| 930 | 
            +
             | 
| 931 | 
            +
                    if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
         | 
| 932 | 
            +
                        encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
         | 
| 933 | 
            +
                    elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
         | 
| 934 | 
            +
                        # Kadinsky 2.1 - style
         | 
| 935 | 
            +
                        if "image_embeds" not in added_cond_kwargs:
         | 
| 936 | 
            +
                            raise ValueError(
         | 
| 937 | 
            +
                                f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
         | 
| 938 | 
            +
                            )
         | 
| 939 | 
            +
             | 
| 940 | 
            +
                        image_embeds = added_cond_kwargs.get("image_embeds")
         | 
| 941 | 
            +
                        encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
         | 
| 942 | 
            +
                    elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
         | 
| 943 | 
            +
                        # Kandinsky 2.2 - style
         | 
| 944 | 
            +
                        if "image_embeds" not in added_cond_kwargs:
         | 
| 945 | 
            +
                            raise ValueError(
         | 
| 946 | 
            +
                                f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
         | 
| 947 | 
            +
                            )
         | 
| 948 | 
            +
                        image_embeds = added_cond_kwargs.get("image_embeds")
         | 
| 949 | 
            +
                        encoder_hidden_states = self.encoder_hid_proj(image_embeds)
         | 
| 950 | 
            +
                    # 2. pre-process
         | 
| 951 | 
            +
                    sample = self.conv_in(sample)
         | 
| 952 | 
            +
             | 
| 953 | 
            +
                    # 3. down
         | 
| 954 | 
            +
             | 
| 955 | 
            +
                    is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
         | 
| 956 | 
            +
                    is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None
         | 
| 957 | 
            +
             | 
| 958 | 
            +
                    down_block_res_samples = (sample,)
         | 
| 959 | 
            +
                    for downsample_block in self.down_blocks:
         | 
| 960 | 
            +
                        if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
         | 
| 961 | 
            +
                            # For t2i-adapter CrossAttnDownBlock2D
         | 
| 962 | 
            +
                            additional_residuals = {}
         | 
| 963 | 
            +
                            if is_adapter and len(down_block_additional_residuals) > 0:
         | 
| 964 | 
            +
                                additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0)
         | 
| 965 | 
            +
             | 
| 966 | 
            +
                            sample, res_samples = downsample_block(
         | 
| 967 | 
            +
                                hidden_states=sample,
         | 
| 968 | 
            +
                                temb=emb,
         | 
| 969 | 
            +
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 970 | 
            +
                                attention_mask=attention_mask,
         | 
| 971 | 
            +
                                cross_attention_kwargs=cross_attention_kwargs,
         | 
| 972 | 
            +
                                encoder_attention_mask=encoder_attention_mask,
         | 
| 973 | 
            +
                                **additional_residuals,
         | 
| 974 | 
            +
                            )
         | 
| 975 | 
            +
                        else:
         | 
| 976 | 
            +
                            sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
         | 
| 977 | 
            +
             | 
| 978 | 
            +
                            if is_adapter and len(down_block_additional_residuals) > 0:
         | 
| 979 | 
            +
                                sample += down_block_additional_residuals.pop(0)
         | 
| 980 | 
            +
             | 
| 981 | 
            +
                        down_block_res_samples += res_samples
         | 
| 982 | 
            +
             | 
| 983 | 
            +
                    if is_controlnet:
         | 
| 984 | 
            +
                        new_down_block_res_samples = ()
         | 
| 985 | 
            +
             | 
| 986 | 
            +
                        for down_block_res_sample, down_block_additional_residual in zip(
         | 
| 987 | 
            +
                            down_block_res_samples, down_block_additional_residuals
         | 
| 988 | 
            +
                        ):
         | 
| 989 | 
            +
                            down_block_res_sample = down_block_res_sample + down_block_additional_residual
         | 
| 990 | 
            +
                            new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
         | 
| 991 | 
            +
             | 
| 992 | 
            +
                        down_block_res_samples = new_down_block_res_samples
         | 
| 993 | 
            +
             | 
| 994 | 
            +
                    # 4. mid
         | 
| 995 | 
            +
                    if self.mid_block is not None:
         | 
| 996 | 
            +
                        sample = self.mid_block(
         | 
| 997 | 
            +
                            sample,
         | 
| 998 | 
            +
                            emb,
         | 
| 999 | 
            +
                            encoder_hidden_states=encoder_hidden_states,
         | 
| 1000 | 
            +
                            attention_mask=attention_mask,
         | 
| 1001 | 
            +
                            cross_attention_kwargs=cross_attention_kwargs,
         | 
| 1002 | 
            +
                            encoder_attention_mask=encoder_attention_mask,
         | 
| 1003 | 
            +
                        )
         | 
| 1004 | 
            +
             | 
| 1005 | 
            +
                    if is_controlnet:
         | 
| 1006 | 
            +
                        sample = sample + mid_block_additional_residual
         | 
| 1007 | 
            +
             | 
| 1008 | 
            +
                    # 5. up
         | 
| 1009 | 
            +
                    for i, upsample_block in enumerate(self.up_blocks):
         | 
| 1010 | 
            +
                        is_final_block = i == len(self.up_blocks) - 1
         | 
| 1011 | 
            +
             | 
| 1012 | 
            +
                        res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
         | 
| 1013 | 
            +
                        down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
         | 
| 1014 | 
            +
             | 
| 1015 | 
            +
                        # if we have not reached the final block and need to forward the
         | 
| 1016 | 
            +
                        # upsample size, we do it here
         | 
| 1017 | 
            +
                        if not is_final_block and forward_upsample_size:
         | 
| 1018 | 
            +
                            upsample_size = down_block_res_samples[-1].shape[2:]
         | 
| 1019 | 
            +
             | 
| 1020 | 
            +
                        if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
         | 
| 1021 | 
            +
                            sample = upsample_block(
         | 
| 1022 | 
            +
                                hidden_states=sample,
         | 
| 1023 | 
            +
                                temb=emb,
         | 
| 1024 | 
            +
                                res_hidden_states_tuple=res_samples,
         | 
| 1025 | 
            +
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 1026 | 
            +
                                cross_attention_kwargs=cross_attention_kwargs,
         | 
| 1027 | 
            +
                                upsample_size=upsample_size,
         | 
| 1028 | 
            +
                                attention_mask=attention_mask,
         | 
| 1029 | 
            +
                                encoder_attention_mask=encoder_attention_mask,
         | 
| 1030 | 
            +
                            )
         | 
| 1031 | 
            +
                        else:
         | 
| 1032 | 
            +
                            sample = upsample_block(
         | 
| 1033 | 
            +
                                hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
         | 
| 1034 | 
            +
                            )
         | 
| 1035 | 
            +
             | 
| 1036 | 
            +
                    # 6. post-process
         | 
| 1037 | 
            +
                    if self.conv_norm_out:
         | 
| 1038 | 
            +
                        sample = self.conv_norm_out(sample)
         | 
| 1039 | 
            +
                        sample = self.conv_act(sample)
         | 
| 1040 | 
            +
                    sample = self.conv_out(sample)
         | 
| 1041 | 
            +
             | 
| 1042 | 
            +
                    if not return_dict:
         | 
| 1043 | 
            +
                        return (sample,)
         | 
| 1044 | 
            +
             | 
| 1045 | 
            +
                    return UNetMV2DConditionOutput(sample=sample)
         | 
| 1046 | 
            +
             | 
| 1047 | 
            +
                @classmethod
         | 
| 1048 | 
            +
                def from_pretrained_2d(
         | 
| 1049 | 
            +
                        cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
         | 
| 1050 | 
            +
                        camera_embedding_type: str, num_views: int, sample_size: int,
         | 
| 1051 | 
            +
                        zero_init_conv_in: bool = True, zero_init_camera_projection: bool = False,
         | 
| 1052 | 
            +
                        projection_class_embeddings_input_dim: int=6, joint_attention: bool = False, 
         | 
| 1053 | 
            +
                        joint_attention_twice: bool = False, multiview_attention: bool = True,
         | 
| 1054 | 
            +
                        cross_domain_attention: bool = False,
         | 
| 1055 | 
            +
                        in_channels: int = 8, out_channels: int = 4,
         | 
| 1056 | 
            +
                        **kwargs
         | 
| 1057 | 
            +
                    ):
         | 
| 1058 | 
            +
                    r"""
         | 
| 1059 | 
            +
                    Instantiate a pretrained PyTorch model from a pretrained model configuration.
         | 
| 1060 | 
            +
             | 
| 1061 | 
            +
                    The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To
         | 
| 1062 | 
            +
                    train the model, set it back in training mode with `model.train()`.
         | 
| 1063 | 
            +
             | 
| 1064 | 
            +
                    Parameters:
         | 
| 1065 | 
            +
                        pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
         | 
| 1066 | 
            +
                            Can be either:
         | 
| 1067 | 
            +
             | 
| 1068 | 
            +
                                - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
         | 
| 1069 | 
            +
                                  the Hub.
         | 
| 1070 | 
            +
                                - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
         | 
| 1071 | 
            +
                                  with [`~ModelMixin.save_pretrained`].
         | 
| 1072 | 
            +
             | 
| 1073 | 
            +
                        cache_dir (`Union[str, os.PathLike]`, *optional*):
         | 
| 1074 | 
            +
                            Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
         | 
| 1075 | 
            +
                            is not used.
         | 
| 1076 | 
            +
                        torch_dtype (`str` or `torch.dtype`, *optional*):
         | 
| 1077 | 
            +
                            Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
         | 
| 1078 | 
            +
                            dtype is automatically derived from the model's weights.
         | 
| 1079 | 
            +
                        force_download (`bool`, *optional*, defaults to `False`):
         | 
| 1080 | 
            +
                            Whether or not to force the (re-)download of the model weights and configuration files, overriding the
         | 
| 1081 | 
            +
                            cached versions if they exist.
         | 
| 1082 | 
            +
                        resume_download (`bool`, *optional*, defaults to `False`):
         | 
| 1083 | 
            +
                            Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
         | 
| 1084 | 
            +
                            incompletely downloaded files are deleted.
         | 
| 1085 | 
            +
                        proxies (`Dict[str, str]`, *optional*):
         | 
| 1086 | 
            +
                            A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
         | 
| 1087 | 
            +
                            'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
         | 
| 1088 | 
            +
                        output_loading_info (`bool`, *optional*, defaults to `False`):
         | 
| 1089 | 
            +
                            Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
         | 
| 1090 | 
            +
                        local_files_only(`bool`, *optional*, defaults to `False`):
         | 
| 1091 | 
            +
                            Whether to only load local model weights and configuration files or not. If set to `True`, the model
         | 
| 1092 | 
            +
                            won't be downloaded from the Hub.
         | 
| 1093 | 
            +
                        use_auth_token (`str` or *bool*, *optional*):
         | 
| 1094 | 
            +
                            The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
         | 
| 1095 | 
            +
                            `diffusers-cli login` (stored in `~/.huggingface`) is used.
         | 
| 1096 | 
            +
                        revision (`str`, *optional*, defaults to `"main"`):
         | 
| 1097 | 
            +
                            The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
         | 
| 1098 | 
            +
                            allowed by Git.
         | 
| 1099 | 
            +
                        from_flax (`bool`, *optional*, defaults to `False`):
         | 
| 1100 | 
            +
                            Load the model weights from a Flax checkpoint save file.
         | 
| 1101 | 
            +
                        subfolder (`str`, *optional*, defaults to `""`):
         | 
| 1102 | 
            +
                            The subfolder location of a model file within a larger model repository on the Hub or locally.
         | 
| 1103 | 
            +
                        mirror (`str`, *optional*):
         | 
| 1104 | 
            +
                            Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
         | 
| 1105 | 
            +
                            guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
         | 
| 1106 | 
            +
                            information.
         | 
| 1107 | 
            +
                        device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
         | 
| 1108 | 
            +
                            A map that specifies where each submodule should go. It doesn't need to be defined for each
         | 
| 1109 | 
            +
                            parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
         | 
| 1110 | 
            +
                            same device.
         | 
| 1111 | 
            +
             | 
| 1112 | 
            +
                            Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
         | 
| 1113 | 
            +
                            more information about each option see [designing a device
         | 
| 1114 | 
            +
                            map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
         | 
| 1115 | 
            +
                        max_memory (`Dict`, *optional*):
         | 
| 1116 | 
            +
                            A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
         | 
| 1117 | 
            +
                            each GPU and the available CPU RAM if unset.
         | 
| 1118 | 
            +
                        offload_folder (`str` or `os.PathLike`, *optional*):
         | 
| 1119 | 
            +
                            The path to offload weights if `device_map` contains the value `"disk"`.
         | 
| 1120 | 
            +
                        offload_state_dict (`bool`, *optional*):
         | 
| 1121 | 
            +
                            If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
         | 
| 1122 | 
            +
                            the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
         | 
| 1123 | 
            +
                            when there is some disk offload.
         | 
| 1124 | 
            +
                        low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
         | 
| 1125 | 
            +
                            Speed up model loading only loading the pretrained weights and not initializing the weights. This also
         | 
| 1126 | 
            +
                            tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
         | 
| 1127 | 
            +
                            Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
         | 
| 1128 | 
            +
                            argument to `True` will raise an error.
         | 
| 1129 | 
            +
                        variant (`str`, *optional*):
         | 
| 1130 | 
            +
                            Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when
         | 
| 1131 | 
            +
                            loading `from_flax`.
         | 
| 1132 | 
            +
                        use_safetensors (`bool`, *optional*, defaults to `None`):
         | 
| 1133 | 
            +
                            If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the
         | 
| 1134 | 
            +
                            `safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors`
         | 
| 1135 | 
            +
                            weights. If set to `False`, `safetensors` weights are not loaded.
         | 
| 1136 | 
            +
             | 
| 1137 | 
            +
                    <Tip>
         | 
| 1138 | 
            +
             | 
| 1139 | 
            +
                    To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
         | 
| 1140 | 
            +
                    `huggingface-cli login`. You can also activate the special
         | 
| 1141 | 
            +
                    ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a
         | 
| 1142 | 
            +
                    firewalled environment.
         | 
| 1143 | 
            +
             | 
| 1144 | 
            +
                    </Tip>
         | 
| 1145 | 
            +
             | 
| 1146 | 
            +
                    Example:
         | 
| 1147 | 
            +
             | 
| 1148 | 
            +
                    ```py
         | 
| 1149 | 
            +
                    from diffusers import UNet2DConditionModel
         | 
| 1150 | 
            +
             | 
| 1151 | 
            +
                    unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
         | 
| 1152 | 
            +
                    ```
         | 
| 1153 | 
            +
             | 
| 1154 | 
            +
                    If you get the error message below, you need to finetune the weights for your downstream task:
         | 
| 1155 | 
            +
             | 
| 1156 | 
            +
                    ```bash
         | 
| 1157 | 
            +
                    Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
         | 
| 1158 | 
            +
                    - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
         | 
| 1159 | 
            +
                    You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
         | 
| 1160 | 
            +
                    ```
         | 
| 1161 | 
            +
                    """
         | 
| 1162 | 
            +
                    cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
         | 
| 1163 | 
            +
                    ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
         | 
| 1164 | 
            +
                    force_download = kwargs.pop("force_download", False)
         | 
| 1165 | 
            +
                    from_flax = kwargs.pop("from_flax", False)
         | 
| 1166 | 
            +
                    resume_download = kwargs.pop("resume_download", False)
         | 
| 1167 | 
            +
                    proxies = kwargs.pop("proxies", None)
         | 
| 1168 | 
            +
                    output_loading_info = kwargs.pop("output_loading_info", False)
         | 
| 1169 | 
            +
                    local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
         | 
| 1170 | 
            +
                    use_auth_token = kwargs.pop("use_auth_token", None)
         | 
| 1171 | 
            +
                    revision = kwargs.pop("revision", None)
         | 
| 1172 | 
            +
                    torch_dtype = kwargs.pop("torch_dtype", None)
         | 
| 1173 | 
            +
                    subfolder = kwargs.pop("subfolder", None)
         | 
| 1174 | 
            +
                    device_map = kwargs.pop("device_map", None)
         | 
| 1175 | 
            +
                    max_memory = kwargs.pop("max_memory", None)
         | 
| 1176 | 
            +
                    offload_folder = kwargs.pop("offload_folder", None)
         | 
| 1177 | 
            +
                    offload_state_dict = kwargs.pop("offload_state_dict", False)
         | 
| 1178 | 
            +
                    variant = kwargs.pop("variant", None)
         | 
| 1179 | 
            +
                    use_safetensors = kwargs.pop("use_safetensors", None)
         | 
| 1180 | 
            +
             | 
| 1181 | 
            +
                    if use_safetensors and not is_safetensors_available():
         | 
| 1182 | 
            +
                        raise ValueError(
         | 
| 1183 | 
            +
                            "`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetensors"
         | 
| 1184 | 
            +
                        )
         | 
| 1185 | 
            +
             | 
| 1186 | 
            +
                    allow_pickle = False
         | 
| 1187 | 
            +
                    if use_safetensors is None:
         | 
| 1188 | 
            +
                        use_safetensors = is_safetensors_available()
         | 
| 1189 | 
            +
                        allow_pickle = True
         | 
| 1190 | 
            +
             | 
| 1191 | 
            +
                    if device_map is not None and not is_accelerate_available():
         | 
| 1192 | 
            +
                        raise NotImplementedError(
         | 
| 1193 | 
            +
                            "Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set"
         | 
| 1194 | 
            +
                            " `device_map=None`. You can install accelerate with `pip install accelerate`."
         | 
| 1195 | 
            +
                        )
         | 
| 1196 | 
            +
             | 
| 1197 | 
            +
                    # Check if we can handle device_map and dispatching the weights
         | 
| 1198 | 
            +
                    if device_map is not None and not is_torch_version(">=", "1.9.0"):
         | 
| 1199 | 
            +
                        raise NotImplementedError(
         | 
| 1200 | 
            +
                            "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
         | 
| 1201 | 
            +
                            " `device_map=None`."
         | 
| 1202 | 
            +
                        )
         | 
| 1203 | 
            +
             | 
| 1204 | 
            +
                    # Load config if we don't provide a configuration
         | 
| 1205 | 
            +
                    config_path = pretrained_model_name_or_path
         | 
| 1206 | 
            +
             | 
| 1207 | 
            +
                    user_agent = {
         | 
| 1208 | 
            +
                        "diffusers": __version__,
         | 
| 1209 | 
            +
                        "file_type": "model",
         | 
| 1210 | 
            +
                        "framework": "pytorch",
         | 
| 1211 | 
            +
                    }
         | 
| 1212 | 
            +
             | 
| 1213 | 
            +
                    # load config
         | 
| 1214 | 
            +
                    config, unused_kwargs, commit_hash = cls.load_config(
         | 
| 1215 | 
            +
                        config_path,
         | 
| 1216 | 
            +
                        cache_dir=cache_dir,
         | 
| 1217 | 
            +
                        return_unused_kwargs=True,
         | 
| 1218 | 
            +
                        return_commit_hash=True,
         | 
| 1219 | 
            +
                        force_download=force_download,
         | 
| 1220 | 
            +
                        resume_download=resume_download,
         | 
| 1221 | 
            +
                        proxies=proxies,
         | 
| 1222 | 
            +
                        local_files_only=local_files_only,
         | 
| 1223 | 
            +
                        use_auth_token=use_auth_token,
         | 
| 1224 | 
            +
                        revision=revision,
         | 
| 1225 | 
            +
                        subfolder=subfolder,
         | 
| 1226 | 
            +
                        device_map=device_map,
         | 
| 1227 | 
            +
                        max_memory=max_memory,
         | 
| 1228 | 
            +
                        offload_folder=offload_folder,
         | 
| 1229 | 
            +
                        offload_state_dict=offload_state_dict,
         | 
| 1230 | 
            +
                        user_agent=user_agent,
         | 
| 1231 | 
            +
                        **kwargs,
         | 
| 1232 | 
            +
                    )
         | 
| 1233 | 
            +
             | 
| 1234 | 
            +
                    # modify config
         | 
| 1235 | 
            +
                    config["_class_name"] = cls.__name__
         | 
| 1236 | 
            +
                    config['in_channels'] = in_channels
         | 
| 1237 | 
            +
                    config['out_channels'] = out_channels
         | 
| 1238 | 
            +
                    config['sample_size'] = sample_size # training resolution
         | 
| 1239 | 
            +
                    config['num_views'] = num_views
         | 
| 1240 | 
            +
                    config['joint_attention'] = joint_attention
         | 
| 1241 | 
            +
                    config['joint_attention_twice'] = joint_attention_twice
         | 
| 1242 | 
            +
                    config['multiview_attention'] = multiview_attention
         | 
| 1243 | 
            +
                    config['cross_domain_attention'] = cross_domain_attention
         | 
| 1244 | 
            +
                    config["down_block_types"] = [
         | 
| 1245 | 
            +
                        "CrossAttnDownBlockMV2D",
         | 
| 1246 | 
            +
                        "CrossAttnDownBlockMV2D",
         | 
| 1247 | 
            +
                        "CrossAttnDownBlockMV2D",
         | 
| 1248 | 
            +
                        "DownBlock2D"
         | 
| 1249 | 
            +
                    ]
         | 
| 1250 | 
            +
                    config['mid_block_type'] = "UNetMidBlockMV2DCrossAttn"
         | 
| 1251 | 
            +
                    config["up_block_types"] = [
         | 
| 1252 | 
            +
                        "UpBlock2D",
         | 
| 1253 | 
            +
                        "CrossAttnUpBlockMV2D",
         | 
| 1254 | 
            +
                        "CrossAttnUpBlockMV2D",
         | 
| 1255 | 
            +
                        "CrossAttnUpBlockMV2D"
         | 
| 1256 | 
            +
                    ]        
         | 
| 1257 | 
            +
                    config['class_embed_type'] = 'projection'
         | 
| 1258 | 
            +
                    if camera_embedding_type == 'e_de_da_sincos':
         | 
| 1259 | 
            +
                        config['projection_class_embeddings_input_dim'] = projection_class_embeddings_input_dim # default 6
         | 
| 1260 | 
            +
                    else:
         | 
| 1261 | 
            +
                        raise NotImplementedError
         | 
| 1262 | 
            +
             | 
| 1263 | 
            +
                    # load model
         | 
| 1264 | 
            +
                    model_file = None
         | 
| 1265 | 
            +
                    if from_flax:
         | 
| 1266 | 
            +
                        raise NotImplementedError
         | 
| 1267 | 
            +
                    else:
         | 
| 1268 | 
            +
                        if use_safetensors:
         | 
| 1269 | 
            +
                            try:
         | 
| 1270 | 
            +
                                model_file = _get_model_file(
         | 
| 1271 | 
            +
                                    pretrained_model_name_or_path,
         | 
| 1272 | 
            +
                                    weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
         | 
| 1273 | 
            +
                                    cache_dir=cache_dir,
         | 
| 1274 | 
            +
                                    force_download=force_download,
         | 
| 1275 | 
            +
                                    resume_download=resume_download,
         | 
| 1276 | 
            +
                                    proxies=proxies,
         | 
| 1277 | 
            +
                                    local_files_only=local_files_only,
         | 
| 1278 | 
            +
                                    use_auth_token=use_auth_token,
         | 
| 1279 | 
            +
                                    revision=revision,
         | 
| 1280 | 
            +
                                    subfolder=subfolder,
         | 
| 1281 | 
            +
                                    user_agent=user_agent,
         | 
| 1282 | 
            +
                                    commit_hash=commit_hash,
         | 
| 1283 | 
            +
                                )
         | 
| 1284 | 
            +
                            except IOError as e:
         | 
| 1285 | 
            +
                                if not allow_pickle:
         | 
| 1286 | 
            +
                                    raise e
         | 
| 1287 | 
            +
                                pass
         | 
| 1288 | 
            +
                        if model_file is None:
         | 
| 1289 | 
            +
                            model_file = _get_model_file(
         | 
| 1290 | 
            +
                                pretrained_model_name_or_path,
         | 
| 1291 | 
            +
                                weights_name=_add_variant(WEIGHTS_NAME, variant),
         | 
| 1292 | 
            +
                                cache_dir=cache_dir,
         | 
| 1293 | 
            +
                                force_download=force_download,
         | 
| 1294 | 
            +
                                resume_download=resume_download,
         | 
| 1295 | 
            +
                                proxies=proxies,
         | 
| 1296 | 
            +
                                local_files_only=local_files_only,
         | 
| 1297 | 
            +
                                use_auth_token=use_auth_token,
         | 
| 1298 | 
            +
                                revision=revision,
         | 
| 1299 | 
            +
                                subfolder=subfolder,
         | 
| 1300 | 
            +
                                user_agent=user_agent,
         | 
| 1301 | 
            +
                                commit_hash=commit_hash,
         | 
| 1302 | 
            +
                            )
         | 
| 1303 | 
            +
             | 
| 1304 | 
            +
                        model = cls.from_config(config, **unused_kwargs)
         | 
| 1305 | 
            +
             | 
| 1306 | 
            +
                        state_dict = load_state_dict(model_file, variant=variant)
         | 
| 1307 | 
            +
                        model._convert_deprecated_attention_blocks(state_dict)
         | 
| 1308 | 
            +
             | 
| 1309 | 
            +
                        conv_in_weight = state_dict['conv_in.weight']
         | 
| 1310 | 
            +
                        conv_out_weight = state_dict['conv_out.weight']
         | 
| 1311 | 
            +
                        model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model_2d(
         | 
| 1312 | 
            +
                            model,
         | 
| 1313 | 
            +
                            state_dict,
         | 
| 1314 | 
            +
                            model_file,
         | 
| 1315 | 
            +
                            pretrained_model_name_or_path,
         | 
| 1316 | 
            +
                            ignore_mismatched_sizes=True,
         | 
| 1317 | 
            +
                        )
         | 
| 1318 | 
            +
                        if any([key == 'conv_in.weight' for key, _, _ in mismatched_keys]):
         | 
| 1319 | 
            +
                            # initialize from the original SD structure
         | 
| 1320 | 
            +
                            model.conv_in.weight.data[:,:4] = conv_in_weight
         | 
| 1321 | 
            +
             | 
| 1322 | 
            +
                        # whether to place all zero to new layers?
         | 
| 1323 | 
            +
                        if zero_init_conv_in:
         | 
| 1324 | 
            +
                            model.conv_in.weight.data[:,4:] = 0.
         | 
| 1325 | 
            +
             | 
| 1326 | 
            +
                        if any([key == 'conv_out.weight' for key, _, _ in mismatched_keys]):
         | 
| 1327 | 
            +
                            # initialize from the original SD structure
         | 
| 1328 | 
            +
                            model.conv_out.weight.data[:,:4] = conv_out_weight
         | 
| 1329 | 
            +
                            if out_channels == 8: # copy for the last 4 channels
         | 
| 1330 | 
            +
                                model.conv_out.weight.data[:, 4:] = conv_out_weight
         | 
| 1331 | 
            +
                        
         | 
| 1332 | 
            +
                        if zero_init_camera_projection:
         | 
| 1333 | 
            +
                            for p in model.class_embedding.parameters():
         | 
| 1334 | 
            +
                                torch.nn.init.zeros_(p)
         | 
| 1335 | 
            +
             | 
| 1336 | 
            +
                        loading_info = {
         | 
| 1337 | 
            +
                            "missing_keys": missing_keys,
         | 
| 1338 | 
            +
                            "unexpected_keys": unexpected_keys,
         | 
| 1339 | 
            +
                            "mismatched_keys": mismatched_keys,
         | 
| 1340 | 
            +
                            "error_msgs": error_msgs,
         | 
| 1341 | 
            +
                        }
         | 
| 1342 | 
            +
             | 
| 1343 | 
            +
                    if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
         | 
| 1344 | 
            +
                        raise ValueError(
         | 
| 1345 | 
            +
                            f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
         | 
| 1346 | 
            +
                        )
         | 
| 1347 | 
            +
                    elif torch_dtype is not None:
         | 
| 1348 | 
            +
                        model = model.to(torch_dtype)
         | 
| 1349 | 
            +
             | 
| 1350 | 
            +
                    model.register_to_config(_name_or_path=pretrained_model_name_or_path)
         | 
| 1351 | 
            +
             | 
| 1352 | 
            +
                    # Set model in evaluation mode to deactivate DropOut modules by default
         | 
| 1353 | 
            +
                    model.eval()
         | 
| 1354 | 
            +
                    if output_loading_info:
         | 
| 1355 | 
            +
                        return model, loading_info
         | 
| 1356 | 
            +
             | 
| 1357 | 
            +
                    return model
         | 
| 1358 | 
            +
             | 
| 1359 | 
            +
                @classmethod
         | 
| 1360 | 
            +
                def _load_pretrained_model_2d(
         | 
| 1361 | 
            +
                    cls,
         | 
| 1362 | 
            +
                    model,
         | 
| 1363 | 
            +
                    state_dict,
         | 
| 1364 | 
            +
                    resolved_archive_file,
         | 
| 1365 | 
            +
                    pretrained_model_name_or_path,
         | 
| 1366 | 
            +
                    ignore_mismatched_sizes=False,
         | 
| 1367 | 
            +
                ):
         | 
| 1368 | 
            +
                    # Retrieve missing & unexpected_keys
         | 
| 1369 | 
            +
                    model_state_dict = model.state_dict()
         | 
| 1370 | 
            +
                    loaded_keys = list(state_dict.keys())
         | 
| 1371 | 
            +
             | 
| 1372 | 
            +
                    expected_keys = list(model_state_dict.keys())
         | 
| 1373 | 
            +
             | 
| 1374 | 
            +
                    original_loaded_keys = loaded_keys
         | 
| 1375 | 
            +
             | 
| 1376 | 
            +
                    missing_keys = list(set(expected_keys) - set(loaded_keys))
         | 
| 1377 | 
            +
                    unexpected_keys = list(set(loaded_keys) - set(expected_keys))
         | 
| 1378 | 
            +
             | 
| 1379 | 
            +
                    # Make sure we are able to load base models as well as derived models (with heads)
         | 
| 1380 | 
            +
                    model_to_load = model
         | 
| 1381 | 
            +
             | 
| 1382 | 
            +
                    def _find_mismatched_keys(
         | 
| 1383 | 
            +
                        state_dict,
         | 
| 1384 | 
            +
                        model_state_dict,
         | 
| 1385 | 
            +
                        loaded_keys,
         | 
| 1386 | 
            +
                        ignore_mismatched_sizes,
         | 
| 1387 | 
            +
                    ):
         | 
| 1388 | 
            +
                        mismatched_keys = []
         | 
| 1389 | 
            +
                        if ignore_mismatched_sizes:
         | 
| 1390 | 
            +
                            for checkpoint_key in loaded_keys:
         | 
| 1391 | 
            +
                                model_key = checkpoint_key
         | 
| 1392 | 
            +
             | 
| 1393 | 
            +
                                if (
         | 
| 1394 | 
            +
                                    model_key in model_state_dict
         | 
| 1395 | 
            +
                                    and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
         | 
| 1396 | 
            +
                                ):
         | 
| 1397 | 
            +
                                    mismatched_keys.append(
         | 
| 1398 | 
            +
                                        (checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
         | 
| 1399 | 
            +
                                    )
         | 
| 1400 | 
            +
                                    del state_dict[checkpoint_key]
         | 
| 1401 | 
            +
                        return mismatched_keys
         | 
| 1402 | 
            +
             | 
| 1403 | 
            +
                    if state_dict is not None:
         | 
| 1404 | 
            +
                        # Whole checkpoint
         | 
| 1405 | 
            +
                        mismatched_keys = _find_mismatched_keys(
         | 
| 1406 | 
            +
                            state_dict,
         | 
| 1407 | 
            +
                            model_state_dict,
         | 
| 1408 | 
            +
                            original_loaded_keys,
         | 
| 1409 | 
            +
                            ignore_mismatched_sizes,
         | 
| 1410 | 
            +
                        )
         | 
| 1411 | 
            +
                        error_msgs = _load_state_dict_into_model(model_to_load, state_dict)
         | 
| 1412 | 
            +
             | 
| 1413 | 
            +
                    if len(error_msgs) > 0:
         | 
| 1414 | 
            +
                        error_msg = "\n\t".join(error_msgs)
         | 
| 1415 | 
            +
                        if "size mismatch" in error_msg:
         | 
| 1416 | 
            +
                            error_msg += (
         | 
| 1417 | 
            +
                                "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
         | 
| 1418 | 
            +
                            )
         | 
| 1419 | 
            +
                        raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")
         | 
| 1420 | 
            +
             | 
| 1421 | 
            +
                    if len(unexpected_keys) > 0:
         | 
| 1422 | 
            +
                        logger.warning(
         | 
| 1423 | 
            +
                            f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
         | 
| 1424 | 
            +
                            f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
         | 
| 1425 | 
            +
                            f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task"
         | 
| 1426 | 
            +
                            " or with another architecture (e.g. initializing a BertForSequenceClassification model from a"
         | 
| 1427 | 
            +
                            " BertForPreTraining model).\n- This IS NOT expected if you are initializing"
         | 
| 1428 | 
            +
                            f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly"
         | 
| 1429 | 
            +
                            " identical (initializing a BertForSequenceClassification model from a"
         | 
| 1430 | 
            +
                            " BertForSequenceClassification model)."
         | 
| 1431 | 
            +
                        )
         | 
| 1432 | 
            +
                    else:
         | 
| 1433 | 
            +
                        logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
         | 
| 1434 | 
            +
                    if len(missing_keys) > 0:
         | 
| 1435 | 
            +
                        logger.warning(
         | 
| 1436 | 
            +
                            f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
         | 
| 1437 | 
            +
                            f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
         | 
| 1438 | 
            +
                            " TRAIN this model on a down-stream task to be able to use it for predictions and inference."
         | 
| 1439 | 
            +
                        )
         | 
| 1440 | 
            +
                    elif len(mismatched_keys) == 0:
         | 
| 1441 | 
            +
                        logger.info(
         | 
| 1442 | 
            +
                            f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
         | 
| 1443 | 
            +
                            f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the"
         | 
| 1444 | 
            +
                            f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions"
         | 
| 1445 | 
            +
                            " without further training."
         | 
| 1446 | 
            +
                        )
         | 
| 1447 | 
            +
                    if len(mismatched_keys) > 0:
         | 
| 1448 | 
            +
                        mismatched_warning = "\n".join(
         | 
| 1449 | 
            +
                            [
         | 
| 1450 | 
            +
                                f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
         | 
| 1451 | 
            +
                                for key, shape1, shape2 in mismatched_keys
         | 
| 1452 | 
            +
                            ]
         | 
| 1453 | 
            +
                        )
         | 
| 1454 | 
            +
                        logger.warning(
         | 
| 1455 | 
            +
                            f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
         | 
| 1456 | 
            +
                            f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
         | 
| 1457 | 
            +
                            f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be"
         | 
| 1458 | 
            +
                            " able to use it for predictions and inference."
         | 
| 1459 | 
            +
                        )
         | 
| 1460 | 
            +
             | 
| 1461 | 
            +
                    return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs
         | 
| 1462 | 
            +
             | 
    	
        mvdiffusion/pipelines/pipeline_mvdiffusion_image.py
    ADDED
    
    | @@ -0,0 +1,485 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2023 The HuggingFace Team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            import inspect
         | 
| 16 | 
            +
            import warnings
         | 
| 17 | 
            +
            from typing import Callable, List, Optional, Union
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            import PIL
         | 
| 20 | 
            +
            import torch
         | 
| 21 | 
            +
            import torchvision.transforms.functional as TF
         | 
| 22 | 
            +
            from packaging import version
         | 
| 23 | 
            +
            from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            from diffusers.configuration_utils import FrozenDict
         | 
| 26 | 
            +
            from diffusers.image_processor import VaeImageProcessor
         | 
| 27 | 
            +
            from diffusers.models import AutoencoderKL, UNet2DConditionModel
         | 
| 28 | 
            +
            from diffusers.schedulers import KarrasDiffusionSchedulers
         | 
| 29 | 
            +
            from diffusers.utils import deprecate, logging, randn_tensor
         | 
| 30 | 
            +
            from diffusers.pipelines.pipeline_utils import DiffusionPipeline
         | 
| 31 | 
            +
            from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
         | 
| 32 | 
            +
            from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
         | 
| 33 | 
            +
             | 
| 34 | 
            +
             | 
| 35 | 
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 36 | 
            +
             | 
| 37 | 
            +
             | 
| 38 | 
            +
            class MVDiffusionImagePipeline(DiffusionPipeline):
         | 
| 39 | 
            +
                r"""
         | 
| 40 | 
            +
                Pipeline to generate image variations from an input image using Stable Diffusion.
         | 
| 41 | 
            +
             | 
| 42 | 
            +
                This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
         | 
| 43 | 
            +
                implemented for all pipelines (downloading, saving, running on a particular device, etc.).
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                Args:
         | 
| 46 | 
            +
                    vae ([`AutoencoderKL`]):
         | 
| 47 | 
            +
                        Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
         | 
| 48 | 
            +
                    image_encoder ([`~transformers.CLIPVisionModelWithProjection`]):
         | 
| 49 | 
            +
                        Frozen CLIP image-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
         | 
| 50 | 
            +
                    text_encoder ([`~transformers.CLIPTextModel`]):
         | 
| 51 | 
            +
                        Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
         | 
| 52 | 
            +
                    tokenizer ([`~transformers.CLIPTokenizer`]):
         | 
| 53 | 
            +
                        A `CLIPTokenizer` to tokenize text.
         | 
| 54 | 
            +
                    unet ([`UNet2DConditionModel`]):
         | 
| 55 | 
            +
                        A `UNet2DConditionModel` to denoise the encoded image latents.
         | 
| 56 | 
            +
                    scheduler ([`SchedulerMixin`]):
         | 
| 57 | 
            +
                        A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
         | 
| 58 | 
            +
                        [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
         | 
| 59 | 
            +
                    safety_checker ([`StableDiffusionSafetyChecker`]):
         | 
| 60 | 
            +
                        Classification module that estimates whether generated images could be considered offensive or harmful.
         | 
| 61 | 
            +
                        Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
         | 
| 62 | 
            +
                        about a model's potential harms.
         | 
| 63 | 
            +
                    feature_extractor ([`~transformers.CLIPImageProcessor`]):
         | 
| 64 | 
            +
                        A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
         | 
| 65 | 
            +
                """
         | 
| 66 | 
            +
                # TODO: feature_extractor is required to encode images (if they are in PIL format),
         | 
| 67 | 
            +
                # we should give a descriptive message if the pipeline doesn't have one.
         | 
| 68 | 
            +
                _optional_components = ["safety_checker"]
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                def __init__(
         | 
| 71 | 
            +
                    self,
         | 
| 72 | 
            +
                    vae: AutoencoderKL,
         | 
| 73 | 
            +
                    image_encoder: CLIPVisionModelWithProjection,
         | 
| 74 | 
            +
                    unet: UNet2DConditionModel,
         | 
| 75 | 
            +
                    scheduler: KarrasDiffusionSchedulers,
         | 
| 76 | 
            +
                    safety_checker: StableDiffusionSafetyChecker,
         | 
| 77 | 
            +
                    feature_extractor: CLIPImageProcessor,
         | 
| 78 | 
            +
                    requires_safety_checker: bool = True,
         | 
| 79 | 
            +
                    camera_embedding_type: str = 'e_de_da_sincos',
         | 
| 80 | 
            +
                    num_views: int = 4
         | 
| 81 | 
            +
                ):
         | 
| 82 | 
            +
                    super().__init__()
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                    if safety_checker is None and requires_safety_checker:
         | 
| 85 | 
            +
                        logger.warn(
         | 
| 86 | 
            +
                            f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
         | 
| 87 | 
            +
                            " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
         | 
| 88 | 
            +
                            " results in services or applications open to the public. Both the diffusers team and Hugging Face"
         | 
| 89 | 
            +
                            " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
         | 
| 90 | 
            +
                            " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
         | 
| 91 | 
            +
                            " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
         | 
| 92 | 
            +
                        )
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                    if safety_checker is not None and feature_extractor is None:
         | 
| 95 | 
            +
                        raise ValueError(
         | 
| 96 | 
            +
                            "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
         | 
| 97 | 
            +
                            " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
         | 
| 98 | 
            +
                        )
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                    is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
         | 
| 101 | 
            +
                        version.parse(unet.config._diffusers_version).base_version
         | 
| 102 | 
            +
                    ) < version.parse("0.9.0.dev0")
         | 
| 103 | 
            +
                    is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
         | 
| 104 | 
            +
                    if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
         | 
| 105 | 
            +
                        deprecation_message = (
         | 
| 106 | 
            +
                            "The configuration file of the unet has set the default `sample_size` to smaller than"
         | 
| 107 | 
            +
                            " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
         | 
| 108 | 
            +
                            " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
         | 
| 109 | 
            +
                            " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
         | 
| 110 | 
            +
                            " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
         | 
| 111 | 
            +
                            " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
         | 
| 112 | 
            +
                            " in the config might lead to incorrect results in future versions. If you have downloaded this"
         | 
| 113 | 
            +
                            " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
         | 
| 114 | 
            +
                            " the `unet/config.json` file"
         | 
| 115 | 
            +
                        )
         | 
| 116 | 
            +
                        deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
         | 
| 117 | 
            +
                        new_config = dict(unet.config)
         | 
| 118 | 
            +
                        new_config["sample_size"] = 64
         | 
| 119 | 
            +
                        unet._internal_dict = FrozenDict(new_config)
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                    self.register_modules(
         | 
| 122 | 
            +
                        vae=vae,
         | 
| 123 | 
            +
                        image_encoder=image_encoder,
         | 
| 124 | 
            +
                        unet=unet,
         | 
| 125 | 
            +
                        scheduler=scheduler,
         | 
| 126 | 
            +
                        safety_checker=safety_checker,
         | 
| 127 | 
            +
                        feature_extractor=feature_extractor,
         | 
| 128 | 
            +
                    )
         | 
| 129 | 
            +
                    self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
         | 
| 130 | 
            +
                    self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
         | 
| 131 | 
            +
                    self.register_to_config(requires_safety_checker=requires_safety_checker)
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                    self.camera_embedding_type: str = camera_embedding_type
         | 
| 134 | 
            +
                    self.num_views: int = num_views
         | 
| 135 | 
            +
             | 
| 136 | 
            +
                def _encode_image(self, image_pil, device, num_images_per_prompt, do_classifier_free_guidance):
         | 
| 137 | 
            +
                    dtype = next(self.image_encoder.parameters()).dtype
         | 
| 138 | 
            +
             | 
| 139 | 
            +
                    image_pt = self.feature_extractor(images=image_pil, return_tensors="pt").pixel_values
         | 
| 140 | 
            +
                    image_pt = image_pt.to(device=device, dtype=dtype)
         | 
| 141 | 
            +
                    image_embeddings = self.image_encoder(image_pt).image_embeds
         | 
| 142 | 
            +
                    image_embeddings = image_embeddings.unsqueeze(1)
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                    # duplicate image embeddings for each generation per prompt, using mps friendly method
         | 
| 145 | 
            +
                    # Note: repeat differently from official pipelines
         | 
| 146 | 
            +
                    # B1B2B3B4 -> B1B2B3B4B1B2B3B4
         | 
| 147 | 
            +
                    bs_embed, seq_len, _ = image_embeddings.shape
         | 
| 148 | 
            +
                    image_embeddings = image_embeddings.repeat(num_images_per_prompt, 1, 1)
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                    if do_classifier_free_guidance:
         | 
| 151 | 
            +
                        negative_prompt_embeds = torch.zeros_like(image_embeddings)
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                        # For classifier free guidance, we need to do two forward passes.
         | 
| 154 | 
            +
                        # Here we concatenate the unconditional and text embeddings into a single batch
         | 
| 155 | 
            +
                        # to avoid doing two forward passes
         | 
| 156 | 
            +
                        image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings])
         | 
| 157 | 
            +
                    
         | 
| 158 | 
            +
                    image_pt = torch.stack([TF.to_tensor(img) for img in image_pil], dim=0).to(device)
         | 
| 159 | 
            +
                    image_pt = image_pt * 2.0 - 1.0
         | 
| 160 | 
            +
                    image_latents = self.vae.encode(image_pt).latent_dist.mode() * self.vae.config.scaling_factor
         | 
| 161 | 
            +
                    # Note: repeat differently from official pipelines
         | 
| 162 | 
            +
                    # B1B2B3B4 -> B1B2B3B4B1B2B3B4        
         | 
| 163 | 
            +
                    image_latents = image_latents.repeat(num_images_per_prompt, 1, 1, 1)
         | 
| 164 | 
            +
             | 
| 165 | 
            +
                    if do_classifier_free_guidance:
         | 
| 166 | 
            +
                        image_latents = torch.cat([torch.zeros_like(image_latents), image_latents])
         | 
| 167 | 
            +
             | 
| 168 | 
            +
                    return image_embeddings, image_latents
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
         | 
| 171 | 
            +
                def run_safety_checker(self, image, device, dtype):
         | 
| 172 | 
            +
                    if self.safety_checker is None:
         | 
| 173 | 
            +
                        has_nsfw_concept = None
         | 
| 174 | 
            +
                    else:
         | 
| 175 | 
            +
                        if torch.is_tensor(image):
         | 
| 176 | 
            +
                            feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
         | 
| 177 | 
            +
                        else:
         | 
| 178 | 
            +
                            feature_extractor_input = self.image_processor.numpy_to_pil(image)
         | 
| 179 | 
            +
                        safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
         | 
| 180 | 
            +
                        image, has_nsfw_concept = self.safety_checker(
         | 
| 181 | 
            +
                            images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
         | 
| 182 | 
            +
                        )
         | 
| 183 | 
            +
                    return image, has_nsfw_concept
         | 
| 184 | 
            +
             | 
| 185 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
         | 
| 186 | 
            +
                def decode_latents(self, latents):
         | 
| 187 | 
            +
                    warnings.warn(
         | 
| 188 | 
            +
                        "The decode_latents method is deprecated and will be removed in a future version. Please"
         | 
| 189 | 
            +
                        " use VaeImageProcessor instead",
         | 
| 190 | 
            +
                        FutureWarning,
         | 
| 191 | 
            +
                    )
         | 
| 192 | 
            +
                    latents = 1 / self.vae.config.scaling_factor * latents
         | 
| 193 | 
            +
                    image = self.vae.decode(latents, return_dict=False)[0]
         | 
| 194 | 
            +
                    image = (image / 2 + 0.5).clamp(0, 1)
         | 
| 195 | 
            +
                    # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
         | 
| 196 | 
            +
                    image = image.cpu().permute(0, 2, 3, 1).float().numpy()
         | 
| 197 | 
            +
                    return image
         | 
| 198 | 
            +
             | 
| 199 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
         | 
| 200 | 
            +
                def prepare_extra_step_kwargs(self, generator, eta):
         | 
| 201 | 
            +
                    # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
         | 
| 202 | 
            +
                    # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
         | 
| 203 | 
            +
                    # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
         | 
| 204 | 
            +
                    # and should be between [0, 1]
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                    accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
         | 
| 207 | 
            +
                    extra_step_kwargs = {}
         | 
| 208 | 
            +
                    if accepts_eta:
         | 
| 209 | 
            +
                        extra_step_kwargs["eta"] = eta
         | 
| 210 | 
            +
             | 
| 211 | 
            +
                    # check if the scheduler accepts generator
         | 
| 212 | 
            +
                    accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
         | 
| 213 | 
            +
                    if accepts_generator:
         | 
| 214 | 
            +
                        extra_step_kwargs["generator"] = generator
         | 
| 215 | 
            +
                    return extra_step_kwargs
         | 
| 216 | 
            +
             | 
| 217 | 
            +
                def check_inputs(self, image, height, width, callback_steps):
         | 
| 218 | 
            +
                    if (
         | 
| 219 | 
            +
                        not isinstance(image, torch.Tensor)
         | 
| 220 | 
            +
                        and not isinstance(image, PIL.Image.Image)
         | 
| 221 | 
            +
                        and not isinstance(image, list)
         | 
| 222 | 
            +
                    ):
         | 
| 223 | 
            +
                        raise ValueError(
         | 
| 224 | 
            +
                            "`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
         | 
| 225 | 
            +
                            f" {type(image)}"
         | 
| 226 | 
            +
                        )
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                    if height % 8 != 0 or width % 8 != 0:
         | 
| 229 | 
            +
                        raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
         | 
| 230 | 
            +
             | 
| 231 | 
            +
                    if (callback_steps is None) or (
         | 
| 232 | 
            +
                        callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
         | 
| 233 | 
            +
                    ):
         | 
| 234 | 
            +
                        raise ValueError(
         | 
| 235 | 
            +
                            f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
         | 
| 236 | 
            +
                            f" {type(callback_steps)}."
         | 
| 237 | 
            +
                        )
         | 
| 238 | 
            +
             | 
| 239 | 
            +
                # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
         | 
| 240 | 
            +
                def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
         | 
| 241 | 
            +
                    shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
         | 
| 242 | 
            +
                    if isinstance(generator, list) and len(generator) != batch_size:
         | 
| 243 | 
            +
                        raise ValueError(
         | 
| 244 | 
            +
                            f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
         | 
| 245 | 
            +
                            f" size of {batch_size}. Make sure the batch size matches the length of the generators."
         | 
| 246 | 
            +
                        )
         | 
| 247 | 
            +
             | 
| 248 | 
            +
                    if latents is None:
         | 
| 249 | 
            +
                        latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
         | 
| 250 | 
            +
                    else:
         | 
| 251 | 
            +
                        latents = latents.to(device)
         | 
| 252 | 
            +
             | 
| 253 | 
            +
                    # scale the initial noise by the standard deviation required by the scheduler
         | 
| 254 | 
            +
                    latents = latents * self.scheduler.init_noise_sigma
         | 
| 255 | 
            +
                    return latents
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                def prepare_camera_embedding(self, camera_embedding: Union[float, torch.Tensor], do_classifier_free_guidance, num_images_per_prompt=1):
         | 
| 258 | 
            +
                    # (B, 3)
         | 
| 259 | 
            +
                    camera_embedding = camera_embedding.to(dtype=self.unet.dtype, device=self.unet.device)
         | 
| 260 | 
            +
             | 
| 261 | 
            +
                    if self.camera_embedding_type == 'e_de_da_sincos':
         | 
| 262 | 
            +
                        # (B, 6)
         | 
| 263 | 
            +
                        camera_embedding = torch.cat([
         | 
| 264 | 
            +
                            torch.sin(camera_embedding),
         | 
| 265 | 
            +
                            torch.cos(camera_embedding)
         | 
| 266 | 
            +
                        ], dim=-1)
         | 
| 267 | 
            +
                        assert self.unet.config.class_embed_type == 'projection'
         | 
| 268 | 
            +
                        assert self.unet.config.projection_class_embeddings_input_dim == 6 or self.unet.config.projection_class_embeddings_input_dim == 10
         | 
| 269 | 
            +
                    else:
         | 
| 270 | 
            +
                        raise NotImplementedError
         | 
| 271 | 
            +
                    
         | 
| 272 | 
            +
                    # Note: repeat differently from official pipelines
         | 
| 273 | 
            +
                    # B1B2B3B4 -> B1B2B3B4B1B2B3B4        
         | 
| 274 | 
            +
                    camera_embedding = camera_embedding.repeat(num_images_per_prompt, 1)     
         | 
| 275 | 
            +
             | 
| 276 | 
            +
                    if do_classifier_free_guidance:
         | 
| 277 | 
            +
                        camera_embedding = torch.cat([
         | 
| 278 | 
            +
                            camera_embedding,
         | 
| 279 | 
            +
                            camera_embedding
         | 
| 280 | 
            +
                        ], dim=0)
         | 
| 281 | 
            +
                    
         | 
| 282 | 
            +
                    return camera_embedding    
         | 
| 283 | 
            +
             | 
| 284 | 
            +
                @torch.no_grad()
         | 
| 285 | 
            +
                def __call__(
         | 
| 286 | 
            +
                    self,
         | 
| 287 | 
            +
                    image: Union[List[PIL.Image.Image], torch.FloatTensor],
         | 
| 288 | 
            +
                    # elevation_cond: torch.FloatTensor,
         | 
| 289 | 
            +
                    # elevation: torch.FloatTensor,
         | 
| 290 | 
            +
                    # azimuth: torch.FloatTensor, 
         | 
| 291 | 
            +
                    camera_embedding: torch.FloatTensor,
         | 
| 292 | 
            +
                    height: Optional[int] = None,
         | 
| 293 | 
            +
                    width: Optional[int] = None,
         | 
| 294 | 
            +
                    num_inference_steps: int = 50,
         | 
| 295 | 
            +
                    guidance_scale: float = 7.5,
         | 
| 296 | 
            +
                    num_images_per_prompt: Optional[int] = 1,
         | 
| 297 | 
            +
                    eta: float = 0.0,
         | 
| 298 | 
            +
                    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
         | 
| 299 | 
            +
                    latents: Optional[torch.FloatTensor] = None,
         | 
| 300 | 
            +
                    output_type: Optional[str] = "pil",
         | 
| 301 | 
            +
                    return_dict: bool = True,
         | 
| 302 | 
            +
                    callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
         | 
| 303 | 
            +
                    callback_steps: int = 1,
         | 
| 304 | 
            +
                    normal_cond: Optional[Union[List[PIL.Image.Image], torch.FloatTensor]] = None,
         | 
| 305 | 
            +
                ):
         | 
| 306 | 
            +
                    r"""
         | 
| 307 | 
            +
                    The call function to the pipeline for generation.
         | 
| 308 | 
            +
             | 
| 309 | 
            +
                    Args:
         | 
| 310 | 
            +
                        image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
         | 
| 311 | 
            +
                            Image or images to guide image generation. If you provide a tensor, it needs to be compatible with
         | 
| 312 | 
            +
                            [`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json).
         | 
| 313 | 
            +
                        height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
         | 
| 314 | 
            +
                            The height in pixels of the generated image.
         | 
| 315 | 
            +
                        width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
         | 
| 316 | 
            +
                            The width in pixels of the generated image.
         | 
| 317 | 
            +
                        num_inference_steps (`int`, *optional*, defaults to 50):
         | 
| 318 | 
            +
                            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
         | 
| 319 | 
            +
                            expense of slower inference. This parameter is modulated by `strength`.
         | 
| 320 | 
            +
                        guidance_scale (`float`, *optional*, defaults to 7.5):
         | 
| 321 | 
            +
                            A higher guidance scale value encourages the model to generate images closely linked to the text
         | 
| 322 | 
            +
                            `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
         | 
| 323 | 
            +
                        num_images_per_prompt (`int`, *optional*, defaults to 1):
         | 
| 324 | 
            +
                            The number of images to generate per prompt.
         | 
| 325 | 
            +
                        eta (`float`, *optional*, defaults to 0.0):
         | 
| 326 | 
            +
                            Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
         | 
| 327 | 
            +
                            to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
         | 
| 328 | 
            +
                        generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
         | 
| 329 | 
            +
                            A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
         | 
| 330 | 
            +
                            generation deterministic.
         | 
| 331 | 
            +
                        latents (`torch.FloatTensor`, *optional*):
         | 
| 332 | 
            +
                            Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
         | 
| 333 | 
            +
                            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
         | 
| 334 | 
            +
                            tensor is generated by sampling using the supplied random `generator`.
         | 
| 335 | 
            +
                        output_type (`str`, *optional*, defaults to `"pil"`):
         | 
| 336 | 
            +
                            The output format of the generated image. Choose between `PIL.Image` or `np.array`.
         | 
| 337 | 
            +
                        return_dict (`bool`, *optional*, defaults to `True`):
         | 
| 338 | 
            +
                            Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
         | 
| 339 | 
            +
                            plain tuple.
         | 
| 340 | 
            +
                        callback (`Callable`, *optional*):
         | 
| 341 | 
            +
                            A function that calls every `callback_steps` steps during inference. The function is called with the
         | 
| 342 | 
            +
                            following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
         | 
| 343 | 
            +
                        callback_steps (`int`, *optional*, defaults to 1):
         | 
| 344 | 
            +
                            The frequency at which the `callback` function is called. If not specified, the callback is called at
         | 
| 345 | 
            +
                            every step.
         | 
| 346 | 
            +
             | 
| 347 | 
            +
                    Returns:
         | 
| 348 | 
            +
                        [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
         | 
| 349 | 
            +
                            If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
         | 
| 350 | 
            +
                            otherwise a `tuple` is returned where the first element is a list with the generated images and the
         | 
| 351 | 
            +
                            second element is a list of `bool`s indicating whether the corresponding generated image contains
         | 
| 352 | 
            +
                            "not-safe-for-work" (nsfw) content.
         | 
| 353 | 
            +
             | 
| 354 | 
            +
                    Examples:
         | 
| 355 | 
            +
             | 
| 356 | 
            +
                    ```py
         | 
| 357 | 
            +
                    from diffusers import StableDiffusionImageVariationPipeline
         | 
| 358 | 
            +
                    from PIL import Image
         | 
| 359 | 
            +
                    from io import BytesIO
         | 
| 360 | 
            +
                    import requests
         | 
| 361 | 
            +
             | 
| 362 | 
            +
                    pipe = StableDiffusionImageVariationPipeline.from_pretrained(
         | 
| 363 | 
            +
                        "lambdalabs/sd-image-variations-diffusers", revision="v2.0"
         | 
| 364 | 
            +
                    )
         | 
| 365 | 
            +
                    pipe = pipe.to("cuda")
         | 
| 366 | 
            +
             | 
| 367 | 
            +
                    url = "https://lh3.googleusercontent.com/y-iFOHfLTwkuQSUegpwDdgKmOjRSTvPxat63dQLB25xkTs4lhIbRUFeNBWZzYf370g=s1200"
         | 
| 368 | 
            +
             | 
| 369 | 
            +
                    response = requests.get(url)
         | 
| 370 | 
            +
                    image = Image.open(BytesIO(response.content)).convert("RGB")
         | 
| 371 | 
            +
             | 
| 372 | 
            +
                    out = pipe(image, num_images_per_prompt=3, guidance_scale=15)
         | 
| 373 | 
            +
                    out["images"][0].save("result.jpg")
         | 
| 374 | 
            +
                    ```
         | 
| 375 | 
            +
                    """
         | 
| 376 | 
            +
                    # 0. Default height and width to unet
         | 
| 377 | 
            +
                    height = height or self.unet.config.sample_size * self.vae_scale_factor
         | 
| 378 | 
            +
                    width = width or self.unet.config.sample_size * self.vae_scale_factor
         | 
| 379 | 
            +
             | 
| 380 | 
            +
                    # 1. Check inputs. Raise error if not correct
         | 
| 381 | 
            +
                    self.check_inputs(image, height, width, callback_steps)
         | 
| 382 | 
            +
             | 
| 383 | 
            +
             | 
| 384 | 
            +
                    # 2. Define call parameters
         | 
| 385 | 
            +
                    if isinstance(image, list):
         | 
| 386 | 
            +
                        batch_size = len(image)
         | 
| 387 | 
            +
                    else:
         | 
| 388 | 
            +
                        batch_size = image.shape[0]
         | 
| 389 | 
            +
                    assert batch_size >= self.num_views and batch_size % self.num_views == 0
         | 
| 390 | 
            +
                    device = self._execution_device
         | 
| 391 | 
            +
                    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
         | 
| 392 | 
            +
                    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
         | 
| 393 | 
            +
                    # corresponds to doing no classifier free guidance.
         | 
| 394 | 
            +
                    do_classifier_free_guidance = guidance_scale != 1.0
         | 
| 395 | 
            +
             | 
| 396 | 
            +
                    # 3. Encode input image
         | 
| 397 | 
            +
                    if isinstance(image, list):
         | 
| 398 | 
            +
                        image_pil = image
         | 
| 399 | 
            +
                    elif isinstance(image, torch.Tensor):
         | 
| 400 | 
            +
                        image_pil = [TF.to_pil_image(image[i]) for i in range(image.shape[0])]
         | 
| 401 | 
            +
                    image_embeddings, image_latents = self._encode_image(image_pil, device, num_images_per_prompt, do_classifier_free_guidance)
         | 
| 402 | 
            +
             | 
| 403 | 
            +
                    if normal_cond is not None:
         | 
| 404 | 
            +
                        if isinstance(normal_cond, list):
         | 
| 405 | 
            +
                            normal_cond_pil = normal_cond
         | 
| 406 | 
            +
                        elif isinstance(normal_cond, torch.Tensor):
         | 
| 407 | 
            +
                            normal_cond_pil = [TF.to_pil_image(normal_cond[i]) for i in range(normal_cond.shape[0])]
         | 
| 408 | 
            +
                        _, image_latents = self._encode_image(normal_cond_pil, device, num_images_per_prompt, do_classifier_free_guidance)
         | 
| 409 | 
            +
             | 
| 410 | 
            +
             | 
| 411 | 
            +
                    # assert len(elevation_cond) == batch_size and len(elevation) == batch_size and len(azimuth) == batch_size
         | 
| 412 | 
            +
                    # camera_embeddings = self.prepare_camera_condition(elevation_cond, elevation, azimuth, do_classifier_free_guidance=do_classifier_free_guidance, num_images_per_prompt=num_images_per_prompt)
         | 
| 413 | 
            +
                    assert len(camera_embedding) == batch_size
         | 
| 414 | 
            +
                    camera_embeddings = self.prepare_camera_embedding(camera_embedding, do_classifier_free_guidance=do_classifier_free_guidance, num_images_per_prompt=num_images_per_prompt)
         | 
| 415 | 
            +
             | 
| 416 | 
            +
                    # 4. Prepare timesteps
         | 
| 417 | 
            +
                    self.scheduler.set_timesteps(num_inference_steps, device=device)
         | 
| 418 | 
            +
                    timesteps = self.scheduler.timesteps
         | 
| 419 | 
            +
             | 
| 420 | 
            +
                    # 5. Prepare latent variables
         | 
| 421 | 
            +
                    num_channels_latents = self.unet.config.out_channels
         | 
| 422 | 
            +
                    latents = self.prepare_latents(
         | 
| 423 | 
            +
                        batch_size * num_images_per_prompt,
         | 
| 424 | 
            +
                        num_channels_latents,
         | 
| 425 | 
            +
                        height,
         | 
| 426 | 
            +
                        width,
         | 
| 427 | 
            +
                        image_embeddings.dtype,
         | 
| 428 | 
            +
                        device,
         | 
| 429 | 
            +
                        generator,
         | 
| 430 | 
            +
                        latents,
         | 
| 431 | 
            +
                    )
         | 
| 432 | 
            +
                    
         | 
| 433 | 
            +
                    # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
         | 
| 434 | 
            +
                    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
         | 
| 435 | 
            +
             | 
| 436 | 
            +
                    # 7. Denoising loop
         | 
| 437 | 
            +
                    num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
         | 
| 438 | 
            +
                    with self.progress_bar(total=num_inference_steps) as progress_bar:
         | 
| 439 | 
            +
                        for i, t in enumerate(timesteps):
         | 
| 440 | 
            +
                            # expand the latents if we are doing classifier free guidance
         | 
| 441 | 
            +
                            latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
         | 
| 442 | 
            +
                            latent_model_input = torch.cat([
         | 
| 443 | 
            +
                                latent_model_input, image_latents
         | 
| 444 | 
            +
                            ], dim=1)
         | 
| 445 | 
            +
                            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
         | 
| 446 | 
            +
             | 
| 447 | 
            +
                            # predict the noise residual
         | 
| 448 | 
            +
                            noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=image_embeddings, class_labels=camera_embeddings).sample
         | 
| 449 | 
            +
             | 
| 450 | 
            +
                            # perform guidance
         | 
| 451 | 
            +
                            if do_classifier_free_guidance:
         | 
| 452 | 
            +
                                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
         | 
| 453 | 
            +
                                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
         | 
| 454 | 
            +
             | 
| 455 | 
            +
                            # compute the previous noisy sample x_t -> x_t-1
         | 
| 456 | 
            +
                            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
         | 
| 457 | 
            +
             | 
| 458 | 
            +
                            # call the callback, if provided
         | 
| 459 | 
            +
                            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
         | 
| 460 | 
            +
                                progress_bar.update()
         | 
| 461 | 
            +
                                if callback is not None and i % callback_steps == 0:
         | 
| 462 | 
            +
                                    callback(i, t, latents)
         | 
| 463 | 
            +
             | 
| 464 | 
            +
                    if not output_type == "latent":
         | 
| 465 | 
            +
                        if num_channels_latents == 8:
         | 
| 466 | 
            +
                            latents = torch.cat([latents[:, :4], latents[:, 4:]], dim=0)
         | 
| 467 | 
            +
             | 
| 468 | 
            +
                        image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
         | 
| 469 | 
            +
                        image, has_nsfw_concept = self.run_safety_checker(image, device, image_embeddings.dtype)
         | 
| 470 | 
            +
                    else:
         | 
| 471 | 
            +
                        image = latents
         | 
| 472 | 
            +
                        has_nsfw_concept = None
         | 
| 473 | 
            +
             | 
| 474 | 
            +
                    if has_nsfw_concept is None:
         | 
| 475 | 
            +
                        do_denormalize = [True] * image.shape[0]
         | 
| 476 | 
            +
                    else:
         | 
| 477 | 
            +
                        do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
         | 
| 478 | 
            +
             | 
| 479 | 
            +
                    image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
         | 
| 480 | 
            +
             | 
| 481 | 
            +
                    if not return_dict:
         | 
| 482 | 
            +
                        return (image, has_nsfw_concept)
         | 
| 483 | 
            +
             | 
| 484 | 
            +
                    return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
         | 
| 485 | 
            +
                
         | 
    	
        requirements.txt
    ADDED
    
    | @@ -0,0 +1,30 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            --extra-index-url https://download.pytorch.org/whl/cu113
         | 
| 2 | 
            +
            torch==1.12.1
         | 
| 3 | 
            +
            torchvision==0.13.1
         | 
| 4 | 
            +
            diffusers[torch]==0.11.1
         | 
| 5 | 
            +
            transformers>=4.25.1
         | 
| 6 | 
            +
            bitsandbytes==0.35.4
         | 
| 7 | 
            +
            decord==0.6.0
         | 
| 8 | 
            +
            pytorch-lightning<2
         | 
| 9 | 
            +
            omegaconf==2.2.3
         | 
| 10 | 
            +
            nerfacc==0.3.3
         | 
| 11 | 
            +
            trimesh==3.9.8
         | 
| 12 | 
            +
            pyhocon==0.3.57
         | 
| 13 | 
            +
            icecream==2.1.0
         | 
| 14 | 
            +
            PyMCubes==0.1.2
         | 
| 15 | 
            +
            xformers
         | 
| 16 | 
            +
            accelerate
         | 
| 17 | 
            +
            modelcards
         | 
| 18 | 
            +
            einops
         | 
| 19 | 
            +
            ftfy
         | 
| 20 | 
            +
            piq
         | 
| 21 | 
            +
            matplotlib
         | 
| 22 | 
            +
            opencv-python
         | 
| 23 | 
            +
            imageio
         | 
| 24 | 
            +
            imageio-ffmpeg
         | 
| 25 | 
            +
            scipy
         | 
| 26 | 
            +
            pyransac3d
         | 
| 27 | 
            +
            torch_efficient_distloss
         | 
| 28 | 
            +
            tensorboard
         | 
| 29 | 
            +
            rembg
         | 
| 30 | 
            +
            segment_anything
         | 
    	
        run_test.sh
    ADDED
    
    | @@ -0,0 +1 @@ | |
|  | 
|  | |
| 1 | 
            +
            accelerate launch --config_file 1gpu.yaml test_mvdiffusion_seq.py --config configs/mvdiffusion-joint-ortho-6views.yaml
         | 
    	
        utils/misc.py
    ADDED
    
    | @@ -0,0 +1,54 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import os
         | 
| 2 | 
            +
            from omegaconf import OmegaConf
         | 
| 3 | 
            +
            from packaging import version
         | 
| 4 | 
            +
             | 
| 5 | 
            +
             | 
| 6 | 
            +
            # ============ Register OmegaConf Recolvers ============= #
         | 
| 7 | 
            +
            OmegaConf.register_new_resolver('calc_exp_lr_decay_rate', lambda factor, n: factor**(1./n))
         | 
| 8 | 
            +
            OmegaConf.register_new_resolver('add', lambda a, b: a + b)
         | 
| 9 | 
            +
            OmegaConf.register_new_resolver('sub', lambda a, b: a - b)
         | 
| 10 | 
            +
            OmegaConf.register_new_resolver('mul', lambda a, b: a * b)
         | 
| 11 | 
            +
            OmegaConf.register_new_resolver('div', lambda a, b: a / b)
         | 
| 12 | 
            +
            OmegaConf.register_new_resolver('idiv', lambda a, b: a // b)
         | 
| 13 | 
            +
            OmegaConf.register_new_resolver('basename', lambda p: os.path.basename(p))
         | 
| 14 | 
            +
            # ======================================================= #
         | 
| 15 | 
            +
             | 
| 16 | 
            +
             | 
| 17 | 
            +
            def prompt(question):
         | 
| 18 | 
            +
                inp = input(f"{question} (y/n)").lower().strip()
         | 
| 19 | 
            +
                if inp and inp == 'y':
         | 
| 20 | 
            +
                    return True
         | 
| 21 | 
            +
                if inp and inp == 'n':
         | 
| 22 | 
            +
                    return False
         | 
| 23 | 
            +
                return prompt(question)
         | 
| 24 | 
            +
             | 
| 25 | 
            +
             | 
| 26 | 
            +
            def load_config(*yaml_files, cli_args=[]):
         | 
| 27 | 
            +
                yaml_confs = [OmegaConf.load(f) for f in yaml_files]
         | 
| 28 | 
            +
                cli_conf = OmegaConf.from_cli(cli_args)
         | 
| 29 | 
            +
                conf = OmegaConf.merge(*yaml_confs, cli_conf)
         | 
| 30 | 
            +
                OmegaConf.resolve(conf)
         | 
| 31 | 
            +
                return conf
         | 
| 32 | 
            +
             | 
| 33 | 
            +
             | 
| 34 | 
            +
            def config_to_primitive(config, resolve=True):
         | 
| 35 | 
            +
                return OmegaConf.to_container(config, resolve=resolve)
         | 
| 36 | 
            +
             | 
| 37 | 
            +
             | 
| 38 | 
            +
            def dump_config(path, config):
         | 
| 39 | 
            +
                with open(path, 'w') as fp:
         | 
| 40 | 
            +
                    OmegaConf.save(config=config, f=fp)
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            def get_rank():
         | 
| 43 | 
            +
                # SLURM_PROCID can be set even if SLURM is not managing the multiprocessing,
         | 
| 44 | 
            +
                # therefore LOCAL_RANK needs to be checked first
         | 
| 45 | 
            +
                rank_keys = ("RANK", "LOCAL_RANK", "SLURM_PROCID", "JSM_NAMESPACE_RANK")
         | 
| 46 | 
            +
                for key in rank_keys:
         | 
| 47 | 
            +
                    rank = os.environ.get(key)
         | 
| 48 | 
            +
                    if rank is not None:
         | 
| 49 | 
            +
                        return int(rank)
         | 
| 50 | 
            +
                return 0
         | 
| 51 | 
            +
             | 
| 52 | 
            +
             | 
| 53 | 
            +
            def parse_version(ver):
         | 
| 54 | 
            +
                return version.parse(ver)
         |