Spaces:
Runtime error
Runtime error
| import json | |
| import random | |
| import gradio as gr | |
| import numpy as np | |
| import spaces | |
| import torch | |
| from diffusers import DiffusionPipeline, LCMScheduler | |
| DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
| model_id = "stabilityai/stable-diffusion-xl-base-1.0" | |
| pipe = DiffusionPipeline.from_pretrained(model_id, variant="fp16") | |
| pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
| pipe.load_lora_weights("jasperai/flash-sdxl", adapter_name="lora") | |
| pipe.load_lora_weights("JacobLinCool/sdxl-lora-gdsc-1", adapter_name="gdsc") | |
| pipe.set_adapters(["lora", "gdsc"], adapter_weights=[1.0, 1.0]) | |
| pipe.to(device=DEVICE, dtype=torch.float16) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| def infer( | |
| pre_prompt, | |
| prompt, | |
| seed, | |
| randomize_seed, | |
| num_inference_steps, | |
| negative_prompt, | |
| guidance_scale, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| if pre_prompt != "": | |
| prompt = f"{pre_prompt} {prompt}" | |
| image = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| ).images[0] | |
| return image | |
| css = """ | |
| h1 { | |
| text-align: center; | |
| display:block; | |
| } | |
| p { | |
| text-align: justify; | |
| display:block; | |
| } | |
| """ | |
| if torch.cuda.is_available(): | |
| power_device = "GPU" | |
| else: | |
| power_device = "CPU" | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| scale=5, | |
| ) | |
| run_button = gr.Button("Run", scale=1) | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| pre_prompt = gr.Text( | |
| label="Pre-Prompt", | |
| show_label=True, | |
| max_lines=1, | |
| placeholder="Pre Prompt from the LoRA config", | |
| container=True, | |
| scale=5, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=4, | |
| maximum=8, | |
| step=1, | |
| value=4, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=1, | |
| maximum=6, | |
| step=0.5, | |
| value=1, | |
| ) | |
| negative_prompt = gr.Text( | |
| label="Negative Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter a negative Prompt", | |
| container=False, | |
| ) | |
| run_button.click( | |
| fn=infer, | |
| inputs=[ | |
| pre_prompt, | |
| prompt, | |
| seed, | |
| randomize_seed, | |
| num_inference_steps, | |
| negative_prompt, | |
| guidance_scale, | |
| ], | |
| outputs=[result], | |
| ) | |
| demo.queue().launch() |