import cv2 # import torch import onnxruntime import numpy as np class RealESRGAN_ONNX: def __init__(self, model_path="RealESRGAN_x2.onnx", device='cuda'): session_options = onnxruntime.SessionOptions() session_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL providers = ["CPUExecutionProvider"] if device == 'cuda': providers = [("CUDAExecutionProvider", {"cudnn_conv_algo_search": "DEFAULT"}),"CPUExecutionProvider"] self.session = onnxruntime.InferenceSession(model_path, sess_options=session_options, providers=providers) def enhance(self, img): img = img.astype(np.float32) img = img.transpose((2, 0, 1)) img = img /255 img = np.expand_dims(img, axis=0).astype(np.float32) # result = self.session.run(None, {(self.session.get_inputs()[0].name):img})[0][0] # result = (result.squeeze().transpose((1,2,0)) * 255).clip(0, 255).astype(np.uint8) return result def enhance_fp16(self, img): img = img.astype(np.float16) img = img.transpose((2, 0, 1)) img = img /255 img = np.expand_dims(img, axis=0).astype(np.float16) # result = self.session.run(None, {(self.session.get_inputs()[0].name):img})[0][0] # result = (result.squeeze().transpose((1,2,0)) * 255).clip(0, 255).astype(np.uint8) return result