Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
+
|
| 5 |
+
MODEL_ID = "Shekswess/trlm-135m"
|
| 6 |
+
|
| 7 |
+
# Load tokenizer & model
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
+
|
| 11 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 12 |
+
MODEL_ID,
|
| 13 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
| 14 |
+
)
|
| 15 |
+
model.to(device)
|
| 16 |
+
model.eval()
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def generate_reply(prompt, max_new_tokens, temperature, top_p):
|
| 20 |
+
if not prompt.strip():
|
| 21 |
+
return ""
|
| 22 |
+
|
| 23 |
+
# Use the model's chat template (as in the README)
|
| 24 |
+
messages = [{"role": "user", "content": prompt}]
|
| 25 |
+
text = tokenizer.apply_chat_template(
|
| 26 |
+
messages,
|
| 27 |
+
tokenize=False,
|
| 28 |
+
add_generation_prompt=True,
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
inputs = tokenizer(text, return_tensors="pt").to(device)
|
| 32 |
+
|
| 33 |
+
with torch.no_grad():
|
| 34 |
+
output_ids = model.generate(
|
| 35 |
+
**inputs,
|
| 36 |
+
max_new_tokens=int(max_new_tokens),
|
| 37 |
+
do_sample=True,
|
| 38 |
+
temperature=float(temperature),
|
| 39 |
+
top_p=float(top_p),
|
| 40 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
# Drop the prompt tokens and decode only the completion
|
| 44 |
+
generated_ids = output_ids[0, inputs["input_ids"].shape[1]:]
|
| 45 |
+
decoded = tokenizer.decode(generated_ids, skip_special_tokens=True)
|
| 46 |
+
|
| 47 |
+
return decoded.strip()
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
with gr.Blocks() as demo:
|
| 51 |
+
gr.Markdown("# Tiny Reasoning LM (trlm-135m)\nSmall 135M reasoning model by **Shekswess**.")
|
| 52 |
+
|
| 53 |
+
with gr.Row():
|
| 54 |
+
with gr.Column(scale=3):
|
| 55 |
+
prompt = gr.Textbox(
|
| 56 |
+
lines=8,
|
| 57 |
+
label="Prompt",
|
| 58 |
+
placeholder="Ask a question or give an instruction…",
|
| 59 |
+
)
|
| 60 |
+
max_new_tokens = gr.Slider(
|
| 61 |
+
minimum=16,
|
| 62 |
+
maximum=256,
|
| 63 |
+
value=128,
|
| 64 |
+
step=8,
|
| 65 |
+
label="Max new tokens",
|
| 66 |
+
)
|
| 67 |
+
temperature = gr.Slider(
|
| 68 |
+
minimum=0.1,
|
| 69 |
+
maximum=1.5,
|
| 70 |
+
value=0.8,
|
| 71 |
+
step=0.05,
|
| 72 |
+
label="Temperature",
|
| 73 |
+
)
|
| 74 |
+
top_p = gr.Slider(
|
| 75 |
+
minimum=0.1,
|
| 76 |
+
maximum=1.0,
|
| 77 |
+
value=0.9,
|
| 78 |
+
step=0.05,
|
| 79 |
+
label="Top-p",
|
| 80 |
+
)
|
| 81 |
+
generate_btn = gr.Button("Generate")
|
| 82 |
+
|
| 83 |
+
with gr.Column(scale=4):
|
| 84 |
+
output = gr.Textbox(
|
| 85 |
+
lines=12,
|
| 86 |
+
label="Model Output",
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
generate_btn.click(
|
| 90 |
+
fn=generate_reply,
|
| 91 |
+
inputs=[prompt, max_new_tokens, temperature, top_p],
|
| 92 |
+
outputs=[output],
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
if __name__ == "__main__":
|
| 96 |
+
demo.launch()
|