Spaces:
Runtime error
Runtime error
Commit
·
d8e07ba
1
Parent(s):
86165e8
Insert all files
Browse files- app.py +81 -9
- logo retraced 2.png +0 -0
- pages/Image to text.py +19 -0
- pages/Question Answering.py +85 -0
- pages/Speech Recognition.py +180 -0
- pages/Summarization.py +109 -0
- pages/Text Classification.py +139 -0
- pages/Text Generation.py +25 -0
- pages/Text to Image.py +19 -0
- style.css +54 -0
app.py
CHANGED
|
@@ -1,17 +1,89 @@
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from diffusers import DDPMScheduler, UNet2DModel
|
| 3 |
from PIL import Image
|
| 4 |
-
import
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
-
from diffusers import StableDiffusionPipeline
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
|
| 13 |
-
prompt = st.text_input('Insert here your prompt')
|
| 14 |
|
| 15 |
-
image = pipe(prompt).images[0]
|
| 16 |
|
| 17 |
|
|
|
|
| 1 |
+
# Install libraries
|
| 2 |
+
|
| 3 |
import streamlit as st
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
+
import streamlit as st
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import plotly.express as px
|
| 9 |
+
import matplotlib.pyplot as plt
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
import base64
|
| 12 |
+
from st_pages import Page, add_page_title, show_pages
|
| 13 |
+
from streamlit_extras.badges import badge
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# Config
|
| 17 |
+
# Initial page config
|
| 18 |
+
|
| 19 |
+
st.set_page_config(
|
| 20 |
+
page_title='RetrAIced',
|
| 21 |
+
page_icon=':🧠:',
|
| 22 |
+
layout="wide",
|
| 23 |
+
initial_sidebar_state="expanded",
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
def local_css(file_name):
|
| 27 |
+
with open(file_name) as f:
|
| 28 |
+
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
|
| 29 |
+
|
| 30 |
+
local_css("style.css")
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def img_to_bytes(img_path):
|
| 34 |
+
img_bytes = Path(img_path).read_bytes()
|
| 35 |
+
encoded = base64.b64encode(img_bytes).decode()
|
| 36 |
+
return encoded
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
show_pages(
|
| 40 |
+
[
|
| 41 |
+
Page("app.py", "Home", "🏠"),
|
| 42 |
+
Page("pages/Question Answering.py", "Question Answering", ":grey_question:"),
|
| 43 |
+
Page("pages/Speech Recognition.py", "Speech Recognition", ":speaking_head_in_silhouette:"),
|
| 44 |
+
Page("pages/Summarization.py", "Summarization",":bookmark_tabs:"),
|
| 45 |
+
Page("pages/Text to Image.py", "Text to Image",":lower_left_paintbrush:"),
|
| 46 |
+
Page("pages/Text Classification.py",'Text Classification',":book:"),
|
| 47 |
+
Page("pages/Image to text.py","Image to Text",":camera:"),
|
| 48 |
+
Page("pages/Text Generation.py", "Text Generation", ":printer:"),
|
| 49 |
+
]
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
#Add streamlit logo
|
| 53 |
+
|
| 54 |
+
st.image("logo retraced 2.png")
|
| 55 |
+
st.header("Intro")
|
| 56 |
+
st.write("##")
|
| 57 |
+
st.markdown(
|
| 58 |
+
"""
|
| 59 |
+
Welcome to **RetrAIced**, a user-friendly app that unifies a diverse array of AI models, offering a seamless platform for exploration and interaction. From natural language processing to image recognition,
|
| 60 |
+
the app provides a comprehensive experience, showcasing real-time demonstrations of predictive analytics and the fusion of various AI technologies. \n
|
| 61 |
+
|
| 62 |
+
Language models (LLMs), especially those from Hugging Face, have transformed natural language understanding and generation, becoming indispensable in today's data-driven world.
|
| 63 |
+
RetrAIced exemplifies the collaborative potential of AI by breaking down barriers between different models, making their collective power accessible to users of all backgrounds.
|
| 64 |
+
The app invites developers, data enthusiasts, and the curious to explore and experiment with models for tasks like Question Answering, Speech Recognition, Summarization, Text
|
| 65 |
+
Classification, and Text Generation. This unified experience paves the way for a connected and intelligent digital world, where projects can become more versatile, efficient, and engaging.\n
|
| 66 |
+
|
| 67 |
+
Join the creator on an exciting journey into the world of language models through RetrAIced, unlocking a universe of possibilities and transforming complexities into a unified and intuitive AI experience.
|
| 68 |
+
|
| 69 |
+
"""
|
| 70 |
+
, unsafe_allow_html=True)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
st.write("##")
|
| 74 |
+
st.write("##")
|
| 75 |
+
|
| 76 |
+
#Create 2 columns to add github repo and huggging face repo
|
| 77 |
+
left_col, right_col = st.columns(2)
|
| 78 |
+
|
| 79 |
+
with left_col:
|
| 80 |
+
st.info('**Hugging Face: [@JavierGon12](https://huggingface.co/JavierGon12)**', icon="💡")
|
| 81 |
|
| 82 |
+
with right_col:
|
|
|
|
| 83 |
|
| 84 |
+
badge(type='github',name='JaviGon12')
|
| 85 |
+
#st.info('**GitHub: [@JaviGon12](https://github.com/JaviGon12)**', icon="💻")
|
| 86 |
|
|
|
|
| 87 |
|
|
|
|
| 88 |
|
| 89 |
|
logo retraced 2.png
ADDED
|
pages/Image to text.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import Pix2StructProcessor, Pix2StructForConditionalGeneration
|
| 2 |
+
import requests
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import streamlit as st
|
| 5 |
+
|
| 6 |
+
processor = Pix2StructProcessor.from_pretrained('google/deplot')
|
| 7 |
+
model = Pix2StructForConditionalGeneration.from_pretrained('google/deplot')
|
| 8 |
+
|
| 9 |
+
document = st.file_uploader(label="Upload the document you want to explore",type=["png",'jpg', "jpeg","pdf"])
|
| 10 |
+
|
| 11 |
+
if document == None:
|
| 12 |
+
st.write("Please upload the document in the box above")
|
| 13 |
+
else:
|
| 14 |
+
image = Image.open(document)
|
| 15 |
+
st.image(image,"Document uploaded")
|
| 16 |
+
|
| 17 |
+
inputs = processor(images=image, text="Generate underlying data table of the figure below:", return_tensors="pt")
|
| 18 |
+
predictions = model.generate(**inputs, max_new_tokens=512)
|
| 19 |
+
st.write(processor.decode(predictions[0], skip_special_tokens=True))
|
pages/Question Answering.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import streamlit as st
|
| 3 |
+
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
| 4 |
+
from datasets import load_dataset
|
| 5 |
+
import torch
|
| 6 |
+
import os
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import PyPDF2
|
| 9 |
+
from pypdf.errors import PdfReadError
|
| 10 |
+
from pypdf import PdfReader
|
| 11 |
+
import pypdfium2 as pdfium
|
| 12 |
+
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
| 13 |
+
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
| 14 |
+
|
| 15 |
+
device ="cpu"
|
| 16 |
+
model.to(device)
|
| 17 |
+
|
| 18 |
+
#create uploader
|
| 19 |
+
document = st.file_uploader(label="Upload the document you want to explore",type=["png",'jpg', "jpeg","pdf"])
|
| 20 |
+
|
| 21 |
+
question = st.text_input(str("Insert here you question?"))
|
| 22 |
+
|
| 23 |
+
if document == None:
|
| 24 |
+
st.write("Please upload the document in the box above")
|
| 25 |
+
else:
|
| 26 |
+
try:
|
| 27 |
+
PdfReader(document)
|
| 28 |
+
pdf = pdfium.PdfDocument(document)
|
| 29 |
+
page = pdf.get_page(0)
|
| 30 |
+
pil_image = page.render(scale = 300/72).to_pil()
|
| 31 |
+
#st.image(pil_image, caption="Document uploaded", use_column_width=True)
|
| 32 |
+
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
|
| 33 |
+
#question = "What's the total amount?"
|
| 34 |
+
prompt = task_prompt.replace("{user_input}", question)
|
| 35 |
+
decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
| 36 |
+
pixel_values = processor(pil_image, return_tensors="pt").pixel_values
|
| 37 |
+
outputs = model.generate(
|
| 38 |
+
pixel_values.to(device),
|
| 39 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
| 40 |
+
max_length=model.decoder.config.max_position_embeddings,
|
| 41 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
| 42 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
| 43 |
+
use_cache=True,
|
| 44 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
| 45 |
+
return_dict_in_generate=True,
|
| 46 |
+
)
|
| 47 |
+
sequence = processor.batch_decode(outputs.sequences)[0]
|
| 48 |
+
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
| 49 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
| 50 |
+
st.image(pil_image,"Document uploaded")
|
| 51 |
+
st.write(processor.token2json(sequence))
|
| 52 |
+
print(processor.token2json(sequence))
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
except PdfReadError:
|
| 56 |
+
#image = Image.open(document)
|
| 57 |
+
#st.image(document, caption="Document uploaded", use_column_width=False)
|
| 58 |
+
# prepare decoder inputs
|
| 59 |
+
document = Image.open(document)
|
| 60 |
+
|
| 61 |
+
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
|
| 62 |
+
#question = "What's the total amount?"
|
| 63 |
+
prompt = task_prompt.replace("{user_input}", question)
|
| 64 |
+
decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
| 65 |
+
pixel_values = processor(document, return_tensors="pt").pixel_values
|
| 66 |
+
|
| 67 |
+
outputs = model.generate(
|
| 68 |
+
pixel_values.to(device),
|
| 69 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
| 70 |
+
max_length=model.decoder.config.max_position_embeddings,
|
| 71 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
| 72 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
| 73 |
+
use_cache=True,
|
| 74 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
| 75 |
+
return_dict_in_generate=True,
|
| 76 |
+
)
|
| 77 |
+
sequence = processor.batch_decode(outputs.sequences)[0]
|
| 78 |
+
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
| 79 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
| 80 |
+
st.image(document,"Document uploaded")
|
| 81 |
+
st.write(processor.token2json(sequence))
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
|
pages/Speech Recognition.py
ADDED
|
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import BartForConditionalGeneration, BartTokenizer
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoProcessor, WhisperForConditionalGeneration
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 6 |
+
import torchaudio
|
| 7 |
+
from transformers import pipeline
|
| 8 |
+
from streamlit_mic_recorder import mic_recorder,speech_to_text
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
option = st.selectbox("How do you want to import the audio file?",("Microphone","Upload file"))
|
| 13 |
+
if option == "Microphone":
|
| 14 |
+
# Load your own audio file
|
| 15 |
+
st.write("Record your voice, and play the recorded audio:")
|
| 16 |
+
audio = mic_recorder(start_prompt="Press the botton to start recording ⏺️",stop_prompt="Press the botton to stop to stop the recording⏹️",key='recorder')
|
| 17 |
+
|
| 18 |
+
if audio == None:
|
| 19 |
+
st.write("Please start the recording in the box above")
|
| 20 |
+
else:
|
| 21 |
+
st.audio(audio["bytes"])
|
| 22 |
+
|
| 23 |
+
elif option == "Upload file":
|
| 24 |
+
audio = st.file_uploader(label="Upload your audio file here",type=["wav",'mp3'])
|
| 25 |
+
if audio:
|
| 26 |
+
st.audio(audio)
|
| 27 |
+
|
| 28 |
+
option_language = st.selectbox(
|
| 29 |
+
'Select the language of your audio',
|
| 30 |
+
('English', 'Spanish', 'German','French','Chinese'))
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
if audio == None:
|
| 34 |
+
st.write("Please upload the audio in the box above")
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
else:
|
| 38 |
+
if option_language == "English":
|
| 39 |
+
def transcribe_audio(audio_file):
|
| 40 |
+
# Load the audio file
|
| 41 |
+
waveform, sample_rate = torchaudio.load(audio_file)
|
| 42 |
+
|
| 43 |
+
# Ensure mono-channel audio
|
| 44 |
+
if waveform.shape[0] > 1:
|
| 45 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
| 46 |
+
|
| 47 |
+
# Convert to a 16kHz sample rate if not already
|
| 48 |
+
if sample_rate != 16000:
|
| 49 |
+
waveform = torchaudio.transforms.Resample(sample_rate, 16000)(waveform)
|
| 50 |
+
|
| 51 |
+
# Convert to a list of integers
|
| 52 |
+
audio_input = waveform.squeeze().numpy().astype(int).tolist()
|
| 53 |
+
|
| 54 |
+
# Use Hugging Face's ASR pipeline
|
| 55 |
+
asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-large-v2")
|
| 56 |
+
|
| 57 |
+
# Transcribe the audio
|
| 58 |
+
transcript = asr_pipeline(waveform.numpy()[0])
|
| 59 |
+
|
| 60 |
+
return transcript
|
| 61 |
+
|
| 62 |
+
transcription = transcribe_audio(audio)
|
| 63 |
+
st.write("Here is your transcription:")
|
| 64 |
+
st.write(transcription)
|
| 65 |
+
|
| 66 |
+
elif option_language == 'Spanish':
|
| 67 |
+
|
| 68 |
+
def transcribe_audio(audio_file):
|
| 69 |
+
|
| 70 |
+
# Load the audio file
|
| 71 |
+
waveform, sample_rate = torchaudio.load(audio_file)
|
| 72 |
+
|
| 73 |
+
# Ensure mono-channel audio
|
| 74 |
+
if waveform.shape[0] > 1:
|
| 75 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
| 76 |
+
|
| 77 |
+
# Convert to a 16kHz sample rate if not already
|
| 78 |
+
if sample_rate != 16000:
|
| 79 |
+
waveform = torchaudio.transforms.Resample(sample_rate, 16000)(waveform)
|
| 80 |
+
|
| 81 |
+
# Convert to a list of integers
|
| 82 |
+
audio_input = waveform.squeeze().numpy().astype(int).tolist()
|
| 83 |
+
|
| 84 |
+
# Use Hugging Face's ASR pipeline
|
| 85 |
+
asr_pipeline = pipeline("automatic-speech-recognition", model="Sandiago21/whisper-large-v2-spanish")
|
| 86 |
+
|
| 87 |
+
# Transcribe the audio
|
| 88 |
+
transcript = asr_pipeline(waveform.numpy()[0])
|
| 89 |
+
|
| 90 |
+
return transcript
|
| 91 |
+
|
| 92 |
+
transcription = transcribe_audio(audio)
|
| 93 |
+
st.write("Aqui tienes tu transcripcion:")
|
| 94 |
+
st.write(transcription)
|
| 95 |
+
elif option_language == 'German':
|
| 96 |
+
def transcribe_audio(audio_file):
|
| 97 |
+
|
| 98 |
+
# Load the audio file
|
| 99 |
+
waveform, sample_rate = torchaudio.load(audio_file)
|
| 100 |
+
|
| 101 |
+
# Ensure mono-channel audio
|
| 102 |
+
if waveform.shape[0] > 1:
|
| 103 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
| 104 |
+
|
| 105 |
+
# Convert to a 16kHz sample rate if not already
|
| 106 |
+
if sample_rate != 16000:
|
| 107 |
+
waveform = torchaudio.transforms.Resample(sample_rate, 16000)(waveform)
|
| 108 |
+
|
| 109 |
+
# Convert to a list of integers
|
| 110 |
+
audio_input = waveform.squeeze().numpy().astype(int).tolist()
|
| 111 |
+
|
| 112 |
+
# Use Hugging Face's ASR pipeline
|
| 113 |
+
asr_pipeline = pipeline("automatic-speech-recognition", model="primeline/whisper-large-v3-german")
|
| 114 |
+
|
| 115 |
+
# Transcribe the audio
|
| 116 |
+
transcript = asr_pipeline(waveform.numpy()[0])
|
| 117 |
+
|
| 118 |
+
return transcript
|
| 119 |
+
|
| 120 |
+
transcription = transcribe_audio(audio)
|
| 121 |
+
st.write("Hier ist Ihre Transkription:")
|
| 122 |
+
st.write(transcription)
|
| 123 |
+
elif option_language == "French":
|
| 124 |
+
def transcribe_audio(audio_file):
|
| 125 |
+
|
| 126 |
+
# Load the audio file
|
| 127 |
+
waveform, sample_rate = torchaudio.load(audio_file)
|
| 128 |
+
|
| 129 |
+
# Ensure mono-channel audio
|
| 130 |
+
if waveform.shape[0] > 1:
|
| 131 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
| 132 |
+
|
| 133 |
+
# Convert to a 16kHz sample rate if not already
|
| 134 |
+
if sample_rate != 16000:
|
| 135 |
+
waveform = torchaudio.transforms.Resample(sample_rate, 16000)(waveform)
|
| 136 |
+
|
| 137 |
+
# Convert to a list of integers
|
| 138 |
+
audio_input = waveform.squeeze().numpy().astype(int).tolist()
|
| 139 |
+
|
| 140 |
+
# Use Hugging Face's ASR pipeline
|
| 141 |
+
asr_pipeline = pipeline("automatic-speech-recognition", model="bofenghuang/whisper-large-v2-french")
|
| 142 |
+
|
| 143 |
+
# Transcribe the audio
|
| 144 |
+
transcript = asr_pipeline(waveform.numpy()[0])
|
| 145 |
+
|
| 146 |
+
return transcript
|
| 147 |
+
|
| 148 |
+
transcription = transcribe_audio(audio)
|
| 149 |
+
st.write("Ici, vous avez votre transcription")
|
| 150 |
+
st.write(transcription)
|
| 151 |
+
|
| 152 |
+
elif option_language == "Chinese":
|
| 153 |
+
def transcribe_audio(audio_file):
|
| 154 |
+
|
| 155 |
+
# Load the audio file
|
| 156 |
+
waveform, sample_rate = torchaudio.load(audio_file)
|
| 157 |
+
|
| 158 |
+
# Ensure mono-channel audio
|
| 159 |
+
if waveform.shape[0] > 1:
|
| 160 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
| 161 |
+
|
| 162 |
+
# Convert to a 16kHz sample rate if not already
|
| 163 |
+
if sample_rate != 16000:
|
| 164 |
+
waveform = torchaudio.transforms.Resample(sample_rate, 16000)(waveform)
|
| 165 |
+
|
| 166 |
+
# Convert to a list of integers
|
| 167 |
+
audio_input = waveform.squeeze().numpy().astype(int).tolist()
|
| 168 |
+
|
| 169 |
+
# Use Hugging Face's ASR pipeline
|
| 170 |
+
asr_pipeline = pipeline("automatic-speech-recognition", model="yi-ching/whisper-tiny-chinese-test")
|
| 171 |
+
|
| 172 |
+
# Transcribe the audio
|
| 173 |
+
transcript = asr_pipeline(waveform.numpy()[0])
|
| 174 |
+
|
| 175 |
+
return transcript
|
| 176 |
+
|
| 177 |
+
transcription = transcribe_audio(audio)
|
| 178 |
+
st.write("这是您的转录。")
|
| 179 |
+
st.write(transcription)
|
| 180 |
+
|
pages/Summarization.py
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import BartForConditionalGeneration, BartTokenizer
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoProcessor, WhisperForConditionalGeneration
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 6 |
+
import torchaudio
|
| 7 |
+
from transformers import pipeline
|
| 8 |
+
|
| 9 |
+
# Load your own audio file
|
| 10 |
+
|
| 11 |
+
audio = st.file_uploader(label="Upload your audio file here",type=["wav",'mp3'])
|
| 12 |
+
|
| 13 |
+
option_language = st.selectbox(
|
| 14 |
+
'Select the language of your audio',
|
| 15 |
+
('English', 'Spanish', 'German','French','Chinese'))
|
| 16 |
+
|
| 17 |
+
if audio == None:
|
| 18 |
+
st.write("Please upload the audio in the box above")
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
else:
|
| 23 |
+
if option_language == "English":
|
| 24 |
+
def transcribe_audio(audio_file):
|
| 25 |
+
# Load the audio file
|
| 26 |
+
waveform, sample_rate = torchaudio.load(audio_file)
|
| 27 |
+
|
| 28 |
+
# Ensure mono-channel audio
|
| 29 |
+
if waveform.shape[0] > 1:
|
| 30 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
| 31 |
+
|
| 32 |
+
# Convert to a 16kHz sample rate if not already
|
| 33 |
+
if sample_rate != 16000:
|
| 34 |
+
waveform = torchaudio.transforms.Resample(sample_rate, 16000)(waveform)
|
| 35 |
+
|
| 36 |
+
# Convert to a list of integers
|
| 37 |
+
audio_input = waveform.squeeze().numpy().astype(int).tolist()
|
| 38 |
+
|
| 39 |
+
# Use Hugging Face's ASR pipeline
|
| 40 |
+
asr_pipeline = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h")
|
| 41 |
+
|
| 42 |
+
# Transcribe the audio
|
| 43 |
+
transcript = asr_pipeline(waveform.numpy()[0])
|
| 44 |
+
|
| 45 |
+
return transcript
|
| 46 |
+
|
| 47 |
+
transcription = transcribe_audio(audio)
|
| 48 |
+
print("Transcription",transcription)
|
| 49 |
+
|
| 50 |
+
## Inititate Summary Model
|
| 51 |
+
tokenizer_summary = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
|
| 52 |
+
model_summary = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def summarize_text(text, model, tokenizer, max_length=100):
|
| 56 |
+
input_ids = tokenizer.encode(text, return_tensors="pt")
|
| 57 |
+
summary_ids = model.generate(input_ids, max_length=max_length, num_beams=4, early_stopping=True)
|
| 58 |
+
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
summary = summarize_text(transcription['text'], model_summary, tokenizer_summary)
|
| 62 |
+
st.write("Here is your summary!")
|
| 63 |
+
st.write(summary)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
elif option_language == 'Spanish':
|
| 67 |
+
|
| 68 |
+
def transcribe_audio(audio_file):
|
| 69 |
+
|
| 70 |
+
# Load the audio file
|
| 71 |
+
waveform, sample_rate = torchaudio.load(audio_file)
|
| 72 |
+
|
| 73 |
+
# Ensure mono-channel audio
|
| 74 |
+
if waveform.shape[0] > 1:
|
| 75 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
| 76 |
+
|
| 77 |
+
# Convert to a 16kHz sample rate if not already
|
| 78 |
+
if sample_rate != 16000:
|
| 79 |
+
waveform = torchaudio.transforms.Resample(sample_rate, 16000)(waveform)
|
| 80 |
+
|
| 81 |
+
# Convert to a list of integers
|
| 82 |
+
audio_input = waveform.squeeze().numpy().astype(int).tolist()
|
| 83 |
+
|
| 84 |
+
# Use Hugging Face's ASR pipeline
|
| 85 |
+
asr_pipeline = pipeline("automatic-speech-recognition", model="Sandiago21/whisper-large-v2-spanish")
|
| 86 |
+
|
| 87 |
+
# Transcribe the audio
|
| 88 |
+
transcript = asr_pipeline(waveform.numpy()[0])
|
| 89 |
+
|
| 90 |
+
return transcript
|
| 91 |
+
|
| 92 |
+
transcription = transcribe_audio(audio)
|
| 93 |
+
print("Aqui tienes tu transcripción:",transcription)
|
| 94 |
+
|
| 95 |
+
## Inititate Summary Model
|
| 96 |
+
|
| 97 |
+
tokenizer_summary = AutoTokenizer.from_pretrained("facebook/mbart-large-50", src_lang="es_XX")
|
| 98 |
+
model_summary = AutoModelForSeq2SeqLM.from_pretrained("facebook/mbart-large-50")
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def summarize_text(text, model, tokenizer, max_length=100):
|
| 102 |
+
input_ids = tokenizer.encode(text, return_tensors="pt")
|
| 103 |
+
summary_ids = model.generate(input_ids, max_length=max_length, num_beams=4, early_stopping=True)
|
| 104 |
+
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
summary = summarize_text(transcription['text'], model_summary, tokenizer_summary)
|
| 108 |
+
st.write("Aqui tienes tu resumen!")
|
| 109 |
+
st.write(summary)
|
pages/Text Classification.py
ADDED
|
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
import torch
|
| 5 |
+
import streamlit as st
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import PyPDF2
|
| 8 |
+
from pypdf.errors import PdfReadError
|
| 9 |
+
from pypdf import PdfReader
|
| 10 |
+
import pypdfium2 as pdfium
|
| 11 |
+
|
| 12 |
+
document = st.file_uploader(label="Upload the document you want to explore",type=["png",'jpg', "jpeg","pdf"])
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
model_option = st.selectbox("Select the output of the model:",["Classification","Extract Info"])
|
| 16 |
+
if model_option == "Classification":
|
| 17 |
+
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip")
|
| 18 |
+
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip")
|
| 19 |
+
|
| 20 |
+
device = "cpu"
|
| 21 |
+
model.to(device)
|
| 22 |
+
# load document image
|
| 23 |
+
if document == None:
|
| 24 |
+
st.write("Please upload the document in the box above")
|
| 25 |
+
else:
|
| 26 |
+
try:
|
| 27 |
+
PdfReader(document)
|
| 28 |
+
pdf = pdfium.PdfDocument(document)
|
| 29 |
+
page = pdf.get_page(0)
|
| 30 |
+
pil_image = page.render(scale = 300/72).to_pil()
|
| 31 |
+
|
| 32 |
+
task_prompt = "<s_rvlcdip>"
|
| 33 |
+
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
| 34 |
+
|
| 35 |
+
pixel_values = processor(pil_image, return_tensors="pt").pixel_values
|
| 36 |
+
|
| 37 |
+
outputs = model.generate(
|
| 38 |
+
pixel_values.to(device),
|
| 39 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
| 40 |
+
max_length=model.decoder.config.max_position_embeddings,
|
| 41 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
| 42 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
| 43 |
+
use_cache=True,
|
| 44 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
| 45 |
+
return_dict_in_generate=True,
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
sequence = processor.batch_decode(outputs.sequences)[0]
|
| 49 |
+
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
| 50 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
| 51 |
+
st.image(pil_image,"Document uploaded")
|
| 52 |
+
st.write(processor.token2json(sequence))
|
| 53 |
+
|
| 54 |
+
except PdfReadError:
|
| 55 |
+
document = Image.open(document)
|
| 56 |
+
task_prompt = "<s_rvlcdip>"
|
| 57 |
+
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
| 58 |
+
|
| 59 |
+
pixel_values = processor(document, return_tensors="pt").pixel_values
|
| 60 |
+
|
| 61 |
+
outputs = model.generate(
|
| 62 |
+
pixel_values.to(device),
|
| 63 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
| 64 |
+
max_length=model.decoder.config.max_position_embeddings,
|
| 65 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
| 66 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
| 67 |
+
use_cache=True,
|
| 68 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
| 69 |
+
return_dict_in_generate=True,
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
sequence = processor.batch_decode(outputs.sequences)[0]
|
| 73 |
+
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
| 74 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
| 75 |
+
st.image(document,"Document uploaded")
|
| 76 |
+
st.write(processor.token2json(sequence))
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
elif model_option == "Extract Info":
|
| 80 |
+
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
| 81 |
+
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
| 82 |
+
|
| 83 |
+
device = "cpu"
|
| 84 |
+
model.to(device)
|
| 85 |
+
# load document image
|
| 86 |
+
if document == None:
|
| 87 |
+
st.write("Please upload the document in the box above")
|
| 88 |
+
else:
|
| 89 |
+
try:
|
| 90 |
+
PdfReader(document)
|
| 91 |
+
pdf = pdfium.PdfDocument(document)
|
| 92 |
+
page = pdf.get_page(0)
|
| 93 |
+
pil_image = page.render(scale = 300/72).to_pil()
|
| 94 |
+
|
| 95 |
+
task_prompt = "<s_cord-v2>"
|
| 96 |
+
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
| 97 |
+
|
| 98 |
+
pixel_values = processor(pil_image, return_tensors="pt").pixel_values
|
| 99 |
+
|
| 100 |
+
outputs = model.generate(
|
| 101 |
+
pixel_values.to(device),
|
| 102 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
| 103 |
+
max_length=model.decoder.config.max_position_embeddings,
|
| 104 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
| 105 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
| 106 |
+
use_cache=True,
|
| 107 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
| 108 |
+
return_dict_in_generate=True,
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
sequence = processor.batch_decode(outputs.sequences)[0]
|
| 112 |
+
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
| 113 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
| 114 |
+
st.image(pil_image,"Document uploaded")
|
| 115 |
+
st.write(processor.token2json(sequence))
|
| 116 |
+
|
| 117 |
+
except PdfReadError:
|
| 118 |
+
document = Image.open(document)
|
| 119 |
+
task_prompt = "<s_cord-v2>"
|
| 120 |
+
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
| 121 |
+
|
| 122 |
+
pixel_values = processor(document, return_tensors="pt").pixel_values
|
| 123 |
+
|
| 124 |
+
outputs = model.generate(
|
| 125 |
+
pixel_values.to(device),
|
| 126 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
| 127 |
+
max_length=model.decoder.config.max_position_embeddings,
|
| 128 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
| 129 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
| 130 |
+
use_cache=True,
|
| 131 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
| 132 |
+
return_dict_in_generate=True,
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
sequence = processor.batch_decode(outputs.sequences)[0]
|
| 136 |
+
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
| 137 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
| 138 |
+
st.image(document,"Document uploaded")
|
| 139 |
+
st.write(processor.token2json(sequence))
|
pages/Text Generation.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from streamlit_mic_recorder import mic_recorder,speech_to_text
|
| 3 |
+
|
| 4 |
+
state=st.session_state
|
| 5 |
+
|
| 6 |
+
if 'text_received' not in state:
|
| 7 |
+
state.text_received=[]
|
| 8 |
+
|
| 9 |
+
c1,c2=st.columns(2)
|
| 10 |
+
with c1:
|
| 11 |
+
st.write("Convert speech to text:")
|
| 12 |
+
with c2:
|
| 13 |
+
text=speech_to_text(language='en',use_container_width=True,just_once=True,key='STT')
|
| 14 |
+
|
| 15 |
+
if text:
|
| 16 |
+
state.text_received.append(text)
|
| 17 |
+
|
| 18 |
+
for text in state.text_received:
|
| 19 |
+
st.text(text)
|
| 20 |
+
|
| 21 |
+
st.write("Record your voice, and play the recorded audio:")
|
| 22 |
+
audio=mic_recorder(start_prompt="⏺️",stop_prompt="⏹️",key='recorder')
|
| 23 |
+
|
| 24 |
+
if audio:
|
| 25 |
+
st.audio(audio['bytes'])
|
pages/Text to Image.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from diffusers import LCMScheduler, AutoPipelineForText2Image
|
| 3 |
+
import streamlit as st
|
| 4 |
+
|
| 5 |
+
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
| 6 |
+
adapter_id = "latent-consistency/lcm-lora-sdxl"
|
| 7 |
+
|
| 8 |
+
pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float32, variant="fp16")
|
| 9 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
| 10 |
+
#pipe.to("cuda")
|
| 11 |
+
|
| 12 |
+
# load and fuse lcm lora
|
| 13 |
+
pipe.load_lora_weights(adapter_id)
|
| 14 |
+
pipe.fuse_lora()
|
| 15 |
+
prompt = st.text_input(str("Insert here you prompt?"))
|
| 16 |
+
|
| 17 |
+
# disable guidance_scale by passing 0
|
| 18 |
+
image = pipe(prompt=prompt, num_inference_steps=4, guidance_scale=0).images[0]
|
| 19 |
+
st.image(image,"Image generated by your prompt {promt}")
|
style.css
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
/* styles.css */
|
| 3 |
+
|
| 4 |
+
.title {
|
| 5 |
+
color: #ffffff;
|
| 6 |
+
font-size: 34px;
|
| 7 |
+
font-weight: bold;
|
| 8 |
+
font-family: monospace;
|
| 9 |
+
}
|
| 10 |
+
|
| 11 |
+
.custom-text {
|
| 12 |
+
color: #ffffff;
|
| 13 |
+
font-size: 20px;
|
| 14 |
+
font-weight: bold;
|
| 15 |
+
font-family: monospace;
|
| 16 |
+
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
.custom-background {
|
| 20 |
+
background-color: rgb(110, 159, 238);
|
| 21 |
+
padding: 12px;
|
| 22 |
+
font-size: 16px;
|
| 23 |
+
font-family: monospace;
|
| 24 |
+
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
/* Style inputs with type="text", type="email"and textareas */
|
| 28 |
+
input[type=text], input[type=email], textarea {
|
| 29 |
+
width: 100%; /* Full width */
|
| 30 |
+
padding: 12px; /* Some padding */
|
| 31 |
+
border: 1px solid #ccc; /* Gray border */
|
| 32 |
+
border-radius: 4px; /* Rounded borders */
|
| 33 |
+
box-sizing: border-box; /* Make sure that padding and width stays in place */
|
| 34 |
+
margin-top: 6px; /* Add a top margin */
|
| 35 |
+
margin-bottom: 16px; /* Bottom margin */
|
| 36 |
+
resize: vertical /* Allow the user to vertically resize the textarea (not horizontally) */
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
/* Style the submit button with a specific background color etc */
|
| 40 |
+
button[type=submit] {
|
| 41 |
+
background-color: #04AA6D;
|
| 42 |
+
color: white;
|
| 43 |
+
padding: 12px 20px;
|
| 44 |
+
border: none;
|
| 45 |
+
border-radius: 4px;
|
| 46 |
+
cursor: pointer;
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
/* When moving the mouse over the submit button, add a darker green color */
|
| 50 |
+
button[type=submit]:hover {
|
| 51 |
+
background-color: #45a049;
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
|