Spaces:
Sleeping
Sleeping
Adding the local app.py code to the repo
Browse files
app.py
CHANGED
@@ -1,63 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
"""
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
)
|
60 |
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
if __name__ == "__main__":
|
63 |
-
|
|
|
1 |
+
from langchain_community.document_loaders import DirectoryLoader, PyPDFLoader, Docx2txtLoader
|
2 |
+
from pathlib import Path
|
3 |
+
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
|
4 |
+
from langchain_community.vectorstores import Chroma
|
5 |
+
from itertools import combinations
|
6 |
+
import numpy as np
|
7 |
+
from langchain.memory import ConversationBufferMemory
|
8 |
+
from langchain.prompts import PromptTemplate
|
9 |
+
from langchain.chains import RetrievalQA
|
10 |
+
|
11 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
12 |
import gradio as gr
|
|
|
13 |
|
14 |
+
import os
|
15 |
+
from dotenv import load_dotenv
|
16 |
+
# from llama.api import HuggingFaceEndpoint
|
17 |
+
load_dotenv()
|
18 |
+
|
19 |
+
|
20 |
+
LOCAL_VECTOR_STORE_DIR = Path('./data')
|
21 |
+
|
22 |
+
|
23 |
+
def langchain_document_loader(TMP_DIR):
|
24 |
+
"""
|
25 |
+
Load documents from the temporary directory (TMP_DIR).
|
26 |
+
Files can be in txt, pdf, CSV or docx format.
|
27 |
+
"""
|
28 |
+
|
29 |
+
documents = []
|
30 |
+
|
31 |
+
# txt_loader = DirectoryLoader(
|
32 |
+
# TMP_DIR.as_posix(), glob="**/*.txt", loader_cls=TextLoader, show_progress=True
|
33 |
+
# )
|
34 |
+
# documents.extend(txt_loader.load())
|
35 |
+
|
36 |
+
pdf_loader = DirectoryLoader(
|
37 |
+
TMP_DIR.as_posix(), glob="**/*.pdf", loader_cls=PyPDFLoader, show_progress=True
|
38 |
+
)
|
39 |
+
documents.extend(pdf_loader.load())
|
40 |
+
|
41 |
+
# csv_loader = DirectoryLoader(
|
42 |
+
# TMP_DIR.as_posix(), glob="**/*.csv", loader_cls=CSVLoader, show_progress=True,
|
43 |
+
# loader_kwargs={"encoding":"utf8"}
|
44 |
+
# )
|
45 |
+
# documents.extend(csv_loader.load())
|
46 |
+
|
47 |
+
doc_loader = DirectoryLoader(
|
48 |
+
TMP_DIR.as_posix(),
|
49 |
+
glob="**/*.docx",
|
50 |
+
loader_cls=Docx2txtLoader,
|
51 |
+
show_progress=True,
|
52 |
+
)
|
53 |
+
documents.extend(doc_loader.load())
|
54 |
+
return documents
|
55 |
+
|
56 |
|
57 |
+
directory_path = 'course reviews'
|
58 |
+
TMP_DIR = Path(directory_path)
|
59 |
+
documents = langchain_document_loader(TMP_DIR)
|
60 |
|
61 |
+
HUGGING_FACE_API_KEY = os.getenv("HUGGING_FACE_API_KEY") # Using our secret API key from the .env file
|
62 |
+
def select_embedding_model():
|
63 |
+
# embedding = OllamaEmbeddings(model='nomic-embed-text')
|
64 |
+
embedding = HuggingFaceInferenceAPIEmbeddings(
|
65 |
+
api_key=HUGGING_FACE_API_KEY,
|
66 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2" #This is the embedding model
|
67 |
+
)
|
68 |
+
return embedding
|
|
|
69 |
|
70 |
+
embeddings = select_embedding_model() # Calling the function to select the model
|
|
|
|
|
|
|
|
|
71 |
|
|
|
72 |
|
73 |
+
def create_vectorstore(embeddings,documents,vectorstore_name):
|
74 |
+
"""Create a Chroma vector database."""
|
75 |
+
persist_directory = (LOCAL_VECTOR_STORE_DIR.as_posix() + "/" + vectorstore_name)
|
76 |
+
vector_store = Chroma.from_documents(
|
77 |
+
documents=documents,
|
78 |
+
embedding=embeddings,
|
79 |
+
persist_directory=persist_directory
|
80 |
+
)
|
81 |
+
return vector_store
|
82 |
|
83 |
+
|
84 |
+
create_vectorstores = True # change to True to create vectorstores
|
85 |
+
|
86 |
+
if create_vectorstores:
|
87 |
+
vector_store = create_vectorstore(embeddings,documents,"vector_store")
|
88 |
+
print("Vector store created")
|
89 |
+
print("")
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
vector_store = Chroma(persist_directory = LOCAL_VECTOR_STORE_DIR.as_posix() + "/vector_store",
|
94 |
+
embedding_function=embeddings)
|
95 |
+
print("vector_store:",vector_store._collection.count(),"chunks.")
|
96 |
+
|
97 |
+
|
98 |
+
def Vectorstore_backed_retriever(vectorstore,search_type="mmr",k=6,score_threshold=None):
|
99 |
+
"""create a vectorsore-backed retriever
|
100 |
+
Parameters:
|
101 |
+
search_type: Defines the type of search that the Retriever should perform.
|
102 |
+
Can be "similarity" (default), "mmr", or "similarity_score_threshold"
|
103 |
+
k: number of documents to return (Default: 4)
|
104 |
+
score_threshold: Minimum relevance threshold for similarity_score_threshold (default=None)
|
105 |
+
"""
|
106 |
+
search_kwargs={}
|
107 |
+
if k is not None:
|
108 |
+
search_kwargs['k'] = k
|
109 |
+
if score_threshold is not None:
|
110 |
+
search_kwargs['score_threshold'] = score_threshold
|
111 |
+
|
112 |
+
retriever = vectorstore.as_retriever(
|
113 |
+
search_type=search_type,
|
114 |
+
search_kwargs=search_kwargs
|
115 |
+
)
|
116 |
+
return retriever
|
117 |
+
|
118 |
+
|
119 |
+
# Similarity search
|
120 |
+
retriever = Vectorstore_backed_retriever(vector_store,search_type="similarity",k=4)
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
def instantiate_LLM(api_key,temperature=0.5,top_p=0.95,model_name=None):
|
125 |
+
"""Instantiate LLM in Langchain.
|
126 |
+
Parameters:
|
127 |
+
LLM_provider (str): the LLM provider; in ["OpenAI","Google","HuggingFace"]
|
128 |
+
model_name (str): in ["gpt-3.5-turbo", "gpt-3.5-turbo-0125", "gpt-4-turbo-preview",
|
129 |
+
"gemini-pro", "mistralai/Mistral-7B-Instruct-v0.2"].
|
130 |
+
api_key (str): google_api_key or openai_api_key or huggingfacehub_api_token
|
131 |
+
temperature (float): Range: 0.0 - 1.0; default = 0.5
|
132 |
+
top_p (float): : Range: 0.0 - 1.0; default = 1.
|
133 |
+
"""
|
134 |
+
|
135 |
+
|
136 |
+
llm = HuggingFaceEndpoint(
|
137 |
+
# repo_id = "openai-community/gpt2-large",
|
138 |
+
# repo_id = "google/gemma-2b-it",
|
139 |
+
repo_id="mistralai/Mistral-7B-Instruct-v0.2", # working
|
140 |
+
# repo_id = "NexaAIDev/Octopus-v4",
|
141 |
+
# repo_id="Snowflake/snowflake-arctic-instruct",
|
142 |
+
# repo_id="apple/OpenELM-3B-Instruct", # erros: remote trust something
|
143 |
+
# repo_id="meta-llama/Meta-Llama-3-8B-Instruct", # Takes too long
|
144 |
+
# repo_id="mistralai/Mixtral-8x22B-Instruct-v0.1", # RAM insufficient
|
145 |
+
# repo_id=model_name,
|
146 |
+
huggingfacehub_api_token=api_key,
|
147 |
+
# model_kwargs={
|
148 |
+
# "temperature":temperature,
|
149 |
+
# "top_p": top_p,
|
150 |
+
# "do_sample": True,
|
151 |
+
# "max_new_tokens":1024
|
152 |
+
# },
|
153 |
+
# model_kwargs={stop: "Human:", "stop_sequence": "Human:"},
|
154 |
+
|
155 |
+
stop_sequences = ["Human:"],
|
156 |
temperature=temperature,
|
157 |
top_p=top_p,
|
158 |
+
do_sample=True,
|
159 |
+
max_new_tokens=1024,
|
160 |
+
trust_remote_code=True
|
161 |
+
)
|
162 |
+
return llm
|
163 |
|
164 |
+
# get the API key from .env file
|
165 |
+
llm = instantiate_LLM(api_key=HUGGING_FACE_API_KEY)
|
166 |
|
167 |
+
|
168 |
+
|
169 |
+
def create_memory():
|
170 |
+
"""Creates a ConversationSummaryBufferMemory for our model
|
171 |
+
Creates a ConversationBufferWindowMemory for our models."""
|
172 |
+
|
173 |
+
memory = ConversationBufferMemory(
|
174 |
+
memory_key="history",
|
175 |
+
input_key="question",
|
176 |
+
return_messages=True,
|
177 |
+
k=3
|
178 |
+
)
|
179 |
+
|
180 |
+
return memory
|
181 |
+
|
182 |
+
memory = create_memory()
|
183 |
+
|
184 |
+
|
185 |
+
memory.save_context(
|
186 |
+
{"question": "What can you do?"},
|
187 |
+
{"output": "I can answer queries based on the past reviews and course outlines of various courses offered at LUMS."}
|
188 |
+
)
|
189 |
+
|
190 |
+
context_qa = """
|
191 |
+
You are a professional chatbot assistant for helping students at LUMS regarding course selection.
|
192 |
+
|
193 |
+
Please follow the following rules:
|
194 |
+
|
195 |
+
1. Answer the question in your own words from the context given to you.
|
196 |
+
2. If you don't know the answer, don't try to make up an answer.
|
197 |
+
3. If you don't have a course's review or outline, just say that you do not know about this course.
|
198 |
+
4. If a user enters a course code (e.g. ECON100 or CS370), match it with reviews with that course code. If the user enters a course name (e.g. Introduction to Economics or Database Systems), match it with reviews with that course name.
|
199 |
+
5. If you do not have information of a course, do not make up a course or suggest courses from universities other than LUMS.
|
200 |
+
|
201 |
+
Context: {context}
|
202 |
+
|
203 |
+
You are having a converation with a student at LUMS.
|
204 |
+
|
205 |
+
Chat History: {history}
|
206 |
+
|
207 |
+
Human: {question}
|
208 |
+
|
209 |
+
Assistant:
|
210 |
"""
|
211 |
+
|
212 |
+
prompt = PromptTemplate(
|
213 |
+
input_variables=["history", "context", "question"],
|
214 |
+
template=context_qa
|
215 |
+
)
|
216 |
+
|
217 |
+
|
218 |
+
qa = RetrievalQA.from_chain_type(
|
219 |
+
llm=llm,
|
220 |
+
retriever=retriever,
|
221 |
+
verbose=False,
|
222 |
+
return_source_documents=False,
|
223 |
+
chain_type_kwargs={
|
224 |
+
"prompt": prompt,
|
225 |
+
"memory": memory
|
226 |
+
},
|
227 |
)
|
228 |
|
229 |
|
230 |
+
# Global list to store chat history
|
231 |
+
chat_history = []
|
232 |
+
|
233 |
+
def print_documents(docs,search_with_score=False):
|
234 |
+
"""helper function to print documents."""
|
235 |
+
if search_with_score:
|
236 |
+
# used for similarity_search_with_score
|
237 |
+
print(
|
238 |
+
f"\n{'-' * 100}\n".join(
|
239 |
+
[f"Document {i+1}:\n\n" + doc[0].page_content +"\n\nscore:"+str(round(doc[-1],3))+"\n"
|
240 |
+
for i, doc in enumerate(docs)]
|
241 |
+
)
|
242 |
+
)
|
243 |
+
else:
|
244 |
+
# used for similarity_search or max_marginal_relevance_search
|
245 |
+
print(
|
246 |
+
f"\n{'-' * 100}\n".join(
|
247 |
+
[f"Document {i+1}:\n\n" + doc.page_content
|
248 |
+
for i, doc in enumerate(docs)]
|
249 |
+
)
|
250 |
+
)
|
251 |
+
|
252 |
+
def rag_model(query):
|
253 |
+
# Your RAG model code here
|
254 |
+
result = qa({'query': query})
|
255 |
+
|
256 |
+
relevant_docs = retriever.get_relevant_documents(query)
|
257 |
+
print_documents(relevant_docs)
|
258 |
+
# Extract the answer from the result
|
259 |
+
answer = result['result']
|
260 |
+
# print(result)
|
261 |
+
|
262 |
+
|
263 |
+
# Append the query and answer to the chat history
|
264 |
+
chat_history.append(f'User: {query}\nAssistant: {answer}\n')
|
265 |
+
|
266 |
+
# Join the chat history into a string
|
267 |
+
chat_string = '\n'.join(chat_history)
|
268 |
+
|
269 |
+
return chat_string
|
270 |
+
|
271 |
+
# This is for Gradio interface
|
272 |
+
gradio_app = gr.Interface(fn=rag_model, inputs="text", outputs="text", title="RAGs to Riches", theme=gr.themes.Soft(), description="This is a RAG model that can answer queries based on the past reviews and course outlines of various courses offered at LUMS.")
|
273 |
+
|
274 |
if __name__ == "__main__":
|
275 |
+
gradio_app.launch()
|