Spaces:
Sleeping
Sleeping
Update agent.py
Browse files
agent.py
CHANGED
@@ -1,25 +1,24 @@
|
|
1 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
2 |
import torch
|
3 |
|
4 |
-
# ✅ Step 1:
|
5 |
emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned"
|
6 |
emoji_tokenizer = AutoTokenizer.from_pretrained(emoji_model_id, trust_remote_code=True)
|
7 |
emoji_model = AutoModelForCausalLM.from_pretrained(
|
8 |
emoji_model_id,
|
9 |
-
|
10 |
-
torch_dtype=torch.float16
|
11 |
-
|
12 |
-
)
|
13 |
emoji_model.eval()
|
14 |
|
15 |
-
# ✅ Step 2:
|
16 |
classifier = pipeline("text-classification", model="unitary/toxic-bert", device=0 if torch.cuda.is_available() else -1)
|
17 |
|
18 |
def classify_emoji_text(text: str):
|
19 |
"""
|
20 |
-
|
|
|
21 |
"""
|
22 |
-
# ✅ 构造翻译 prompt
|
23 |
prompt = f"""请判断下面的文本是否具有冒犯性。
|
24 |
这里的“冒犯性”主要指包含人身攻击、侮辱、歧视、仇恨言论或极端粗俗的内容。
|
25 |
如果文本具有冒犯性,请仅回复冒犯;如果不具有冒犯性,请仅回复不冒犯。
|
@@ -27,18 +26,12 @@ def classify_emoji_text(text: str):
|
|
27 |
{text}
|
28 |
"""
|
29 |
|
30 |
-
# ✅ 生成翻译结果
|
31 |
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
|
32 |
with torch.no_grad():
|
33 |
-
output_ids = emoji_model.generate(
|
34 |
-
**input_ids,
|
35 |
-
max_new_tokens=50,
|
36 |
-
do_sample=False
|
37 |
-
)
|
38 |
decoded = emoji_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
39 |
translated_text = decoded.strip().split("文本如下:")[-1].strip()
|
40 |
|
41 |
-
# ✅ 送入第二阶段冒犯性识别
|
42 |
result = classifier(translated_text)[0]
|
43 |
label = result["label"]
|
44 |
score = result["score"]
|
|
|
1 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
2 |
import torch
|
3 |
|
4 |
+
# ✅ Step 1: Emoji 翻译模型(你自己训练的模型)
|
5 |
emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned"
|
6 |
emoji_tokenizer = AutoTokenizer.from_pretrained(emoji_model_id, trust_remote_code=True)
|
7 |
emoji_model = AutoModelForCausalLM.from_pretrained(
|
8 |
emoji_model_id,
|
9 |
+
trust_remote_code=True,
|
10 |
+
torch_dtype=torch.float16
|
11 |
+
).to("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
12 |
emoji_model.eval()
|
13 |
|
14 |
+
# ✅ Step 2: 冒犯性文本识别模型
|
15 |
classifier = pipeline("text-classification", model="unitary/toxic-bert", device=0 if torch.cuda.is_available() else -1)
|
16 |
|
17 |
def classify_emoji_text(text: str):
|
18 |
"""
|
19 |
+
Step 1: 翻译文本中的 emoji
|
20 |
+
Step 2: 使用分类器判断是否冒犯
|
21 |
"""
|
|
|
22 |
prompt = f"""请判断下面的文本是否具有冒犯性。
|
23 |
这里的“冒犯性”主要指包含人身攻击、侮辱、歧视、仇恨言论或极端粗俗的内容。
|
24 |
如果文本具有冒犯性,请仅回复冒犯;如果不具有冒犯性,请仅回复不冒犯。
|
|
|
26 |
{text}
|
27 |
"""
|
28 |
|
|
|
29 |
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
|
30 |
with torch.no_grad():
|
31 |
+
output_ids = emoji_model.generate(**input_ids, max_new_tokens=50, do_sample=False)
|
|
|
|
|
|
|
|
|
32 |
decoded = emoji_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
33 |
translated_text = decoded.strip().split("文本如下:")[-1].strip()
|
34 |
|
|
|
35 |
result = classifier(translated_text)[0]
|
36 |
label = result["label"]
|
37 |
score = result["score"]
|