Spaces:
Sleeping
Sleeping
Commit
Β·
03ea002
1
Parent(s):
ebae247
convert geojson polygons to points
Browse files- __pycache__/app.cpython-311.pyc +0 -0
- app.py +34 -9
- data/simplified_band_1.geojson +3 -0
- notebooks/simplify_polygon.ipynb +213 -0
__pycache__/app.cpython-311.pyc
CHANGED
Binary files a/__pycache__/app.cpython-311.pyc and b/__pycache__/app.cpython-311.pyc differ
|
|
app.py
CHANGED
@@ -19,9 +19,8 @@ from datetime import datetime
|
|
19 |
from helpers.fetch_data import fetch_data
|
20 |
from helpers.residuals import get_residual_plot
|
21 |
from helpers.reduce_precision import reduce_coordinate_precision
|
22 |
-
from shapely
|
23 |
-
from
|
24 |
-
from shapely.geometry import Polygon as ShapelyPolygon
|
25 |
import io
|
26 |
|
27 |
# ------------------------------
|
@@ -48,21 +47,40 @@ residual_data = pd.read_csv('data/residual_by_country.csv')
|
|
48 |
selected_map = reactive.Value(None)
|
49 |
|
50 |
#load band 1 data by default
|
51 |
-
with open('data/
|
52 |
band_1_data = json.load(w)
|
53 |
band_1_data = reduce_coordinate_precision(band_1_data, precision=5) #reduce precision to aid in rendering
|
54 |
|
|
|
55 |
IWI_values = [feature['properties']['IWI']
|
56 |
for feature in band_1_data['features']]
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
|
|
|
|
|
|
60 |
|
|
|
61 |
def get_color(iwi):
|
|
|
62 |
rgba = colormap(norm(iwi)) # Convert to RGBA
|
63 |
return colors.to_hex(rgba) # Convert to HEX
|
64 |
|
65 |
-
|
66 |
# Function to clean up out-of-range values and get values
|
67 |
def get_clean_values(src, band_idx=1):
|
68 |
band_data = src.read(band_idx)
|
@@ -400,10 +418,17 @@ def server(input, output, session):
|
|
400 |
}
|
401 |
|
402 |
band_1_json = GeoJSON(data=band_1_data,
|
403 |
-
style={'radius':
|
404 |
-
point_style={'radius':
|
405 |
name='Release'
|
406 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
407 |
m.add_layer(band_1_json)
|
408 |
|
409 |
geo_json = GeoJSON(
|
|
|
19 |
from helpers.fetch_data import fetch_data
|
20 |
from helpers.residuals import get_residual_plot
|
21 |
from helpers.reduce_precision import reduce_coordinate_precision
|
22 |
+
from shapely import LineString, Polygon
|
23 |
+
from matplotlib.colors import BoundaryNorm
|
|
|
24 |
import io
|
25 |
|
26 |
# ------------------------------
|
|
|
47 |
selected_map = reactive.Value(None)
|
48 |
|
49 |
#load band 1 data by default
|
50 |
+
with open('data/simplified_band_1.geojson') as w:
|
51 |
band_1_data = json.load(w)
|
52 |
band_1_data = reduce_coordinate_precision(band_1_data, precision=5) #reduce precision to aid in rendering
|
53 |
|
54 |
+
|
55 |
IWI_values = [feature['properties']['IWI']
|
56 |
for feature in band_1_data['features']]
|
57 |
+
# Define IWI value bins and their corresponding color ranges
|
58 |
+
iwi_bins = [0.052, 0.140, 0.161, 0.187, 0.240, 0.696] # Custom bin values
|
59 |
+
iwi_labels = [
|
60 |
+
"0.052 β 0.140",
|
61 |
+
"0.140 β 0.161",
|
62 |
+
"0.161 β 0.187",
|
63 |
+
"0.187 β 0.240",
|
64 |
+
"0.240 β 0.696"
|
65 |
+
]
|
66 |
+
iwi_mappings = {
|
67 |
+
"0.052 β 0.140": "#0d0887",
|
68 |
+
"0.140 β 0.161": "#7d03a8",
|
69 |
+
"0.161 β 0.187": "#cb4679",
|
70 |
+
"0.187 β 0.240": "#f89441",
|
71 |
+
"0.240 β 0.696": "#f0f921"
|
72 |
+
}
|
73 |
|
74 |
+
# Generate a colormap and norm based on the custom bins
|
75 |
+
colormap = cm.get_cmap("plasma") # Choose your colormap
|
76 |
+
norm = BoundaryNorm(iwi_bins, colormap.N)
|
77 |
|
78 |
+
# Function to get color based on IWI value
|
79 |
def get_color(iwi):
|
80 |
+
# Find the color for the given IWI value based on the colormap and norm
|
81 |
rgba = colormap(norm(iwi)) # Convert to RGBA
|
82 |
return colors.to_hex(rgba) # Convert to HEX
|
83 |
|
|
|
84 |
# Function to clean up out-of-range values and get values
|
85 |
def get_clean_values(src, band_idx=1):
|
86 |
band_data = src.read(band_idx)
|
|
|
418 |
}
|
419 |
|
420 |
band_1_json = GeoJSON(data=band_1_data,
|
421 |
+
style={'radius': 0.05, 'opacity': 0.8, 'weight': 0.5},
|
422 |
+
point_style={'radius': 0.05},
|
423 |
name='Release'
|
424 |
)
|
425 |
+
legend = LegendControl(iwi_mappings,
|
426 |
+
position="bottomleft",
|
427 |
+
title="IWI Values",
|
428 |
+
)
|
429 |
+
|
430 |
+
# Add the legend to the map
|
431 |
+
m.add_control(legend)
|
432 |
m.add_layer(band_1_json)
|
433 |
|
434 |
geo_json = GeoJSON(
|
data/simplified_band_1.geojson
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83cfb95ccb32b9974d5539e19c136eacdfceaf3e317b8b9df1726a4c707db2c6
|
3 |
+
size 44034863
|
notebooks/simplify_polygon.ipynb
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 3,
|
6 |
+
"id": "81ec2c58",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"data": {
|
11 |
+
"text/plain": [
|
12 |
+
"[{'type': 'Feature',\n",
|
13 |
+
" 'properties': {'IWI': 0.2388916015625},\n",
|
14 |
+
" 'geometry': {'type': 'Polygon',\n",
|
15 |
+
" 'coordinates': [[[9.63254496008522, 37.40584843073688],\n",
|
16 |
+
" [9.63254496008522, 37.34548164364405],\n",
|
17 |
+
" [9.692911747178051, 37.34548164364405],\n",
|
18 |
+
" [9.692911747178051, 37.40584843073688],\n",
|
19 |
+
" [9.63254496008522, 37.40584843073688]]]}},\n",
|
20 |
+
" {'type': 'Feature',\n",
|
21 |
+
" 'properties': {'IWI': 0.21142578125},\n",
|
22 |
+
" 'geometry': {'type': 'Polygon',\n",
|
23 |
+
" 'coordinates': [[[9.451444598806724, 37.34548164364405],\n",
|
24 |
+
" [9.451444598806724, 37.28511485655122],\n",
|
25 |
+
" [9.511811385899556, 37.28511485655122],\n",
|
26 |
+
" [9.511811385899556, 37.34548164364405],\n",
|
27 |
+
" [9.451444598806724, 37.34548164364405]]]}},\n",
|
28 |
+
" {'type': 'Feature',\n",
|
29 |
+
" 'properties': {'IWI': 0.191650390625},\n",
|
30 |
+
" 'geometry': {'type': 'Polygon',\n",
|
31 |
+
" 'coordinates': [[[9.511811385899556, 37.34548164364405],\n",
|
32 |
+
" [9.511811385899556, 37.28511485655122],\n",
|
33 |
+
" [9.572178172992388, 37.28511485655122],\n",
|
34 |
+
" [9.572178172992388, 37.34548164364405],\n",
|
35 |
+
" [9.511811385899556, 37.34548164364405]]]}},\n",
|
36 |
+
" {'type': 'Feature',\n",
|
37 |
+
" 'properties': {'IWI': 0.1314697265625},\n",
|
38 |
+
" 'geometry': {'type': 'Polygon',\n",
|
39 |
+
" 'coordinates': [[[9.572178172992388, 37.34548164364405],\n",
|
40 |
+
" [9.572178172992388, 37.28511485655122],\n",
|
41 |
+
" [9.63254496008522, 37.28511485655122],\n",
|
42 |
+
" [9.63254496008522, 37.34548164364405],\n",
|
43 |
+
" [9.572178172992388, 37.34548164364405]]]}},\n",
|
44 |
+
" {'type': 'Feature',\n",
|
45 |
+
" 'properties': {'IWI': 0.169921875},\n",
|
46 |
+
" 'geometry': {'type': 'Polygon',\n",
|
47 |
+
" 'coordinates': [[[9.63254496008522, 37.34548164364405],\n",
|
48 |
+
" [9.63254496008522, 37.28511485655122],\n",
|
49 |
+
" [9.692911747178051, 37.28511485655122],\n",
|
50 |
+
" [9.692911747178051, 37.34548164364405],\n",
|
51 |
+
" [9.63254496008522, 37.34548164364405]]]}},\n",
|
52 |
+
" {'type': 'Feature',\n",
|
53 |
+
" 'properties': {'IWI': 0.261962890625},\n",
|
54 |
+
" 'geometry': {'type': 'Polygon',\n",
|
55 |
+
" 'coordinates': [[[9.692911747178051, 37.34548164364405],\n",
|
56 |
+
" [9.692911747178051, 37.28511485655122],\n",
|
57 |
+
" [9.75327853427088, 37.28511485655122],\n",
|
58 |
+
" [9.75327853427088, 37.34548164364405],\n",
|
59 |
+
" [9.692911747178051, 37.34548164364405]]]}},\n",
|
60 |
+
" {'type': 'Feature',\n",
|
61 |
+
" 'properties': {'IWI': 0.355712890625},\n",
|
62 |
+
" 'geometry': {'type': 'Polygon',\n",
|
63 |
+
" 'coordinates': [[[9.75327853427088, 37.34548164364405],\n",
|
64 |
+
" [9.75327853427088, 37.28511485655122],\n",
|
65 |
+
" [9.813645321363712, 37.28511485655122],\n",
|
66 |
+
" [9.813645321363712, 37.34548164364405],\n",
|
67 |
+
" [9.75327853427088, 37.34548164364405]]]}},\n",
|
68 |
+
" {'type': 'Feature',\n",
|
69 |
+
" 'properties': {'IWI': 0.36572265625},\n",
|
70 |
+
" 'geometry': {'type': 'Polygon',\n",
|
71 |
+
" 'coordinates': [[[9.813645321363712, 37.34548164364405],\n",
|
72 |
+
" [9.813645321363712, 37.28511485655122],\n",
|
73 |
+
" [9.874012108456544, 37.28511485655122],\n",
|
74 |
+
" [9.874012108456544, 37.34548164364405],\n",
|
75 |
+
" [9.813645321363712, 37.34548164364405]]]}},\n",
|
76 |
+
" {'type': 'Feature',\n",
|
77 |
+
" 'properties': {'IWI': 0.215087890625},\n",
|
78 |
+
" 'geometry': {'type': 'Polygon',\n",
|
79 |
+
" 'coordinates': [[[9.270344237528228, 37.28511485655122],\n",
|
80 |
+
" [9.270344237528228, 37.224748069458386],\n",
|
81 |
+
" [9.33071102462106, 37.224748069458386],\n",
|
82 |
+
" [9.33071102462106, 37.28511485655122],\n",
|
83 |
+
" [9.270344237528228, 37.28511485655122]]]}},\n",
|
84 |
+
" {'type': 'Feature',\n",
|
85 |
+
" 'properties': {'IWI': 0.145263671875},\n",
|
86 |
+
" 'geometry': {'type': 'Polygon',\n",
|
87 |
+
" 'coordinates': [[[9.33071102462106, 37.28511485655122],\n",
|
88 |
+
" [9.33071102462106, 37.224748069458386],\n",
|
89 |
+
" [9.391077811713892, 37.224748069458386],\n",
|
90 |
+
" [9.391077811713892, 37.28511485655122],\n",
|
91 |
+
" [9.33071102462106, 37.28511485655122]]]}}]"
|
92 |
+
]
|
93 |
+
},
|
94 |
+
"execution_count": 3,
|
95 |
+
"metadata": {},
|
96 |
+
"output_type": "execute_result"
|
97 |
+
}
|
98 |
+
],
|
99 |
+
"source": [
|
100 |
+
"from shapely.geometry import shape\n",
|
101 |
+
"from shapely.geometry import mapping\n",
|
102 |
+
"import json \n",
|
103 |
+
"\n",
|
104 |
+
"with open('data/band_1.geojson') as a: \n",
|
105 |
+
" geojson_data = json.load(a)\n",
|
106 |
+
"\n",
|
107 |
+
"\n",
|
108 |
+
"geojson_data['features'][:10]"
|
109 |
+
]
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"cell_type": "code",
|
113 |
+
"execution_count": 14,
|
114 |
+
"id": "5720f337",
|
115 |
+
"metadata": {},
|
116 |
+
"outputs": [],
|
117 |
+
"source": [
|
118 |
+
"# Simplify a geometry\n",
|
119 |
+
"from shapely.geometry import shape, Point\n",
|
120 |
+
"def simplify_geometry_to_centroid(geometry):\n",
|
121 |
+
" geom = shape(geometry)\n",
|
122 |
+
" centroid = geom.centroid # Calculate the centroid of the polygon\n",
|
123 |
+
" return mapping(Point(centroid.x, centroid.y)) # Convert centroid to Point geometry\n",
|
124 |
+
"\n",
|
125 |
+
"# Apply simplification to each feature in your GeoJSON\n",
|
126 |
+
"for feature in geojson_data['features']:\n",
|
127 |
+
" feature['geometry'] = simplify_geometry_to_centroid(feature['geometry'])\n",
|
128 |
+
"\n",
|
129 |
+
"with open('data/simplified_band_1.geojson', 'w') as w:\n",
|
130 |
+
" json.dump(geojson_data, w, indent=4)"
|
131 |
+
]
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"cell_type": "code",
|
135 |
+
"execution_count": 19,
|
136 |
+
"id": "402ae676",
|
137 |
+
"metadata": {},
|
138 |
+
"outputs": [
|
139 |
+
{
|
140 |
+
"name": "stdout",
|
141 |
+
"output_type": "stream",
|
142 |
+
"text": [
|
143 |
+
"#0d0887\n",
|
144 |
+
"#7d03a8\n",
|
145 |
+
"#cb4679\n",
|
146 |
+
"#f89441\n",
|
147 |
+
"#f0f921\n"
|
148 |
+
]
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"name": "stderr",
|
152 |
+
"output_type": "stream",
|
153 |
+
"text": [
|
154 |
+
"/var/folders/fd/f53d2xmj7rv2ks6v0c5q59880000gn/T/ipykernel_27622/1044773481.py:15: MatplotlibDeprecationWarning: The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.\n",
|
155 |
+
" colormap = cm.get_cmap(\"plasma\") # Choose your colormap\n"
|
156 |
+
]
|
157 |
+
}
|
158 |
+
],
|
159 |
+
"source": [
|
160 |
+
"import matplotlib.cm as cm\n",
|
161 |
+
"from matplotlib.colors import BoundaryNorm\n",
|
162 |
+
"import matplotlib.colors as colors\n",
|
163 |
+
"\n",
|
164 |
+
"iwi_bins = [0.052, 0.140, 0.161, 0.187, 0.240, 0.696] # Custom bin values\n",
|
165 |
+
"iwi_labels = [\n",
|
166 |
+
" \"0.052 β 0.140\",\n",
|
167 |
+
" \"0.140 β 0.161\",\n",
|
168 |
+
" \"0.161 β 0.187\",\n",
|
169 |
+
" \"0.187 β 0.240\",\n",
|
170 |
+
" \"0.240 β 0.696\"\n",
|
171 |
+
"]\n",
|
172 |
+
"\n",
|
173 |
+
"# Generate a colormap and norm based on the custom bins\n",
|
174 |
+
"colormap = cm.get_cmap(\"plasma\") # Choose your colormap\n",
|
175 |
+
"norm = BoundaryNorm(iwi_bins, colormap.N)\n",
|
176 |
+
"\n",
|
177 |
+
"# Function to get color based on IWI value\n",
|
178 |
+
"def get_color(iwi):\n",
|
179 |
+
" # Find the color for the given IWI value based on the colormap and norm\n",
|
180 |
+
" rgba = colormap(norm(iwi)) # Convert to RGBA\n",
|
181 |
+
" return colors.to_hex(rgba) # Convert to HEX\n",
|
182 |
+
"\n",
|
183 |
+
"\n",
|
184 |
+
"print(get_color(0.1))\n",
|
185 |
+
"print(get_color(0.15))\n",
|
186 |
+
"print(get_color(0.17))\n",
|
187 |
+
"print(get_color(0.22))\n",
|
188 |
+
"print(get_color(0.5))"
|
189 |
+
]
|
190 |
+
}
|
191 |
+
],
|
192 |
+
"metadata": {
|
193 |
+
"kernelspec": {
|
194 |
+
"display_name": "myenv",
|
195 |
+
"language": "python",
|
196 |
+
"name": "python3"
|
197 |
+
},
|
198 |
+
"language_info": {
|
199 |
+
"codemirror_mode": {
|
200 |
+
"name": "ipython",
|
201 |
+
"version": 3
|
202 |
+
},
|
203 |
+
"file_extension": ".py",
|
204 |
+
"mimetype": "text/x-python",
|
205 |
+
"name": "python",
|
206 |
+
"nbconvert_exporter": "python",
|
207 |
+
"pygments_lexer": "ipython3",
|
208 |
+
"version": "3.10.13"
|
209 |
+
}
|
210 |
+
},
|
211 |
+
"nbformat": 4,
|
212 |
+
"nbformat_minor": 5
|
213 |
+
}
|