# app.py from shiny import App, ui, reactive, render import pandas as pd import numpy as np import matplotlib.pyplot as plt import rasterio from rasterio.plot import show import geopandas as gpd from ipyleaflet import Map, TileLayer, basemaps, ColorMap, RasterLayer, LegendControl, GeoJSON, MarkerCluster, Marker, DivIcon, Polygon from shinywidgets import output_widget, register_widget import plotnine as p9 import matplotlib.cm as cm import matplotlib.colors as colors import os import base64 import tempfile import json from datetime import datetime from helpers.fetch_data import fetch_data from helpers.residuals import get_residual_plot from helpers.reduce_precision import reduce_coordinate_precision from shapely import LineString, Polygon from matplotlib.colors import BoundaryNorm import io # ------------------------------ # 1. Data & Config # ------------------------------ # Define time periods corresponding to each band in the GeoTIFF time_periods = ["1990–1992", "1993–1995", "1996–1998", "1999–2001", "2002–2004", "2005–2007", "2008–2010", "2011–2013", "2014–2016", "2017–2019"] # Load GeoTIFF data (multi-band) wealth_stack = rasterio.open("wealth_map.tif") #load country data with open('data/no_somaliland.geojson') as a: country_json = json.load(a) #load IWI by country IWI_df = pd.read_csv('data/mean_IWI_by_country.csv') #load residual data residual_data = pd.read_csv('data/residual_by_country.csv') selected_map = reactive.Value(None) #load band 1 data by default with open('data/simplified_band_1.geojson') as w: band_1_data = json.load(w) band_1_data = reduce_coordinate_precision(band_1_data, precision=5) #reduce precision to aid in rendering IWI_values = [feature['properties']['IWI'] for feature in band_1_data['features']] # Define IWI value bins and their corresponding color ranges iwi_bins = [0.052, 0.140, 0.161, 0.187, 0.240, 0.696] # Custom bin values iwi_labels = [ "0.052 – 0.140", "0.140 – 0.161", "0.161 – 0.187", "0.187 – 0.240", "0.240 – 0.696" ] iwi_mappings = { "0.052 – 0.140": "#0d0887", "0.140 – 0.161": "#7d03a8", "0.161 – 0.187": "#cb4679", "0.187 – 0.240": "#f89441", "0.240 – 0.696": "#f0f921" } # Generate a colormap and norm based on the custom bins colormap = cm.get_cmap("plasma") # Choose your colormap norm = BoundaryNorm(iwi_bins, colormap.N) # Function to get color based on IWI value def get_color(iwi): # Find the color for the given IWI value based on the colormap and norm rgba = colormap(norm(iwi)) # Convert to RGBA return colors.to_hex(rgba) # Convert to HEX # Function to clean up out-of-range values and get values def get_clean_values(src, band_idx=1): band_data = src.read(band_idx) # Replace out-of-range values with NaN band_data[(band_data <= 0) | (band_data > 1)] = np.nan return band_data # Get all values across all bands for quantiles all_vals = [] for i in range(1, wealth_stack.count + 1): vals = get_clean_values(wealth_stack, i).flatten() all_vals.extend(vals[~np.isnan(vals)]) all_vals = np.array(all_vals) q_breaks_legend = np.quantile(all_vals, np.linspace(0, 1, 6)) q_breaks = np.quantile(all_vals, np.linspace(0, 1, 11)) # Get raster bounds for proper positioning on the map bounds = [[wealth_stack.bounds.bottom, wealth_stack.bounds.left], [wealth_stack.bounds.top, wealth_stack.bounds.right]] # Load improvement data (change in IWI by state/province) # In real app, adjust path improvement_data = pd.read_csv("data/poverty_improvement_by_state.csv") # Pre-calculate the mean IWI for each band (for the "Trends Over Time" chart) band_means = [] for i in range(1, wealth_stack.count + 1): vals = get_clean_values(wealth_stack, i).flatten() band_means.append(np.nanmean(vals)) # ------------------------------ # 2. UI # ------------------------------ # Custom CSS for OCR A Std font and other styling css = """ @import url('https://fonts.cdnfonts.com/css/ocr-a-std'); body { font-family: 'OCR A Std', monospace !important; } .slider-animate-button { background-color: #ffffff !important; color: #000000 !important; border: 2px solid #000000 !important; border-radius: 5px !important; padding: 5px 10px !important; top: 10px !important; } .value-box { margin-bottom: 15px; padding: 15px; border-radius: 5px; color: white; } .green-box { background-color: #00a65a; } .blue-box { background-color: #0073b7; } .red-box { background-color: #dd4b39; } .share-button { display: inline-flex; align-items: center; justify-content: center; gap: 8px; padding: 5px 10px; font-size: 16px; font-weight: normal; color: #000; background-color: #fff; border: 1px solid #ddd; border-radius: 6px; cursor: pointer; box-shadow: 0 1.5px 0 #000; } .title-text { font-family: 'OCR A Std', monospace; font-size: 18px; } .subtitle-text { font-family: 'OCR A Std', monospace; font-size: 14px; } #improvement_table .shiny-data-grid { width: 100% !important; } .nav-link { color: white !important; } """ # Share button HTML share_button_html = """ """ # Create the app UI with dashboard layout app_ui = ui.page_fluid( ui.head_content( ui.tags.style(css) ), ui.page_navbar( ui.nav_panel("Wealth Map", ui.layout_sidebar( ui.sidebar( ui.h4("Map Controls"), ui.input_switch( "SelectedMap", "Enable Country View", False), ui.input_slider( "time_index", "Select Time Period (Years):", min=1, max=len(time_periods), value=1, step=1, animate=True ), ui.strong("Currently Selected: "), ui.output_text("current_year_range", inline=True), ui.input_select( "color_palette", "Select Color Palette:", { "blue": "blue", "red": "red", "orange": "orange", "purple": "purple", "Spectral": "Spectral (Brewer)" }, selected="red" ), ui.input_slider( "opacity", "Map Opacity:", min=0.2, max=1, value=0.8, step=0.1 ), ui.accordion(ui.accordion_panel( 'How it works', ui.HTML("

These wealth-index predictions are AI-generated by a" "sequence-aware neural network trained on 30 years of Demographic and Health Surveys (DHS) ground-truth data.

  • 🔍 57,100+ geo-referenced survey points from DHS
  • ⚙️ Multi-spectral satellite bands & raster-to-vector feature extraction
  • 🎯 Calibrated & validated with held-out DHS clusters (1990–2019)
  • ") ), id="map_instructions", open=False, multiple=False), ui.HTML(share_button_html) ), ui.layout_column_wrap( ui.value_box( "Highest IWI", ui.output_text("highest_iwi"), showcase=ui.tags.i(class_="fa fa-arrow-up"), theme="success" ), ui.value_box( "Lowest IWI", ui.output_text("lowest_iwi"), showcase=ui.tags.i(class_="fa fa-arrow-down"), theme="danger" ), ui.value_box( "Average IWI", ui.output_text("avg_iwi"), showcase=ui.tags.i( class_="fa fa-balance-scale"), theme="primary" ), width=1/3 ), ui.layout_column_wrap( ui.card( ui.card_header( ui.h3("Wealth Map of Africa", class_="title-text")), output_widget("country_map"), ui.p( "Click anywhere on the map to view the time-series of IWI for that specific location (shown below).") ), ui.card( ui.card_header( ui.h3("Time Series at Clicked Location", class_="subtitle-text")), ui.output_plot("clicked_ts_plot"), ui.p( "Click on the map to see the full IWI time-series (1990–2019) for that location."), ui.download_button( "download_country_data", "Download CSV", icon="download"), ) ), ui.card( ui.card_header(ui.h3( "Ground Truth vs. Prediction Residual Distribution (Selected Country)", class_="subtitle-text")), ui.output_plot("iwi_residuals"), ui.p( "This chart shows the distribution of residuals between ground truth and predicted IWI values based on the selected country."), ui.strong( "Note: wealth estimates for areas without human settlements have been excluded from the analysis."), ui.HTML( "[Paper PDF]") ) ) ), ui.nav_panel("Improvement Data", ui.layout_columns( ui.card( ui.card_header( ui.h3("Poverty Improvement by State", class_="title-text")), ui.p("This table shows the estimated improvement in mean IWI between 1990–1992 and 2017–2019 for each province in Africa. " "The 'Improvement' column indicates the change in IWI over this period. You can sort or filter the table, " "and use the download button to export the data."), ui.download_button( "download_data", "Download CSV", icon="download"), ui.card(ui.output_data_frame( "improvement_table")), ) ) ), ui.nav_panel("Trends Over Time", ui.card( ui.card_header( ui.h3("Average Wealth Index Across Africa Over Time", class_="title-text")), ui.p("This chart aggregates the mean IWI across all of Africa in each of the ten time periods. " "It provides a high-level view of how wealth (as measured by IWI) has changed over time."), ui.output_plot("trend_plot") ) ), title=ui.HTML( "" "" "aidevlab.org" ), id="tabs", bg="#337ab7" ), ) # ------------------------------ # 3. Server logic # ------------------------------ def server(input, output, session): # Initialize the map widget m = Map(center=(0, 20), zoom=3) for feature in band_1_data["features"]: iwi = feature["properties"]["IWI"] feature["properties"]["style"] = { "color": get_color(iwi), "fillColor": get_color(iwi), # Fill color based on IWI "fillOpacity": 0.7, "weight": 1 } band_1_json = GeoJSON(data=band_1_data, style={'radius': 0.05, 'opacity': 0.8, 'weight': 0.5}, point_style={'radius': 0.05}, name='Release' ) legend = LegendControl(iwi_mappings, position="bottomleft", title="IWI Values", ) # Add the legend to the map m.add_control(legend) m.add_layer(band_1_json) geo_json = GeoJSON( data=country_json, style={ 'opacity': 1, 'dashArray': '9', 'fillOpacity': 0.1, 'weight': 1 }, hover_style={ 'color': 'white', 'dashArray': '0', 'fillOpacity': 0.5 } ) # Register the map widget with Shiny map_widget = register_widget("country_map", m) # Store clicked point values clicked_point_vals = reactive.Value(None) selected_country = reactive.Value(None) admin_layer = reactive.Value(None) selected_admin = reactive.Value(None) # Get the currently selected raster layer @reactive.Calc def selected_raster(): band_idx = input.time_index() return get_clean_values(wealth_stack, band_idx) # Display selected time period @output @render.text def current_year_range(): # Adjust for 0-based indexing return time_periods[input.time_index() - 1] # Create a Country layer for the map @reactive.effect # @reactive.event(input.time_index, input.color_palette, input.opacity) def _(): if input.SelectedMap() == True: m.remove_layer(band_1_json) m.add_layer(geo_json) return m elif input.SelectedMap() == False: for layer in m.layers: if layer == geo_json: m.remove_layer(layer) m.add_layer(band_1_json) # Handle map clicks @reactive.effect def _(): # Set up click event handler def handle_map_click(event=None, feature=None, **kwargs): # extract feature coordinates coords = feature['geometry']['coordinates'][0] latitudes = [coords[x][1] for x in range(len(coords))] longitudes = [coords[y][0] for y in range(len(coords))] # find country name country_name = feature['properties']['sovereignt'] # find country abbreviation country_abbrev = feature['properties']['sov_a3'] selected_country.set(country_name) # set the country name # lock view position to the country's centroid centroid = (np.mean(latitudes), np.mean(longitudes)) m.center = centroid m.zoom = 5 # Register click handler geo_json.on_click(handle_map_click) # Display value boxes @output @render.text def highest_iwi(): raster_data = selected_raster() return f"{np.nanmax(raster_data):.3f}" @output @render.text def lowest_iwi(): raster_data = selected_raster() return f"{np.nanmin(raster_data):.3f}" @output @render.text def avg_iwi(): raster_data = selected_raster() return f"{np.nanmean(raster_data):.3f}" # Generate trend plot for mean IWI across Africa @output @render.plot def trend_plot(): fig, ax = plt.subplots(figsize=(10, 4)) ax.plot(range(len(time_periods)), band_means, marker='o', color="darkorange", linewidth=2, markersize=6) ax.set_xticks(range(len(time_periods))) ax.set_xticklabels(time_periods, rotation=45, ha="right") ax.set_ylabel("Mean IWI") ax.set_ylim(0.1, 0.3) ax.set_title("Average IWI Over Time (Africa)") ax.grid(True, linestyle='--', alpha=0.7) plt.tight_layout() return fig # Generate histogram plot @output @render.plot def iwi_residuals(): country_name = selected_country.get() fig = get_residual_plot(country_name, residual_data) return fig # Plot time series at clicked location @output @render.plot def clicked_ts_plot(): country_name = selected_country.get() fig, ax = plt.subplots(figsize=(10, 4)) if country_name is None: ax.text(0.5, 0.5, "Click on the map to see the IWI time-series here.", horizontalalignment='center', verticalalignment='center', transform=ax.transAxes, fontsize=14) else: ax.plot(IWI_df['Band_Number'], IWI_df[country_name], marker='o', color="darkorange", linewidth=2, markersize=6) ax.set_xticks(range(1, len(IWI_df['Band_Number'])+1)) ax.set_xticklabels(time_periods, rotation=45) ax.set_ylabel("IWI (0 to 1)") ax.set_ylim(0, 1) ax.set_title(f"Time Series of IWI in {country_name}") ax.grid(True, linestyle='--', alpha=0.7) plt.tight_layout() return fig # Display improvement data table @output @render.data_frame def improvement_table(): return render.DataGrid( improvement_data, filters=True, height="800px" ) # Download CSV handler @output @render.download(filename=lambda: f"poverty_improvement_{datetime.now().strftime('%Y-%m-%d')}.csv") def download_data(): return improvement_data.to_csv(index=False) @output @render.download(filename=lambda: f"{selected_country.get()}_IWI.csv") async def download_country_data(): country_name = selected_country.get() buf = io.StringIO() country_data = pd.DataFrame(IWI_df[country_name]) country_data.to_csv(buf, index=False) yield buf.getvalue() # ------------------------------ # 4. Create and run the app # ------------------------------ app = App(app_ui, server)