Upload folder using huggingface_hub
Browse files- README.md +2 -9
- Test_RAG.py +878 -0
README.md
CHANGED
|
@@ -1,13 +1,6 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
|
| 4 |
-
colorFrom: gray
|
| 5 |
-
colorTo: gray
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 4.44.0
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
license: llama3
|
| 11 |
---
|
| 12 |
-
|
| 13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: RAG_Test
|
| 3 |
+
app_file: Test_RAG.py
|
|
|
|
|
|
|
| 4 |
sdk: gradio
|
| 5 |
sdk_version: 4.44.0
|
|
|
|
|
|
|
|
|
|
| 6 |
---
|
|
|
|
|
|
Test_RAG.py
ADDED
|
@@ -0,0 +1,878 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.environ["GIT_CLONE_PROTECTION_ACTIVE"] = "false"
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
import requests
|
| 5 |
+
import shutil
|
| 6 |
+
import io
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
import openvino as ov
|
| 9 |
+
import torch
|
| 10 |
+
import ipywidgets as widgets
|
| 11 |
+
from transformers import (
|
| 12 |
+
TextIteratorStreamer,
|
| 13 |
+
StoppingCriteria,
|
| 14 |
+
StoppingCriteriaList,
|
| 15 |
+
)
|
| 16 |
+
from llm_config import (
|
| 17 |
+
SUPPORTED_EMBEDDING_MODELS,
|
| 18 |
+
SUPPORTED_RERANK_MODELS,
|
| 19 |
+
SUPPORTED_LLM_MODELS,
|
| 20 |
+
)
|
| 21 |
+
from huggingface_hub import login
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
config_shared_path = Path("../../utils/llm_config.py")
|
| 25 |
+
config_dst_path = Path("llm_config.py")
|
| 26 |
+
text_example_en_path = Path("text_example_en.pdf")
|
| 27 |
+
text_example_cn_path = Path("text_example_cn.pdf")
|
| 28 |
+
text_example_en = "https://github.com/openvinotoolkit/openvino_notebooks/files/15039728/Platform.Brief_Intel.vPro.with.Intel.Core.Ultra_Final.pdf"
|
| 29 |
+
text_example_cn = "https://github.com/openvinotoolkit/openvino_notebooks/files/15039713/Platform.Brief_Intel.vPro.with.Intel.Core.Ultra_Final_CH.pdf"
|
| 30 |
+
|
| 31 |
+
if not config_dst_path.exists():
|
| 32 |
+
if config_shared_path.exists():
|
| 33 |
+
try:
|
| 34 |
+
os.symlink(config_shared_path, config_dst_path)
|
| 35 |
+
except Exception:
|
| 36 |
+
shutil.copy(config_shared_path, config_dst_path)
|
| 37 |
+
else:
|
| 38 |
+
r = requests.get(url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/llm_config.py")
|
| 39 |
+
with open("llm_config.py", "w", encoding="utf-8") as f:
|
| 40 |
+
f.write(r.text)
|
| 41 |
+
elif not os.path.islink(config_dst_path):
|
| 42 |
+
print("LLM config will be updated")
|
| 43 |
+
if config_shared_path.exists():
|
| 44 |
+
shutil.copy(config_shared_path, config_dst_path)
|
| 45 |
+
else:
|
| 46 |
+
r = requests.get(url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/llm_config.py")
|
| 47 |
+
with open("llm_config.py", "w", encoding="utf-8") as f:
|
| 48 |
+
f.write(r.text)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
if not text_example_en_path.exists():
|
| 52 |
+
r = requests.get(url=text_example_en)
|
| 53 |
+
content = io.BytesIO(r.content)
|
| 54 |
+
with open("text_example_en.pdf", "wb") as f:
|
| 55 |
+
f.write(content.read())
|
| 56 |
+
|
| 57 |
+
if not text_example_cn_path.exists():
|
| 58 |
+
r = requests.get(url=text_example_cn)
|
| 59 |
+
content = io.BytesIO(r.content)
|
| 60 |
+
with open("text_example_cn.pdf", "wb") as f:
|
| 61 |
+
f.write(content.read())
|
| 62 |
+
|
| 63 |
+
model_language = "English"
|
| 64 |
+
llm_model_id= "llama-3-8b-instruct"
|
| 65 |
+
llm_model_configuration = SUPPORTED_LLM_MODELS[model_language][llm_model_id]
|
| 66 |
+
print(f"Selected LLM model {llm_model_id}")
|
| 67 |
+
prepare_int4_model = True # Prepare INT4 model
|
| 68 |
+
prepare_int8_model = False # Do not prepare INT8 model
|
| 69 |
+
prepare_fp16_model = False # Do not prepare FP16 model
|
| 70 |
+
enable_awq = False
|
| 71 |
+
# Get the token from the environment variable
|
| 72 |
+
hf_token = os.getenv("HUGGINGFACE_TOKEN")
|
| 73 |
+
|
| 74 |
+
if hf_token is None:
|
| 75 |
+
raise ValueError(
|
| 76 |
+
"HUGGINGFACE_TOKEN environment variable not set. "
|
| 77 |
+
"Please set it in your environment variables or repository secrets."
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
# Log in to Hugging Face Hub
|
| 81 |
+
login(token=hf_token)
|
| 82 |
+
pt_model_id = llm_model_configuration["model_id"]
|
| 83 |
+
# pt_model_name = llm_model_id.value.split("-")[0]
|
| 84 |
+
fp16_model_dir = Path(llm_model_id) / "FP16"
|
| 85 |
+
int8_model_dir = Path(llm_model_id) / "INT8_compressed_weights"
|
| 86 |
+
int4_model_dir = Path(llm_model_id) / "INT4_compressed_weights"
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def convert_to_fp16():
|
| 90 |
+
if (fp16_model_dir / "openvino_model.xml").exists():
|
| 91 |
+
return
|
| 92 |
+
remote_code = llm_model_configuration.get("remote_code", False)
|
| 93 |
+
export_command_base = "optimum-cli export openvino --model {} --task text-generation-with-past --weight-format fp16".format(pt_model_id)
|
| 94 |
+
if remote_code:
|
| 95 |
+
export_command_base += " --trust-remote-code"
|
| 96 |
+
export_command = export_command_base + " " + str(fp16_model_dir)
|
| 97 |
+
display(Markdown("**Export command:**"))
|
| 98 |
+
display(Markdown(f"`{export_command}`"))
|
| 99 |
+
! $export_command
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def convert_to_int8():
|
| 103 |
+
if (int8_model_dir / "openvino_model.xml").exists():
|
| 104 |
+
return
|
| 105 |
+
int8_model_dir.mkdir(parents=True, exist_ok=True)
|
| 106 |
+
remote_code = llm_model_configuration.get("remote_code", False)
|
| 107 |
+
export_command_base = "optimum-cli export openvino --model {} --task text-generation-with-past --weight-format int8".format(pt_model_id)
|
| 108 |
+
if remote_code:
|
| 109 |
+
export_command_base += " --trust-remote-code"
|
| 110 |
+
export_command = export_command_base + " " + str(int8_model_dir)
|
| 111 |
+
display(Markdown("**Export command:**"))
|
| 112 |
+
display(Markdown(f"`{export_command}`"))
|
| 113 |
+
! $export_command
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def convert_to_int4():
|
| 117 |
+
compression_configs = {
|
| 118 |
+
"zephyr-7b-beta": {
|
| 119 |
+
"sym": True,
|
| 120 |
+
"group_size": 64,
|
| 121 |
+
"ratio": 0.6,
|
| 122 |
+
},
|
| 123 |
+
"mistral-7b": {
|
| 124 |
+
"sym": True,
|
| 125 |
+
"group_size": 64,
|
| 126 |
+
"ratio": 0.6,
|
| 127 |
+
},
|
| 128 |
+
"minicpm-2b-dpo": {
|
| 129 |
+
"sym": True,
|
| 130 |
+
"group_size": 64,
|
| 131 |
+
"ratio": 0.6,
|
| 132 |
+
},
|
| 133 |
+
"gemma-2b-it": {
|
| 134 |
+
"sym": True,
|
| 135 |
+
"group_size": 64,
|
| 136 |
+
"ratio": 0.6,
|
| 137 |
+
},
|
| 138 |
+
"notus-7b-v1": {
|
| 139 |
+
"sym": True,
|
| 140 |
+
"group_size": 64,
|
| 141 |
+
"ratio": 0.6,
|
| 142 |
+
},
|
| 143 |
+
"neural-chat-7b-v3-1": {
|
| 144 |
+
"sym": True,
|
| 145 |
+
"group_size": 64,
|
| 146 |
+
"ratio": 0.6,
|
| 147 |
+
},
|
| 148 |
+
"llama-2-chat-7b": {
|
| 149 |
+
"sym": True,
|
| 150 |
+
"group_size": 128,
|
| 151 |
+
"ratio": 0.8,
|
| 152 |
+
},
|
| 153 |
+
"llama-3-8b-instruct": {
|
| 154 |
+
"sym": True,
|
| 155 |
+
"group_size": 128,
|
| 156 |
+
"ratio": 0.8,
|
| 157 |
+
},
|
| 158 |
+
"gemma-7b-it": {
|
| 159 |
+
"sym": True,
|
| 160 |
+
"group_size": 128,
|
| 161 |
+
"ratio": 0.8,
|
| 162 |
+
},
|
| 163 |
+
"chatglm2-6b": {
|
| 164 |
+
"sym": True,
|
| 165 |
+
"group_size": 128,
|
| 166 |
+
"ratio": 0.72,
|
| 167 |
+
},
|
| 168 |
+
"qwen-7b-chat": {"sym": True, "group_size": 128, "ratio": 0.6},
|
| 169 |
+
"red-pajama-3b-chat": {
|
| 170 |
+
"sym": False,
|
| 171 |
+
"group_size": 128,
|
| 172 |
+
"ratio": 0.5,
|
| 173 |
+
},
|
| 174 |
+
"default": {
|
| 175 |
+
"sym": False,
|
| 176 |
+
"group_size": 128,
|
| 177 |
+
"ratio": 0.8,
|
| 178 |
+
},
|
| 179 |
+
}
|
| 180 |
+
|
| 181 |
+
model_compression_params = compression_configs.get(llm_model_id, compression_configs["default"])
|
| 182 |
+
if (int4_model_dir / "openvino_model.xml").exists():
|
| 183 |
+
return
|
| 184 |
+
remote_code = llm_model_configuration.get("remote_code", False)
|
| 185 |
+
export_command_base = "optimum-cli export openvino --model {} --task text-generation-with-past --weight-format int4".format(pt_model_id)
|
| 186 |
+
int4_compression_args = " --group-size {} --ratio {}".format(model_compression_params["group_size"], model_compression_params["ratio"])
|
| 187 |
+
if model_compression_params["sym"]:
|
| 188 |
+
int4_compression_args += " --sym"
|
| 189 |
+
if enable_awq.value:
|
| 190 |
+
int4_compression_args += " --awq --dataset wikitext2 --num-samples 128"
|
| 191 |
+
export_command_base += int4_compression_args
|
| 192 |
+
if remote_code:
|
| 193 |
+
export_command_base += " --trust-remote-code"
|
| 194 |
+
export_command = export_command_base + " " + str(int4_model_dir)
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
if prepare_fp16_model:
|
| 199 |
+
convert_to_fp16()
|
| 200 |
+
if prepare_int8_model:
|
| 201 |
+
convert_to_int8()
|
| 202 |
+
if prepare_int4_model:
|
| 203 |
+
convert_to_int4()
|
| 204 |
+
fp16_weights = fp16_model_dir / "openvino_model.bin"
|
| 205 |
+
int8_weights = int8_model_dir / "openvino_model.bin"
|
| 206 |
+
int4_weights = int4_model_dir / "openvino_model.bin"
|
| 207 |
+
|
| 208 |
+
if fp16_weights.exists():
|
| 209 |
+
print(f"Size of FP16 model is {fp16_weights.stat().st_size / 1024 / 1024:.2f} MB")
|
| 210 |
+
for precision, compressed_weights in zip([8, 4], [int8_weights, int4_weights]):
|
| 211 |
+
if compressed_weights.exists():
|
| 212 |
+
print(f"Size of model with INT{precision} compressed weights is {compressed_weights.stat().st_size / 1024 / 1024:.2f} MB")
|
| 213 |
+
if compressed_weights.exists() and fp16_weights.exists():
|
| 214 |
+
print(f"Compression rate for INT{precision} model: {fp16_weights.stat().st_size / compressed_weights.stat().st_size:.3f}")
|
| 215 |
+
embedding_model_id = 'bge-small-en-v1.5' #'bge-small-en-v1.5', 'bge-large-en-v1.5', 'bge-m3'), value='bge-small-en-v1.5'
|
| 216 |
+
embedding_model_configuration = SUPPORTED_EMBEDDING_MODELS[model_language][embedding_model_id]
|
| 217 |
+
print(f"Selected {embedding_model_id} model")
|
| 218 |
+
export_command_base = "optimum-cli export openvino --model {} --task feature-extraction".format(embedding_model_configuration["model_id"])
|
| 219 |
+
export_command = export_command_base + " " + str(embedding_model_id)
|
| 220 |
+
rerank_model_id = "bge-reranker-v2-m3" #'bge-reranker-v2-m3', 'bge-reranker-large', 'bge-reranker-base')
|
| 221 |
+
rerank_model_configuration = SUPPORTED_RERANK_MODELS[rerank_model_id]
|
| 222 |
+
print(f"Selected {rerank_model_id} model")
|
| 223 |
+
export_command_base = "optimum-cli export openvino --model {} --task text-classification".format(rerank_model_configuration["model_id"])
|
| 224 |
+
export_command = export_command_base + " " + str(rerank_model_id)
|
| 225 |
+
embedding_device = "CPU"
|
| 226 |
+
USING_NPU = embedding_device == "NPU"
|
| 227 |
+
|
| 228 |
+
npu_embedding_dir = embedding_model_id + "-npu"
|
| 229 |
+
npu_embedding_path = Path(npu_embedding_dir) / "openvino_model.xml"
|
| 230 |
+
if USING_NPU and not Path(npu_embedding_dir).exists():
|
| 231 |
+
r = requests.get(
|
| 232 |
+
url="https://raw.githubusercontent.com/openvinotoolkit/openvino_notebooks/latest/utils/notebook_utils.py",
|
| 233 |
+
)
|
| 234 |
+
with open("notebook_utils.py", "w") as f:
|
| 235 |
+
f.write(r.text)
|
| 236 |
+
import notebook_utils as utils
|
| 237 |
+
|
| 238 |
+
shutil.copytree(embedding_model_id, npu_embedding_dir)
|
| 239 |
+
utils.optimize_bge_embedding(Path(embedding_model_id) / "openvino_model.xml", npu_embedding_path)
|
| 240 |
+
rerank_device = "CPU"
|
| 241 |
+
llm_device = "CPU"
|
| 242 |
+
from langchain_community.embeddings import OpenVINOBgeEmbeddings
|
| 243 |
+
|
| 244 |
+
embedding_model_name = npu_embedding_dir if USING_NPU else embedding_model_id
|
| 245 |
+
batch_size = 1 if USING_NPU else 4
|
| 246 |
+
embedding_model_kwargs = {"device": embedding_device, "compile": False}
|
| 247 |
+
encode_kwargs = {
|
| 248 |
+
"mean_pooling": embedding_model_configuration["mean_pooling"],
|
| 249 |
+
"normalize_embeddings": embedding_model_configuration["normalize_embeddings"],
|
| 250 |
+
"batch_size": batch_size,
|
| 251 |
+
}
|
| 252 |
+
|
| 253 |
+
embedding = OpenVINOBgeEmbeddings(
|
| 254 |
+
model_name_or_path=embedding_model_name,
|
| 255 |
+
model_kwargs=embedding_model_kwargs,
|
| 256 |
+
encode_kwargs=encode_kwargs,
|
| 257 |
+
)
|
| 258 |
+
if USING_NPU:
|
| 259 |
+
embedding.ov_model.reshape(1, 512)
|
| 260 |
+
embedding.ov_model.compile()
|
| 261 |
+
|
| 262 |
+
text = "This is a test document."
|
| 263 |
+
embedding_result = embedding.embed_query(text)
|
| 264 |
+
embedding_result[:3]
|
| 265 |
+
from langchain_community.document_compressors.openvino_rerank import OpenVINOReranker
|
| 266 |
+
|
| 267 |
+
rerank_model_name = rerank_model_id
|
| 268 |
+
rerank_model_kwargs = {"device": rerank_device}
|
| 269 |
+
rerank_top_n = 2
|
| 270 |
+
|
| 271 |
+
reranker = OpenVINOReranker(
|
| 272 |
+
model_name_or_path=rerank_model_name,
|
| 273 |
+
model_kwargs=rerank_model_kwargs,
|
| 274 |
+
top_n=rerank_top_n,
|
| 275 |
+
)
|
| 276 |
+
model_to_run = "INT4"
|
| 277 |
+
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
| 278 |
+
|
| 279 |
+
if model_to_run == "INT4":
|
| 280 |
+
model_dir = int4_model_dir
|
| 281 |
+
elif model_to_run == "INT8":
|
| 282 |
+
model_dir = int8_model_dir
|
| 283 |
+
else:
|
| 284 |
+
model_dir = fp16_model_dir
|
| 285 |
+
print(f"Loading model from {model_dir}")
|
| 286 |
+
|
| 287 |
+
ov_config = {"PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": "1", "CACHE_DIR": ""}
|
| 288 |
+
|
| 289 |
+
if "GPU" in llm_device and "qwen2-7b-instruct" in llm_model_id:
|
| 290 |
+
ov_config["GPU_ENABLE_SDPA_OPTIMIZATION"] = "NO"
|
| 291 |
+
|
| 292 |
+
# On a GPU device a model is executed in FP16 precision. For red-pajama-3b-chat model there known accuracy
|
| 293 |
+
# issues caused by this, which we avoid by setting precision hint to "f32".
|
| 294 |
+
if llm_model_id == "red-pajama-3b-chat" and "GPU" in core.available_devices and llm_device in ["GPU", "AUTO"]:
|
| 295 |
+
ov_config["INFERENCE_PRECISION_HINT"] = "f32"
|
| 296 |
+
|
| 297 |
+
llm = HuggingFacePipeline.from_model_id(
|
| 298 |
+
model_id=str(model_dir),
|
| 299 |
+
task="text-generation",
|
| 300 |
+
backend="openvino",
|
| 301 |
+
model_kwargs={
|
| 302 |
+
"device": llm_device,
|
| 303 |
+
"ov_config": ov_config,
|
| 304 |
+
"trust_remote_code": True,
|
| 305 |
+
},
|
| 306 |
+
pipeline_kwargs={"max_new_tokens": 2},
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
llm.invoke("2 + 2 =")
|
| 310 |
+
import re
|
| 311 |
+
from typing import List
|
| 312 |
+
from langchain.text_splitter import (
|
| 313 |
+
CharacterTextSplitter,
|
| 314 |
+
RecursiveCharacterTextSplitter,
|
| 315 |
+
MarkdownTextSplitter,
|
| 316 |
+
)
|
| 317 |
+
from langchain.document_loaders import (
|
| 318 |
+
CSVLoader,
|
| 319 |
+
EverNoteLoader,
|
| 320 |
+
PyPDFLoader,
|
| 321 |
+
TextLoader,
|
| 322 |
+
UnstructuredEPubLoader,
|
| 323 |
+
UnstructuredHTMLLoader,
|
| 324 |
+
UnstructuredMarkdownLoader,
|
| 325 |
+
UnstructuredODTLoader,
|
| 326 |
+
UnstructuredPowerPointLoader,
|
| 327 |
+
UnstructuredWordDocumentLoader,
|
| 328 |
+
)
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
class ChineseTextSplitter(CharacterTextSplitter):
|
| 332 |
+
def __init__(self, pdf: bool = False, **kwargs):
|
| 333 |
+
super().__init__(**kwargs)
|
| 334 |
+
self.pdf = pdf
|
| 335 |
+
|
| 336 |
+
def split_text(self, text: str) -> List[str]:
|
| 337 |
+
if self.pdf:
|
| 338 |
+
text = re.sub(r"\n{3,}", "\n", text)
|
| 339 |
+
text = text.replace("\n\n", "")
|
| 340 |
+
sent_sep_pattern = re.compile('([﹒﹔﹖﹗.。!?]["’”」』]{0,2}|(?=["‘“「『]{1,2}|$))')
|
| 341 |
+
sent_list = []
|
| 342 |
+
for ele in sent_sep_pattern.split(text):
|
| 343 |
+
if sent_sep_pattern.match(ele) and sent_list:
|
| 344 |
+
sent_list[-1] += ele
|
| 345 |
+
elif ele:
|
| 346 |
+
sent_list.append(ele)
|
| 347 |
+
return sent_list
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
TEXT_SPLITERS = {
|
| 351 |
+
"Character": CharacterTextSplitter,
|
| 352 |
+
"RecursiveCharacter": RecursiveCharacterTextSplitter,
|
| 353 |
+
"Markdown": MarkdownTextSplitter,
|
| 354 |
+
"Chinese": ChineseTextSplitter,
|
| 355 |
+
}
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
LOADERS = {
|
| 359 |
+
".csv": (CSVLoader, {}),
|
| 360 |
+
".doc": (UnstructuredWordDocumentLoader, {}),
|
| 361 |
+
".docx": (UnstructuredWordDocumentLoader, {}),
|
| 362 |
+
".enex": (EverNoteLoader, {}),
|
| 363 |
+
".epub": (UnstructuredEPubLoader, {}),
|
| 364 |
+
".html": (UnstructuredHTMLLoader, {}),
|
| 365 |
+
".md": (UnstructuredMarkdownLoader, {}),
|
| 366 |
+
".odt": (UnstructuredODTLoader, {}),
|
| 367 |
+
".pdf": (PyPDFLoader, {}),
|
| 368 |
+
".ppt": (UnstructuredPowerPointLoader, {}),
|
| 369 |
+
".pptx": (UnstructuredPowerPointLoader, {}),
|
| 370 |
+
".txt": (TextLoader, {"encoding": "utf8"}),
|
| 371 |
+
}
|
| 372 |
+
|
| 373 |
+
chinese_examples = [
|
| 374 |
+
["英特尔®酷睿™ Ultra处理器可以降低多少功耗?"],
|
| 375 |
+
["相比英特尔之前的移动处理器产品,英特尔®酷睿™ Ultra处理器的AI推理性能提升了多少?"],
|
| 376 |
+
["英特尔博锐® Enterprise系统提供哪些功能?"],
|
| 377 |
+
]
|
| 378 |
+
|
| 379 |
+
english_examples = [
|
| 380 |
+
["How much power consumption can Intel® Core™ Ultra Processors help save?"],
|
| 381 |
+
["Compared to Intel’s previous mobile processor, what is the advantage of Intel® Core™ Ultra Processors for Artificial Intelligence?"],
|
| 382 |
+
["What can Intel vPro® Enterprise systems offer?"],
|
| 383 |
+
]
|
| 384 |
+
|
| 385 |
+
if model_language == "English":
|
| 386 |
+
# text_example_path = "text_example_en.pdf"
|
| 387 |
+
text_example_path = ['Supervisors-Guide-Accurate-Timekeeping_AH edits.docx','Salary-vs-Hourly-Guide_AH edits.docx','Employee-Guide-Accurate-Timekeeping_AH edits.docx','Eller Overtime Guidelines.docx','Eller FLSA information 9.2024_AH edits.docx','Accurate Timekeeping Supervisors 12.2.20_AH edits.docx']
|
| 388 |
+
else:
|
| 389 |
+
text_example_path = "text_example_cn.pdf"
|
| 390 |
+
|
| 391 |
+
examples = chinese_examples if (model_language == "Chinese") else english_examples
|
| 392 |
+
from langchain.prompts import PromptTemplate
|
| 393 |
+
from langchain_community.vectorstores import FAISS
|
| 394 |
+
from langchain.chains.retrieval import create_retrieval_chain
|
| 395 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 396 |
+
from langchain.docstore.document import Document
|
| 397 |
+
from langchain.retrievers import ContextualCompressionRetriever
|
| 398 |
+
from threading import Thread
|
| 399 |
+
import gradio as gr
|
| 400 |
+
|
| 401 |
+
stop_tokens = llm_model_configuration.get("stop_tokens")
|
| 402 |
+
rag_prompt_template = llm_model_configuration["rag_prompt_template"]
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
class StopOnTokens(StoppingCriteria):
|
| 406 |
+
def __init__(self, token_ids):
|
| 407 |
+
self.token_ids = token_ids
|
| 408 |
+
|
| 409 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
| 410 |
+
for stop_id in self.token_ids:
|
| 411 |
+
if input_ids[0][-1] == stop_id:
|
| 412 |
+
return True
|
| 413 |
+
return False
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
if stop_tokens is not None:
|
| 417 |
+
if isinstance(stop_tokens[0], str):
|
| 418 |
+
stop_tokens = llm.pipeline.tokenizer.convert_tokens_to_ids(stop_tokens)
|
| 419 |
+
|
| 420 |
+
stop_tokens = [StopOnTokens(stop_tokens)]
|
| 421 |
+
|
| 422 |
+
|
| 423 |
+
def load_single_document(file_path: str) -> List[Document]:
|
| 424 |
+
"""
|
| 425 |
+
helper for loading a single document
|
| 426 |
+
|
| 427 |
+
Params:
|
| 428 |
+
file_path: document path
|
| 429 |
+
Returns:
|
| 430 |
+
documents loaded
|
| 431 |
+
|
| 432 |
+
"""
|
| 433 |
+
ext = "." + file_path.rsplit(".", 1)[-1]
|
| 434 |
+
if ext in LOADERS:
|
| 435 |
+
loader_class, loader_args = LOADERS[ext]
|
| 436 |
+
loader = loader_class(file_path, **loader_args)
|
| 437 |
+
return loader.load()
|
| 438 |
+
|
| 439 |
+
raise ValueError(f"File does not exist '{ext}'")
|
| 440 |
+
|
| 441 |
+
|
| 442 |
+
def default_partial_text_processor(partial_text: str, new_text: str):
|
| 443 |
+
"""
|
| 444 |
+
helper for updating partially generated answer, used by default
|
| 445 |
+
|
| 446 |
+
Params:
|
| 447 |
+
partial_text: text buffer for storing previosly generated text
|
| 448 |
+
new_text: text update for the current step
|
| 449 |
+
Returns:
|
| 450 |
+
updated text string
|
| 451 |
+
|
| 452 |
+
"""
|
| 453 |
+
partial_text += new_text
|
| 454 |
+
return partial_text
|
| 455 |
+
|
| 456 |
+
|
| 457 |
+
text_processor = llm_model_configuration.get("partial_text_processor", default_partial_text_processor)
|
| 458 |
+
|
| 459 |
+
|
| 460 |
+
def create_vectordb(
|
| 461 |
+
docs, spliter_name, chunk_size, chunk_overlap, vector_search_top_k, vector_rerank_top_n, run_rerank, search_method, score_threshold, progress=gr.Progress()
|
| 462 |
+
):
|
| 463 |
+
"""
|
| 464 |
+
Initialize a vector database
|
| 465 |
+
|
| 466 |
+
Params:
|
| 467 |
+
doc: orignal documents provided by user
|
| 468 |
+
spliter_name: spliter method
|
| 469 |
+
chunk_size: size of a single sentence chunk
|
| 470 |
+
chunk_overlap: overlap size between 2 chunks
|
| 471 |
+
vector_search_top_k: Vector search top k
|
| 472 |
+
vector_rerank_top_n: Search rerank top n
|
| 473 |
+
run_rerank: whether run reranker
|
| 474 |
+
search_method: top k search method
|
| 475 |
+
score_threshold: score threshold when selecting 'similarity_score_threshold' method
|
| 476 |
+
|
| 477 |
+
"""
|
| 478 |
+
global db
|
| 479 |
+
global retriever
|
| 480 |
+
global combine_docs_chain
|
| 481 |
+
global rag_chain
|
| 482 |
+
|
| 483 |
+
if vector_rerank_top_n > vector_search_top_k:
|
| 484 |
+
gr.Warning("Search top k must >= Rerank top n")
|
| 485 |
+
|
| 486 |
+
documents = []
|
| 487 |
+
for doc in docs:
|
| 488 |
+
if type(doc) is not str:
|
| 489 |
+
doc = doc.name
|
| 490 |
+
documents.extend(load_single_document(doc))
|
| 491 |
+
|
| 492 |
+
text_splitter = TEXT_SPLITERS[spliter_name](chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
| 493 |
+
|
| 494 |
+
texts = text_splitter.split_documents(documents)
|
| 495 |
+
db = FAISS.from_documents(texts, embedding)
|
| 496 |
+
if search_method == "similarity_score_threshold":
|
| 497 |
+
search_kwargs = {"k": vector_search_top_k, "score_threshold": score_threshold}
|
| 498 |
+
else:
|
| 499 |
+
search_kwargs = {"k": vector_search_top_k}
|
| 500 |
+
retriever = db.as_retriever(search_kwargs=search_kwargs, search_type=search_method)
|
| 501 |
+
if run_rerank:
|
| 502 |
+
reranker.top_n = vector_rerank_top_n
|
| 503 |
+
retriever = ContextualCompressionRetriever(base_compressor=reranker, base_retriever=retriever)
|
| 504 |
+
prompt = PromptTemplate.from_template(rag_prompt_template)
|
| 505 |
+
combine_docs_chain = create_stuff_documents_chain(llm, prompt)
|
| 506 |
+
|
| 507 |
+
rag_chain = create_retrieval_chain(retriever, combine_docs_chain)
|
| 508 |
+
|
| 509 |
+
return "Vector database is Ready"
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
def update_retriever(vector_search_top_k, vector_rerank_top_n, run_rerank, search_method, score_threshold):
|
| 513 |
+
"""
|
| 514 |
+
Update retriever
|
| 515 |
+
|
| 516 |
+
Params:
|
| 517 |
+
vector_search_top_k: Vector search top k
|
| 518 |
+
vector_rerank_top_n: Search rerank top n
|
| 519 |
+
run_rerank: whether run reranker
|
| 520 |
+
search_method: top k search method
|
| 521 |
+
score_threshold: score threshold when selecting 'similarity_score_threshold' method
|
| 522 |
+
|
| 523 |
+
"""
|
| 524 |
+
global db
|
| 525 |
+
global retriever
|
| 526 |
+
global combine_docs_chain
|
| 527 |
+
global rag_chain
|
| 528 |
+
|
| 529 |
+
if vector_rerank_top_n > vector_search_top_k:
|
| 530 |
+
gr.Warning("Search top k must >= Rerank top n")
|
| 531 |
+
|
| 532 |
+
if search_method == "similarity_score_threshold":
|
| 533 |
+
search_kwargs = {"k": vector_search_top_k, "score_threshold": score_threshold}
|
| 534 |
+
else:
|
| 535 |
+
search_kwargs = {"k": vector_search_top_k}
|
| 536 |
+
retriever = db.as_retriever(search_kwargs=search_kwargs, search_type=search_method)
|
| 537 |
+
if run_rerank:
|
| 538 |
+
retriever = ContextualCompressionRetriever(base_compressor=reranker, base_retriever=retriever)
|
| 539 |
+
reranker.top_n = vector_rerank_top_n
|
| 540 |
+
rag_chain = create_retrieval_chain(retriever, combine_docs_chain)
|
| 541 |
+
|
| 542 |
+
return "Vector database is Ready"
|
| 543 |
+
|
| 544 |
+
|
| 545 |
+
def user(message, history):
|
| 546 |
+
"""
|
| 547 |
+
callback function for updating user messages in interface on submit button click
|
| 548 |
+
|
| 549 |
+
Params:
|
| 550 |
+
message: current message
|
| 551 |
+
history: conversation history
|
| 552 |
+
Returns:
|
| 553 |
+
None
|
| 554 |
+
"""
|
| 555 |
+
# Append the user's message to the conversation history
|
| 556 |
+
return "", history + [[message, ""]]
|
| 557 |
+
|
| 558 |
+
|
| 559 |
+
def bot(history, temperature, top_p, top_k, repetition_penalty, hide_full_prompt, do_rag):
|
| 560 |
+
"""
|
| 561 |
+
callback function for running chatbot on submit button click
|
| 562 |
+
|
| 563 |
+
Params:
|
| 564 |
+
history: conversation history
|
| 565 |
+
temperature: parameter for control the level of creativity in AI-generated text.
|
| 566 |
+
By adjusting the `temperature`, you can influence the AI model's probability distribution, making the text more focused or diverse.
|
| 567 |
+
top_p: parameter for control the range of tokens considered by the AI model based on their cumulative probability.
|
| 568 |
+
top_k: parameter for control the range of tokens considered by the AI model based on their cumulative probability, selecting number of tokens with highest probability.
|
| 569 |
+
repetition_penalty: parameter for penalizing tokens based on how frequently they occur in the text.
|
| 570 |
+
hide_full_prompt: whether to show searching results in promopt.
|
| 571 |
+
do_rag: whether do RAG when generating texts.
|
| 572 |
+
|
| 573 |
+
"""
|
| 574 |
+
streamer = TextIteratorStreamer(
|
| 575 |
+
llm.pipeline.tokenizer,
|
| 576 |
+
timeout=60.0,
|
| 577 |
+
skip_prompt=hide_full_prompt,
|
| 578 |
+
skip_special_tokens=True,
|
| 579 |
+
)
|
| 580 |
+
llm.pipeline._forward_params = dict(
|
| 581 |
+
max_new_tokens=512,
|
| 582 |
+
temperature=temperature,
|
| 583 |
+
do_sample=temperature > 0.0,
|
| 584 |
+
top_p=top_p,
|
| 585 |
+
top_k=top_k,
|
| 586 |
+
repetition_penalty=repetition_penalty,
|
| 587 |
+
streamer=streamer,
|
| 588 |
+
)
|
| 589 |
+
if stop_tokens is not None:
|
| 590 |
+
llm.pipeline._forward_params["stopping_criteria"] = StoppingCriteriaList(stop_tokens)
|
| 591 |
+
|
| 592 |
+
if do_rag:
|
| 593 |
+
t1 = Thread(target=rag_chain.invoke, args=({"input": history[-1][0]},))
|
| 594 |
+
else:
|
| 595 |
+
input_text = rag_prompt_template.format(input=history[-1][0], context="")
|
| 596 |
+
t1 = Thread(target=llm.invoke, args=(input_text,))
|
| 597 |
+
t1.start()
|
| 598 |
+
|
| 599 |
+
# Initialize an empty string to store the generated text
|
| 600 |
+
partial_text = ""
|
| 601 |
+
for new_text in streamer:
|
| 602 |
+
partial_text = text_processor(partial_text, new_text)
|
| 603 |
+
history[-1][1] = partial_text
|
| 604 |
+
yield history
|
| 605 |
+
|
| 606 |
+
|
| 607 |
+
def request_cancel():
|
| 608 |
+
llm.pipeline.model.request.cancel()
|
| 609 |
+
|
| 610 |
+
|
| 611 |
+
def clear_files():
|
| 612 |
+
return "Vector Store is Not ready"
|
| 613 |
+
|
| 614 |
+
|
| 615 |
+
# initialize the vector store with example document
|
| 616 |
+
create_vectordb(
|
| 617 |
+
text_example_path, #changed
|
| 618 |
+
"RecursiveCharacter",
|
| 619 |
+
chunk_size=400,
|
| 620 |
+
chunk_overlap=50,
|
| 621 |
+
vector_search_top_k=10,
|
| 622 |
+
vector_rerank_top_n=2,
|
| 623 |
+
run_rerank=True,
|
| 624 |
+
search_method="similarity_score_threshold",
|
| 625 |
+
score_threshold=0.5,
|
| 626 |
+
)
|
| 627 |
+
with gr.Blocks(
|
| 628 |
+
theme=gr.themes.Soft(),
|
| 629 |
+
css=".disclaimer {font-variant-caps: all-small-caps;}",
|
| 630 |
+
) as demo:
|
| 631 |
+
gr.Markdown("""<h1><center>QA over Document</center></h1>""")
|
| 632 |
+
gr.Markdown(f"""<center>Powered by OpenVINO and {llm_model_id} </center>""")
|
| 633 |
+
with gr.Row():
|
| 634 |
+
with gr.Column(scale=1):
|
| 635 |
+
docs = gr.File(
|
| 636 |
+
label="Step 1: Load text files",
|
| 637 |
+
value=text_example_path, #changed
|
| 638 |
+
file_count="multiple",
|
| 639 |
+
file_types=[
|
| 640 |
+
".csv",
|
| 641 |
+
".doc",
|
| 642 |
+
".docx",
|
| 643 |
+
".enex",
|
| 644 |
+
".epub",
|
| 645 |
+
".html",
|
| 646 |
+
".md",
|
| 647 |
+
".odt",
|
| 648 |
+
".pdf",
|
| 649 |
+
".ppt",
|
| 650 |
+
".pptx",
|
| 651 |
+
".txt",
|
| 652 |
+
],
|
| 653 |
+
)
|
| 654 |
+
load_docs = gr.Button("Step 2: Build Vector Store", variant="primary")
|
| 655 |
+
db_argument = gr.Accordion("Vector Store Configuration", open=False)
|
| 656 |
+
with db_argument:
|
| 657 |
+
spliter = gr.Dropdown(
|
| 658 |
+
["Character", "RecursiveCharacter", "Markdown", "Chinese"],
|
| 659 |
+
value="RecursiveCharacter",
|
| 660 |
+
label="Text Spliter",
|
| 661 |
+
info="Method used to splite the documents",
|
| 662 |
+
multiselect=False,
|
| 663 |
+
)
|
| 664 |
+
|
| 665 |
+
chunk_size = gr.Slider(
|
| 666 |
+
label="Chunk size",
|
| 667 |
+
value=400,
|
| 668 |
+
minimum=50,
|
| 669 |
+
maximum=2000,
|
| 670 |
+
step=50,
|
| 671 |
+
interactive=True,
|
| 672 |
+
info="Size of sentence chunk",
|
| 673 |
+
)
|
| 674 |
+
|
| 675 |
+
chunk_overlap = gr.Slider(
|
| 676 |
+
label="Chunk overlap",
|
| 677 |
+
value=50,
|
| 678 |
+
minimum=0,
|
| 679 |
+
maximum=400,
|
| 680 |
+
step=10,
|
| 681 |
+
interactive=True,
|
| 682 |
+
info=("Overlap between 2 chunks"),
|
| 683 |
+
)
|
| 684 |
+
|
| 685 |
+
langchain_status = gr.Textbox(
|
| 686 |
+
label="Vector Store Status",
|
| 687 |
+
value="Vector Store is Ready",
|
| 688 |
+
interactive=False,
|
| 689 |
+
)
|
| 690 |
+
do_rag = gr.Checkbox(
|
| 691 |
+
value=True,
|
| 692 |
+
label="RAG is ON",
|
| 693 |
+
interactive=True,
|
| 694 |
+
info="Whether to do RAG for generation",
|
| 695 |
+
)
|
| 696 |
+
with gr.Accordion("Generation Configuration", open=False):
|
| 697 |
+
with gr.Row():
|
| 698 |
+
with gr.Column():
|
| 699 |
+
with gr.Row():
|
| 700 |
+
temperature = gr.Slider(
|
| 701 |
+
label="Temperature",
|
| 702 |
+
value=0.1,
|
| 703 |
+
minimum=0.0,
|
| 704 |
+
maximum=1.0,
|
| 705 |
+
step=0.1,
|
| 706 |
+
interactive=True,
|
| 707 |
+
info="Higher values produce more diverse outputs",
|
| 708 |
+
)
|
| 709 |
+
with gr.Column():
|
| 710 |
+
with gr.Row():
|
| 711 |
+
top_p = gr.Slider(
|
| 712 |
+
label="Top-p (nucleus sampling)",
|
| 713 |
+
value=1.0,
|
| 714 |
+
minimum=0.0,
|
| 715 |
+
maximum=1,
|
| 716 |
+
step=0.01,
|
| 717 |
+
interactive=True,
|
| 718 |
+
info=(
|
| 719 |
+
"Sample from the smallest possible set of tokens whose cumulative probability "
|
| 720 |
+
"exceeds top_p. Set to 1 to disable and sample from all tokens."
|
| 721 |
+
),
|
| 722 |
+
)
|
| 723 |
+
with gr.Column():
|
| 724 |
+
with gr.Row():
|
| 725 |
+
top_k = gr.Slider(
|
| 726 |
+
label="Top-k",
|
| 727 |
+
value=50,
|
| 728 |
+
minimum=0.0,
|
| 729 |
+
maximum=200,
|
| 730 |
+
step=1,
|
| 731 |
+
interactive=True,
|
| 732 |
+
info="Sample from a shortlist of top-k tokens — 0 to disable and sample from all tokens.",
|
| 733 |
+
)
|
| 734 |
+
with gr.Column():
|
| 735 |
+
with gr.Row():
|
| 736 |
+
repetition_penalty = gr.Slider(
|
| 737 |
+
label="Repetition Penalty",
|
| 738 |
+
value=1.1,
|
| 739 |
+
minimum=1.0,
|
| 740 |
+
maximum=2.0,
|
| 741 |
+
step=0.1,
|
| 742 |
+
interactive=True,
|
| 743 |
+
info="Penalize repetition — 1.0 to disable.",
|
| 744 |
+
)
|
| 745 |
+
with gr.Column(scale=4):
|
| 746 |
+
chatbot = gr.Chatbot(
|
| 747 |
+
height=800,
|
| 748 |
+
label="Step 3: Input Query",
|
| 749 |
+
)
|
| 750 |
+
with gr.Row():
|
| 751 |
+
with gr.Column():
|
| 752 |
+
with gr.Row():
|
| 753 |
+
msg = gr.Textbox(
|
| 754 |
+
label="QA Message Box",
|
| 755 |
+
placeholder="Chat Message Box",
|
| 756 |
+
show_label=False,
|
| 757 |
+
container=False,
|
| 758 |
+
)
|
| 759 |
+
with gr.Column():
|
| 760 |
+
with gr.Row():
|
| 761 |
+
submit = gr.Button("Submit", variant="primary")
|
| 762 |
+
stop = gr.Button("Stop")
|
| 763 |
+
clear = gr.Button("Clear")
|
| 764 |
+
gr.Examples(examples, inputs=msg, label="Click on any example and press the 'Submit' button")
|
| 765 |
+
retriever_argument = gr.Accordion("Retriever Configuration", open=True)
|
| 766 |
+
with retriever_argument:
|
| 767 |
+
with gr.Row():
|
| 768 |
+
with gr.Row():
|
| 769 |
+
do_rerank = gr.Checkbox(
|
| 770 |
+
value=True,
|
| 771 |
+
label="Rerank searching result",
|
| 772 |
+
interactive=True,
|
| 773 |
+
)
|
| 774 |
+
hide_context = gr.Checkbox(
|
| 775 |
+
value=True,
|
| 776 |
+
label="Hide searching result in prompt",
|
| 777 |
+
interactive=True,
|
| 778 |
+
)
|
| 779 |
+
with gr.Row():
|
| 780 |
+
search_method = gr.Dropdown(
|
| 781 |
+
["similarity_score_threshold", "similarity", "mmr"],
|
| 782 |
+
value="similarity_score_threshold",
|
| 783 |
+
label="Searching Method",
|
| 784 |
+
info="Method used to search vector store",
|
| 785 |
+
multiselect=False,
|
| 786 |
+
interactive=True,
|
| 787 |
+
)
|
| 788 |
+
with gr.Row():
|
| 789 |
+
score_threshold = gr.Slider(
|
| 790 |
+
0.01,
|
| 791 |
+
0.99,
|
| 792 |
+
value=0.5,
|
| 793 |
+
step=0.01,
|
| 794 |
+
label="Similarity Threshold",
|
| 795 |
+
info="Only working for 'similarity score threshold' method",
|
| 796 |
+
interactive=True,
|
| 797 |
+
)
|
| 798 |
+
with gr.Row():
|
| 799 |
+
vector_rerank_top_n = gr.Slider(
|
| 800 |
+
1,
|
| 801 |
+
10,
|
| 802 |
+
value=2,
|
| 803 |
+
step=1,
|
| 804 |
+
label="Rerank top n",
|
| 805 |
+
info="Number of rerank results",
|
| 806 |
+
interactive=True,
|
| 807 |
+
)
|
| 808 |
+
with gr.Row():
|
| 809 |
+
vector_search_top_k = gr.Slider(
|
| 810 |
+
1,
|
| 811 |
+
50,
|
| 812 |
+
value=10,
|
| 813 |
+
step=1,
|
| 814 |
+
label="Search top k",
|
| 815 |
+
info="Search top k must >= Rerank top n",
|
| 816 |
+
interactive=True,
|
| 817 |
+
)
|
| 818 |
+
docs.clear(clear_files, outputs=[langchain_status], queue=False)
|
| 819 |
+
load_docs.click(
|
| 820 |
+
create_vectordb,
|
| 821 |
+
inputs=[docs, spliter, chunk_size, chunk_overlap, vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold],
|
| 822 |
+
outputs=[langchain_status],
|
| 823 |
+
queue=False,
|
| 824 |
+
)
|
| 825 |
+
submit_event = msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
| 826 |
+
bot,
|
| 827 |
+
[chatbot, temperature, top_p, top_k, repetition_penalty, hide_context, do_rag],
|
| 828 |
+
chatbot,
|
| 829 |
+
queue=True,
|
| 830 |
+
)
|
| 831 |
+
submit_click_event = submit.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
| 832 |
+
bot,
|
| 833 |
+
[chatbot, temperature, top_p, top_k, repetition_penalty, hide_context, do_rag],
|
| 834 |
+
chatbot,
|
| 835 |
+
queue=True,
|
| 836 |
+
)
|
| 837 |
+
stop.click(
|
| 838 |
+
fn=request_cancel,
|
| 839 |
+
inputs=None,
|
| 840 |
+
outputs=None,
|
| 841 |
+
cancels=[submit_event, submit_click_event],
|
| 842 |
+
queue=False,
|
| 843 |
+
)
|
| 844 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
| 845 |
+
vector_search_top_k.release(
|
| 846 |
+
update_retriever,
|
| 847 |
+
[vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold],
|
| 848 |
+
outputs=[langchain_status],
|
| 849 |
+
)
|
| 850 |
+
vector_rerank_top_n.release(
|
| 851 |
+
update_retriever,
|
| 852 |
+
inputs=[vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold],
|
| 853 |
+
outputs=[langchain_status],
|
| 854 |
+
)
|
| 855 |
+
do_rerank.change(
|
| 856 |
+
update_retriever,
|
| 857 |
+
inputs=[vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold],
|
| 858 |
+
outputs=[langchain_status],
|
| 859 |
+
)
|
| 860 |
+
search_method.change(
|
| 861 |
+
update_retriever,
|
| 862 |
+
inputs=[vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold],
|
| 863 |
+
outputs=[langchain_status],
|
| 864 |
+
)
|
| 865 |
+
score_threshold.change(
|
| 866 |
+
update_retriever,
|
| 867 |
+
inputs=[vector_search_top_k, vector_rerank_top_n, do_rerank, search_method, score_threshold],
|
| 868 |
+
outputs=[langchain_status],
|
| 869 |
+
)
|
| 870 |
+
|
| 871 |
+
|
| 872 |
+
demo.queue()
|
| 873 |
+
# if you are launching remotely, specify server_name and server_port
|
| 874 |
+
# demo.launch(server_port=8082)
|
| 875 |
+
# if you have any issue to launch on your platform, you can pass share=True to launch method:
|
| 876 |
+
demo.launch(share=True)
|
| 877 |
+
# it creates a publicly shareable link for the interface. Read more in the docs: https://gradio.app/docs/
|
| 878 |
+
# demo.launch()
|