Spaces:
Running
Running
| import os | |
| import argparse | |
| import copy | |
| import json | |
| from collections import defaultdict | |
| from surya.detection import batch_text_detection | |
| from surya.input.load import load_from_folder, load_from_file | |
| from surya.layout import batch_layout_detection | |
| from surya.model.detection.model import load_model as load_det_model, load_processor as load_det_processor | |
| from surya.model.ordering.model import load_model | |
| from surya.model.ordering.processor import load_processor | |
| from surya.ordering import batch_ordering | |
| from surya.postprocessing.heatmap import draw_polys_on_image | |
| from surya.settings import settings | |
| def main(): | |
| parser = argparse.ArgumentParser(description="Find reading order of an input file or folder (PDFs or image).") | |
| parser.add_argument("input_path", type=str, help="Path to pdf or image file or folder to find reading order in.") | |
| parser.add_argument("--results_dir", type=str, help="Path to JSON file with layout results.", default=os.path.join(settings.RESULT_DIR, "surya")) | |
| parser.add_argument("--max", type=int, help="Maximum number of pages to process.", default=None) | |
| parser.add_argument("--images", action="store_true", help="Save images of detected layout bboxes.", default=False) | |
| args = parser.parse_args() | |
| model = load_model() | |
| processor = load_processor() | |
| layout_model = load_det_model(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT) | |
| layout_processor = load_det_processor(checkpoint=settings.LAYOUT_MODEL_CHECKPOINT) | |
| det_model = load_det_model() | |
| det_processor = load_det_processor() | |
| if os.path.isdir(args.input_path): | |
| images, names, _ = load_from_folder(args.input_path, args.max) | |
| folder_name = os.path.basename(args.input_path) | |
| else: | |
| images, names, _ = load_from_file(args.input_path, args.max) | |
| folder_name = os.path.basename(args.input_path).split(".")[0] | |
| line_predictions = batch_text_detection(images, det_model, det_processor) | |
| layout_predictions = batch_layout_detection(images, layout_model, layout_processor, line_predictions) | |
| bboxes = [] | |
| for layout_pred in layout_predictions: | |
| bbox = [l.bbox for l in layout_pred.bboxes] | |
| bboxes.append(bbox) | |
| order_predictions = batch_ordering(images, bboxes, model, processor) | |
| result_path = os.path.join(args.results_dir, folder_name) | |
| os.makedirs(result_path, exist_ok=True) | |
| if args.images: | |
| for idx, (image, layout_pred, order_pred, name) in enumerate(zip(images, layout_predictions, order_predictions, names)): | |
| polys = [l.polygon for l in order_pred.bboxes] | |
| labels = [str(l.position) for l in order_pred.bboxes] | |
| bbox_image = draw_polys_on_image(polys, copy.deepcopy(image), labels=labels, label_font_size=20) | |
| bbox_image.save(os.path.join(result_path, f"{name}_{idx}_order.png")) | |
| predictions_by_page = defaultdict(list) | |
| for idx, (layout_pred, pred, name, image) in enumerate(zip(layout_predictions, order_predictions, names, images)): | |
| out_pred = pred.model_dump() | |
| for bbox, layout_bbox in zip(out_pred["bboxes"], layout_pred.bboxes): | |
| bbox["label"] = layout_bbox.label | |
| out_pred["page"] = len(predictions_by_page[name]) + 1 | |
| predictions_by_page[name].append(out_pred) | |
| # Sort in reading order | |
| for name in predictions_by_page: | |
| for page_preds in predictions_by_page[name]: | |
| page_preds["bboxes"] = sorted(page_preds["bboxes"], key=lambda x: x["position"]) | |
| with open(os.path.join(result_path, "results.json"), "w+", encoding="utf-8") as f: | |
| json.dump(predictions_by_page, f, ensure_ascii=False) | |
| print(f"Wrote results to {result_path}") | |
| if __name__ == "__main__": | |
| main() | |