JichenHu's picture
Upload 10 files
1f93e83 verified
import torch
import torch.nn as nn
from typing import Dict, Optional, Tuple, Union
from diffusers import AutoencoderKL
from diffusers.models.autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution, Encoder, Decoder
from diffusers.models.attention_processor import Attention, AttentionProcessor
from diffusers.models.modeling_outputs import AutoencoderKLOutput
from diffusers.models.unets.unet_2d_blocks import (
AutoencoderTinyBlock,
UNetMidBlock2D,
get_down_block,
get_up_block,
)
from diffusers.utils.accelerate_utils import apply_forward_hook
class ZeroConv2d(nn.Module):
"""
Zero Convolution layer, similar to the one used in ControlNet.
"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
self.conv.weight.data.zero_()
self.conv.bias.data.zero_()
def forward(self, x):
return self.conv(x)
class CustomAutoencoderKL(AutoencoderKL):
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
block_out_channels: Tuple[int] = (64,),
layers_per_block: int = 1,
act_fn: str = "silu",
latent_channels: int = 4,
norm_num_groups: int = 32,
sample_size: int = 32,
scaling_factor: float = 0.18215,
force_upcast: float = True,
use_quant_conv: bool = True,
use_post_quant_conv: bool = True,
mid_block_add_attention: bool = True,
):
super().__init__(
in_channels=in_channels,
out_channels=out_channels,
down_block_types=down_block_types,
up_block_types=up_block_types,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
act_fn=act_fn,
latent_channels=latent_channels,
norm_num_groups=norm_num_groups,
sample_size=sample_size,
scaling_factor=scaling_factor,
force_upcast=force_upcast,
use_quant_conv=use_quant_conv,
use_post_quant_conv=use_post_quant_conv,
mid_block_add_attention=mid_block_add_attention,
)
# Add Zero Convolution layers to the encoder
# self.zero_convs = nn.ModuleList()
# for i, out_channels_ in enumerate(block_out_channels):
# self.zero_convs.append(ZeroConv2d(out_channels_, out_channels_))
# Modify the decoder to accept skip connections
self.decoder = CustomDecoder(
in_channels=latent_channels,
out_channels=out_channels,
up_block_types=up_block_types,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
norm_num_groups=norm_num_groups,
act_fn=act_fn,
mid_block_add_attention=mid_block_add_attention,
)
self.encoder = CustomEncoder(
in_channels=in_channels,
out_channels=latent_channels,
down_block_types=down_block_types,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
norm_num_groups=norm_num_groups,
act_fn=act_fn,
mid_block_add_attention=mid_block_add_attention,
)
def encode(self, x: torch.Tensor, return_dict: bool = True):
# Get the encoder outputs
_, skip_connections = self.encoder(x)
return skip_connections
def decode(self, z: torch.Tensor, skip_connections: list, return_dict: bool = True):
if self.post_quant_conv is not None:
z = self.post_quant_conv(z)
# Decode the latent representation with skip connections
dec = self.decoder(z, skip_connections)
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
def forward(
self,
sample: torch.Tensor,
sample_posterior: bool = False,
return_dict: bool = True,
generator: Optional[torch.Generator] = None,
):
# Encode the input and get the skip connections
posterior, skip_connections = self.encode(sample, return_dict=True)
# Sample from the posterior
if sample_posterior:
z = posterior.sample(generator=generator)
else:
z = posterior.mode()
# Decode the latent representation with skip connections
dec = self.decode(z, skip_connections, return_dict=return_dict)
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
class CustomDecoder(Decoder):
def __init__(
self,
in_channels: int,
out_channels: int,
up_block_types: Tuple[str, ...],
block_out_channels: Tuple[int, ...],
layers_per_block: int,
norm_num_groups: int,
act_fn: str,
mid_block_add_attention: bool,
):
super().__init__(
in_channels=in_channels,
out_channels=out_channels,
up_block_types=up_block_types,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
norm_num_groups=norm_num_groups,
act_fn=act_fn,
mid_block_add_attention=mid_block_add_attention,
)
def forward(
self,
sample: torch.Tensor,
skip_connections: list,
latent_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
r"""The forward method of the `Decoder` class."""
sample = self.conv_in(sample)
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
if is_torch_version(">=", "1.11.0"):
# middle
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block),
sample,
latent_embeds,
use_reentrant=False,
)
sample = sample.to(upscale_dtype)
# up
for up_block in self.up_blocks:
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(up_block),
sample,
latent_embeds,
use_reentrant=False,
)
else:
# middle
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block), sample, latent_embeds
)
sample = sample.to(upscale_dtype)
# up
for up_block in self.up_blocks:
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds)
else:
# middle
sample = self.mid_block(sample, latent_embeds)
sample = sample.to(upscale_dtype)
# up
# for up_block in self.up_blocks:
# sample = up_block(sample, latent_embeds)
for i, up_block in enumerate(self.up_blocks):
# Add skip connections directly
if i < len(skip_connections):
skip_connection = skip_connections[-(i + 1)]
# import pdb; pdb.set_trace()
sample = sample + skip_connection
# import pdb; pdb.set_trace() #torch.Size([1, 512, 96, 96]
sample = up_block(sample)
# post-process
if latent_embeds is None:
sample = self.conv_norm_out(sample)
else:
sample = self.conv_norm_out(sample, latent_embeds)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
return sample
class CustomEncoder(Encoder):
r"""
Custom Encoder that adds Zero Convolution layers to each block's output
to generate skip connections.
"""
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",),
block_out_channels: Tuple[int, ...] = (64,),
layers_per_block: int = 2,
norm_num_groups: int = 32,
act_fn: str = "silu",
double_z: bool = True,
mid_block_add_attention: bool = True,
):
super().__init__(
in_channels=in_channels,
out_channels=out_channels,
down_block_types=down_block_types,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
norm_num_groups=norm_num_groups,
act_fn=act_fn,
double_z=double_z,
mid_block_add_attention=mid_block_add_attention,
)
# Add Zero Convolution layers to each block's output
self.zero_convs = nn.ModuleList()
for i, out_channels in enumerate(block_out_channels):
if i < 2:
self.zero_convs.append(ZeroConv2d(out_channels, out_channels * 2))
else:
self.zero_convs.append(ZeroConv2d(out_channels, out_channels))
def forward(self, sample: torch.Tensor) -> list[torch.Tensor]:
r"""
Forward pass of the CustomEncoder.
Args:
sample (`torch.Tensor`): Input tensor.
Returns:
`Tuple[torch.Tensor, List[torch.Tensor]]`:
- The final latent representation.
- A list of skip connections from each block.
"""
skip_connections = []
# Initial convolution
sample = self.conv_in(sample)
# Down blocks
for i, (down_block, zero_conv) in enumerate(zip(self.down_blocks, self.zero_convs)):
# import pdb; pdb.set_trace()
sample = down_block(sample)
if i != len(self.down_blocks) - 1:
sample_out = nn.functional.interpolate(zero_conv(sample), scale_factor=2, mode='bilinear', align_corners=False)
else:
sample_out = zero_conv(sample)
skip_connections.append(sample_out)
# import pdb; pdb.set_trace()
# torch.Size([1, 128, 768, 768])
# torch.Size([1, 128, 384, 384])
# torch.Size([1, 256, 192, 192])
# torch.Size([1, 512, 96, 96])
# torch.Size([1, 512, 96, 96])
# # Middle block
# sample = self.mid_block(sample)
# # Post-process
# sample = self.conv_norm_out(sample)
# sample = self.conv_act(sample)
# sample = self.conv_out(sample)
return sample, skip_connections