Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,90 @@
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
# Create a Gradio interface
|
9 |
-
interface = gr.Interface(
|
10 |
-
fn=process_image,
|
11 |
-
inputs=gr.Image(type="pil"),
|
12 |
-
outputs=gr.Image(type="pil"),
|
13 |
-
title="Simple Image Echo App",
|
14 |
-
description="Upload an image and get the same image as output."
|
15 |
)
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
if __name__ == "__main__":
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
+
from DAI.pipeline_all import DAIPipeline
|
4 |
+
import os
|
5 |
+
import tempfile
|
6 |
+
import numpy as np
|
7 |
|
8 |
+
from diffusers import (
|
9 |
+
AutoencoderKL,
|
10 |
+
UNet2DConditionModel,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
)
|
12 |
|
13 |
+
from transformers import CLIPTextModel, AutoTokenizer
|
14 |
+
|
15 |
+
from DAI.controlnetvae import ControlNetVAEModel
|
16 |
+
|
17 |
+
from DAI.decoder import CustomAutoencoderKL
|
18 |
+
|
19 |
+
def process_image(pipe, vae_2, image):
|
20 |
+
# Save the input image to a temporary file
|
21 |
+
temp_input_path = tempfile.mktemp(suffix=".png")
|
22 |
+
image.save(temp_input_path)
|
23 |
+
|
24 |
+
name_base, name_ext = os.path.splitext(os.path.basename(temp_input_path))
|
25 |
+
print(f"Processing image {name_base}{name_ext}")
|
26 |
+
|
27 |
+
path_output_dir = tempfile.mkdtemp()
|
28 |
+
path_out_png = os.path.join(path_output_dir, f"{name_base}_delight.png")
|
29 |
+
resolution = None
|
30 |
+
|
31 |
+
pipe_out = pipe(
|
32 |
+
image=image,
|
33 |
+
prompt="remove glass reflection",
|
34 |
+
vae_2=vae_2,
|
35 |
+
processing_resolution=resolution,
|
36 |
+
)
|
37 |
+
|
38 |
+
processed_frame = (pipe_out.prediction.clip(-1, 1) + 1) / 2
|
39 |
+
processed_frame = (processed_frame[0] * 255).astype(np.uint8)
|
40 |
+
processed_frame = Image.fromarray(processed_frame)
|
41 |
+
processed_frame.save(path_out_png)
|
42 |
+
|
43 |
+
return processed_frame
|
44 |
+
|
45 |
if __name__ == "__main__":
|
46 |
+
pretrained_model_name_or_path = "JichenHu/dereflection-any-image-v0"
|
47 |
+
pretrained_model_name_or_path2 = "stabilityai/stable-diffusion-2-1"
|
48 |
+
revision = None
|
49 |
+
variant = None
|
50 |
+
|
51 |
+
# Load the model
|
52 |
+
controlnet = ControlNetVAEModel.from_pretrained(pretrained_model_name_or_path, subfolder="controlnet")
|
53 |
+
unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet")
|
54 |
+
vae_2 = CustomAutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae_2")
|
55 |
+
|
56 |
+
vae = AutoencoderKL.from_pretrained(
|
57 |
+
pretrained_model_name_or_path2, subfolder="vae", revision=revision, variant=variant
|
58 |
+
)
|
59 |
+
|
60 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
61 |
+
pretrained_model_name_or_path2, subfolder="text_encoder", revision=revision, variant=variant
|
62 |
+
)
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
64 |
+
pretrained_model_name_or_path2,
|
65 |
+
subfolder="tokenizer",
|
66 |
+
revision=revision,
|
67 |
+
use_fast=False,
|
68 |
+
)
|
69 |
+
pipe = DAIPipeline(
|
70 |
+
vae=vae,
|
71 |
+
text_encoder=text_encoder,
|
72 |
+
tokenizer=tokenizer,
|
73 |
+
unet=unet,
|
74 |
+
controlnet=controlnet,
|
75 |
+
safety_checker=None,
|
76 |
+
scheduler=None,
|
77 |
+
feature_extractor=None,
|
78 |
+
t_start=0,
|
79 |
+
)
|
80 |
+
|
81 |
+
# Create a Gradio interface
|
82 |
+
interface = gr.Interface(
|
83 |
+
fn=lambda image: process_image(pipe, vae_2, image),
|
84 |
+
inputs=gr.Image(type="pil"),
|
85 |
+
outputs=gr.Image(type="pil"),
|
86 |
+
title="Image Dereflection App",
|
87 |
+
description="Upload an image to remove glass reflections."
|
88 |
+
)
|
89 |
+
|
90 |
+
interface.launch()
|