Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
@@ -1,100 +1,110 @@
|
|
1 |
-
import
|
2 |
-
from PIL import Image
|
3 |
-
from DAI.pipeline_all import DAIPipeline
|
4 |
import os
|
5 |
-
import tempfile
|
6 |
import numpy as np
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
UNet2DConditionModel,
|
11 |
-
)
|
12 |
-
|
13 |
-
from transformers import CLIPTextModel, AutoTokenizer
|
14 |
|
|
|
|
|
15 |
from DAI.controlnetvae import ControlNetVAEModel
|
16 |
-
|
17 |
from DAI.decoder import CustomAutoencoderKL
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
name_base, name_ext = os.path.splitext(os.path.basename(temp_input_path))
|
25 |
-
print(f"Processing image {name_base}{name_ext}")
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
|
|
|
31 |
pipe_out = pipe(
|
32 |
-
image=
|
33 |
prompt="remove glass reflection",
|
34 |
vae_2=vae_2,
|
35 |
-
processing_resolution=
|
36 |
)
|
37 |
|
|
|
38 |
processed_frame = (pipe_out.prediction.clip(-1, 1) + 1) / 2
|
39 |
processed_frame = (processed_frame[0] * 255).astype(np.uint8)
|
40 |
processed_frame = Image.fromarray(processed_frame)
|
41 |
-
processed_frame.save(path_out_png)
|
42 |
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
if __name__ == "__main__":
|
46 |
-
|
47 |
-
pretrained_model_name_or_path2 = "stabilityai/stable-diffusion-2-1"
|
48 |
-
revision = None
|
49 |
-
variant = None
|
50 |
-
|
51 |
-
# Load the model
|
52 |
-
controlnet = ControlNetVAEModel.from_pretrained(pretrained_model_name_or_path, subfolder="controlnet")
|
53 |
-
unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet")
|
54 |
-
vae_2 = CustomAutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae_2")
|
55 |
-
|
56 |
-
vae = AutoencoderKL.from_pretrained(
|
57 |
-
pretrained_model_name_or_path2, subfolder="vae", revision=revision, variant=variant
|
58 |
-
)
|
59 |
-
|
60 |
-
text_encoder = CLIPTextModel.from_pretrained(
|
61 |
-
pretrained_model_name_or_path2, subfolder="text_encoder", revision=revision, variant=variant
|
62 |
-
)
|
63 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
64 |
-
pretrained_model_name_or_path2,
|
65 |
-
subfolder="tokenizer",
|
66 |
-
revision=revision,
|
67 |
-
use_fast=False,
|
68 |
-
)
|
69 |
-
pipe = DAIPipeline(
|
70 |
-
vae=vae,
|
71 |
-
text_encoder=text_encoder,
|
72 |
-
tokenizer=tokenizer,
|
73 |
-
unet=unet,
|
74 |
-
controlnet=controlnet,
|
75 |
-
safety_checker=None,
|
76 |
-
scheduler=None,
|
77 |
-
feature_extractor=None,
|
78 |
-
t_start=0,
|
79 |
-
)
|
80 |
-
|
81 |
-
# Cache example images in memory
|
82 |
-
example_images_dir = "files/image"
|
83 |
-
example_images = []
|
84 |
-
for i in range(1, 9):
|
85 |
-
image_path = os.path.join(example_images_dir, f"{i}.png")
|
86 |
-
if os.path.exists(image_path):
|
87 |
-
example_images.append([Image.open(image_path)])
|
88 |
-
|
89 |
-
# Create a Gradio interface
|
90 |
-
interface = gr.Interface(
|
91 |
-
fn=lambda image: process_image(pipe, vae_2, image),
|
92 |
-
inputs=gr.Image(type="pil"),
|
93 |
-
outputs=gr.Image(type="pil"),
|
94 |
-
title="Dereflection Any Image",
|
95 |
-
description="Upload an image to remove glass reflections.",
|
96 |
-
examples=example_images,
|
97 |
-
)
|
98 |
-
|
99 |
-
interface.launch()
|
100 |
-
|
|
|
1 |
+
import spaces # 必须放在最前面
|
|
|
|
|
2 |
import os
|
|
|
3 |
import numpy as np
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
import gradio as gr
|
7 |
+
from gradio_imageslider import ImageSlider
|
8 |
|
9 |
+
# 延迟 CUDA 初始化
|
10 |
+
weight_dtype = torch.float32
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# 加载模型组件
|
13 |
+
from DAI.pipeline_all import DAIPipeline
|
14 |
from DAI.controlnetvae import ControlNetVAEModel
|
|
|
15 |
from DAI.decoder import CustomAutoencoderKL
|
16 |
+
from diffusers import AutoencoderKL, UNet2DConditionModel
|
17 |
+
from transformers import CLIPTextModel, AutoTokenizer
|
18 |
|
19 |
+
pretrained_model_name_or_path = "sjtu-deepvision/dereflection-any-image-v0"
|
20 |
+
pretrained_model_name_or_path2 = "stabilityai/stable-diffusion-2-1"
|
21 |
+
|
22 |
+
# 加载模型
|
23 |
+
controlnet = ControlNetVAEModel.from_pretrained(pretrained_model_name_or_path, subfolder="controlnet", torch_dtype=weight_dtype)
|
24 |
+
unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet", torch_dtype=weight_dtype)
|
25 |
+
vae_2 = CustomAutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae_2", torch_dtype=weight_dtype)
|
26 |
+
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path2, subfolder="vae")
|
27 |
+
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path2, subfolder="text_encoder")
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path2, subfolder="tokenizer", use_fast=False)
|
29 |
+
|
30 |
+
# 创建推理管道
|
31 |
+
pipe = DAIPipeline(
|
32 |
+
vae=vae,
|
33 |
+
text_encoder=text_encoder,
|
34 |
+
tokenizer=tokenizer,
|
35 |
+
unet=unet,
|
36 |
+
controlnet=controlnet,
|
37 |
+
safety_checker=None,
|
38 |
+
scheduler=None,
|
39 |
+
feature_extractor=None,
|
40 |
+
t_start=0,
|
41 |
+
)
|
42 |
|
|
|
|
|
43 |
|
44 |
+
def process_image(input_image):
|
45 |
+
# 将 Gradio 输入转换为 PIL 图像
|
46 |
+
input_image = Image.fromarray(input_image)
|
47 |
|
48 |
+
# 处理图像
|
49 |
pipe_out = pipe(
|
50 |
+
image=input_image,
|
51 |
prompt="remove glass reflection",
|
52 |
vae_2=vae_2,
|
53 |
+
processing_resolution=None,
|
54 |
)
|
55 |
|
56 |
+
# 将输出转换为图像
|
57 |
processed_frame = (pipe_out.prediction.clip(-1, 1) + 1) / 2
|
58 |
processed_frame = (processed_frame[0] * 255).astype(np.uint8)
|
59 |
processed_frame = Image.fromarray(processed_frame)
|
|
|
60 |
|
61 |
+
# 返回输入图像和处理后的图像
|
62 |
+
return input_image, processed_frame
|
63 |
+
|
64 |
+
# 创建 Gradio 界面
|
65 |
+
def create_gradio_interface():
|
66 |
+
# 示例图像
|
67 |
+
example_images = [
|
68 |
+
os.path.join("files", "image", f"{i}.png") for i in range(1, 9)
|
69 |
+
]
|
70 |
+
|
71 |
+
with gr.Blocks() as demo:
|
72 |
+
gr.Markdown("# Dereflection Any Image")
|
73 |
+
with gr.Row():
|
74 |
+
with gr.Column():
|
75 |
+
input_image = gr.Image(label="Input Image", type="numpy")
|
76 |
+
submit_btn = gr.Button("Remove Reflection", variant="primary")
|
77 |
+
with gr.Column():
|
78 |
+
# 使用 ImageSlider 显示前后对比
|
79 |
+
output_slider = ImageSlider(
|
80 |
+
label="Before & After",
|
81 |
+
show_download_button=True,
|
82 |
+
show_share_button=True,
|
83 |
+
)
|
84 |
+
|
85 |
+
# 添加示例
|
86 |
+
gr.Examples(
|
87 |
+
examples=example_images,
|
88 |
+
inputs=input_image,
|
89 |
+
outputs=output_slider,
|
90 |
+
fn=process_image,
|
91 |
+
cache_examples=False, # 缓存结果以加快加载速度
|
92 |
+
label="Example Images",
|
93 |
+
)
|
94 |
+
|
95 |
+
# 绑定按钮点击事件
|
96 |
+
submit_btn.click(
|
97 |
+
fn=process_image,
|
98 |
+
inputs=input_image,
|
99 |
+
outputs=output_slider,
|
100 |
+
)
|
101 |
+
|
102 |
+
return demo
|
103 |
+
|
104 |
+
# 主函数
|
105 |
+
def main():
|
106 |
+
demo = create_gradio_interface()
|
107 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
108 |
|
109 |
if __name__ == "__main__":
|
110 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|