# Copyright 2024 Anton Obukhov, ETH Zurich. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -------------------------------------------------------------------------- # If you find this code useful, we kindly ask you to cite our paper in your work. # Please find bibtex at: https://github.com/prs-eth/Marigold#-citation # More information about the method can be found at https://marigoldmonodepth.github.io # -------------------------------------------------------------------------- from __future__ import annotations import functools import os import tempfile import gradio as gr import imageio as imageio import numpy as np import spaces import torch as torch torch.backends.cuda.matmul.allow_tf32 = True from PIL import Image from gradio_imageslider import ImageSlider from tqdm import tqdm from pathlib import Path import gradio from gradio.utils import get_cache_folder from DAI.pipeline_all import DAIPipeline from diffusers import ( AutoencoderKL, UNet2DConditionModel, ) from transformers import CLIPTextModel, AutoTokenizer from DAI.controlnetvae import ControlNetVAEModel from DAI.decoder import CustomAutoencoderKL class Examples(gradio.helpers.Examples): def __init__(self, *args, directory_name=None, **kwargs): super().__init__(*args, **kwargs, _initiated_directly=False) if directory_name is not None: self.cached_folder = get_cache_folder() / directory_name self.cached_file = Path(self.cached_folder) / "log.csv" self.create() default_seed = 2024 default_batch_size = 1 default_image_processing_resolution = 2048 default_video_out_max_frames = 60 def process_image_check(path_input): if path_input is None: raise gr.Error( "Missing image in the first pane: upload a file or use one from the gallery below." ) def resize_image(input_image, resolution): # Ensure input_image is a PIL Image object if not isinstance(input_image, Image.Image): raise ValueError("input_image should be a PIL Image object") # Convert image to numpy array input_image_np = np.asarray(input_image) # Get image dimensions H, W, C = input_image_np.shape H = float(H) W = float(W) # Calculate the scaling factor k = float(resolution) / min(H, W) # Determine new dimensions H *= k W *= k H = int(np.round(H / 64.0)) * 64 W = int(np.round(W / 64.0)) * 64 # Resize the image using PIL's resize method img = input_image.resize((W, H), Image.Resampling.LANCZOS) return img def process_image( pipe, vae_2, path_input, ): name_base, name_ext = os.path.splitext(os.path.basename(path_input)) print(f"Processing image {name_base}{name_ext}") path_output_dir = tempfile.mkdtemp() path_out_png = os.path.join(path_output_dir, f"{name_base}_delight.png") input_image = Image.open(path_input) # resolution = 0 # if max(input_image.size) < 768: # resolution = None resolution = None pipe_out = pipe( image=input_image, prompt="remove glass reflection", vae_2=vae_2, processing_resolution=resolution, ) processed_frame = (pipe_out.prediction.clip(-1, 1) + 1) / 2 processed_frame = (processed_frame[0] * 255).astype(np.uint8) processed_frame = Image.fromarray(processed_frame) processed_frame.save(path_out_png) yield [input_image, path_out_png] def process_video( pipe, vae_2, path_input, out_max_frames=default_video_out_max_frames, target_fps=10, progress=gr.Progress(), ): if path_input is None: raise gr.Error( "Missing video in the first pane: upload a file or use one from the gallery below." ) name_base, name_ext = os.path.splitext(os.path.basename(path_input)) print(f"Processing video {name_base}{name_ext}") path_output_dir = tempfile.mkdtemp() path_out_vis = os.path.join(path_output_dir, f"{name_base}_delight.mp4") init_latents = None reader, writer = None, None try: reader = imageio.get_reader(path_input) meta_data = reader.get_meta_data() fps = meta_data["fps"] size = meta_data["size"] duration_sec = meta_data["duration"] writer = imageio.get_writer(path_out_vis, fps=target_fps) out_frame_id = 0 pbar = tqdm(desc="Processing Video", total=duration_sec) for frame_id, frame in enumerate(reader): if frame_id % (fps // target_fps) != 0: continue else: out_frame_id += 1 pbar.update(1) if out_frame_id > out_max_frames: break frame_pil = Image.fromarray(frame) resolution = None pipe_out = pipe( image=frame_pil, prompt="remove glass reflection", vae_2=vae_2, processing_resolution=resolution, ) if init_latents is None: init_latents = pipe_out.gaus_noise processed_frame = (pipe_out.prediction.clip(-1, 1) + 1) / 2 processed_frame = processed_frame[0] _processed_frame = imageio.core.util.Array(processed_frame) writer.append_data(_processed_frame) yield ( [frame_pil, processed_frame], None, ) finally: if writer is not None: writer.close() if reader is not None: reader.close() yield ( [frame_pil, processed_frame], [path_out_vis,] ) def run_demo_server(pipe, vae_2): process_pipe_image = spaces.GPU(functools.partial(process_image, pipe, vae_2)) process_pipe_video = spaces.GPU( functools.partial(process_video, pipe, vae_2), duration=120 ) gradio_theme = gr.themes.Default() with gr.Blocks( theme=gradio_theme, title="Dereflection Any Image", css=""" #download { height: 118px; } .slider .inner { width: 5px; background: #FFF; } .viewport { aspect-ratio: 4/3; } .tabs button.selected { font-size: 20px !important; color: crimson !important; } h1 { text-align: center; display: block; } h2 { text-align: center; display: block; } h3 { text-align: center; display: block; } .md_feedback li { margin-bottom: 0px !important; } """, head=""" """, ) as demo: gr.Markdown( """ # Dereflection Any Image
""" ) with gr.Tabs(elem_classes=["tabs"]): with gr.Tab("Image"): with gr.Row(): with gr.Column(): image_input = gr.Image( label="Input Image", type="filepath", ) with gr.Row(): image_submit_btn = gr.Button( value="remove reflection", variant="primary" ) image_reset_btn = gr.Button(value="Reset") with gr.Column(): image_output_slider = ImageSlider( label="outputs", type="filepath", show_download_button=True, show_share_button=True, interactive=False, elem_classes="slider", # position=0.25, ) Examples( fn=process_pipe_image, examples=sorted([ os.path.join("files", "image", name) for name in os.listdir(os.path.join("files", "image")) ]), inputs=[image_input], outputs=[image_output_slider], cache_examples=False, directory_name="examples_image", ) # with gr.Tab("Video"): # with gr.Row(): # with gr.Column(): # video_input = gr.Video( # label="Input Video", # sources=["upload", "webcam"], # ) # with gr.Row(): # video_submit_btn = gr.Button( # value="Remove reflection", variant="primary" # ) # video_reset_btn = gr.Button(value="Reset") # with gr.Column(): # processed_frames = ImageSlider( # label="Realtime Visualization", # type="filepath", # show_download_button=True, # show_share_button=True, # interactive=False, # elem_classes="slider", # # position=0.25, # ) # video_output_files = gr.Files( # label="outputs", # elem_id="download", # interactive=False, # ) # Examples( # fn=process_pipe_video, # examples=sorted([ # os.path.join("files", "video", name) # for name in os.listdir(os.path.join("files", "video")) # ]), # inputs=[video_input], # outputs=[processed_frames, video_output_files], # directory_name="examples_video", # cache_examples=False, # ) ### Image tab image_submit_btn.click( fn=process_image_check, inputs=image_input, outputs=None, preprocess=False, queue=False, ).success( fn=process_pipe_image, inputs=[ image_input, ], outputs=[image_output_slider], concurrency_limit=1, ) image_reset_btn.click( fn=lambda: ( None, None, None, ), inputs=[], outputs=[ image_input, image_output_slider, ], queue=False, ) ### Video tab # video_submit_btn.click( # fn=process_pipe_video, # inputs=[video_input], # outputs=[processed_frames, video_output_files], # concurrency_limit=1, # ) # video_reset_btn.click( # fn=lambda: (None, None, None), # inputs=[], # outputs=[video_input, processed_frames, video_output_files], # concurrency_limit=1, # ) ### Server launch demo.queue( api_open=False, ).launch( server_name="0.0.0.0", server_port=7860, ) def main(): os.system("pip freeze") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") weight_dtype = torch.float32 model_dir = "./weights" pretrained_model_name_or_path = "JichenHu/dereflection-any-image-v0" revision = None variant = None # Load the model # normal controlnet = ControlNetVAEModel.from_pretrained(pretrained_model_name_or_path + "/controlnet", torch_dtype=weight_dtype).to(device) unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path + "/unet", torch_dtype=weight_dtype).to(device) vae_2 = CustomAutoencoderKL.from_pretrained(pretrained_model_name_or_path + "/vae_2", torch_dtype=weight_dtype).to(device) # Load other components of the pipeline vae = AutoencoderKL.from_pretrained( pretrained_model_name_or_path, subfolder="vae", revision=revision, variant=variant ).to(device) text_encoder = CLIPTextModel.from_pretrained( pretrained_model_name_or_path, subfolder="text_encoder", revision=revision, variant=variant ).to(device) tokenizer = AutoTokenizer.from_pretrained( pretrained_model_name_or_path, subfolder="tokenizer", revision=revision, use_fast=False, ) pipe = DAIPipeline( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, controlnet=controlnet, safety_checker=None, scheduler=None, feature_extractor=None, t_start=0, ).to(device) try: import xformers pipe.enable_xformers_memory_efficient_attention() except: pass # run without xformers run_demo_server(pipe, vae_2) if __name__ == "__main__": main()