Spaces:
Running
Running
Joao-Ale
commited on
Commit
·
4a85aa9
1
Parent(s):
5020fa4
adjust model
Browse files- app.py +16 -11
- models/arbitrator.py +6 -12
- models/model.py +1 -1
- requirements.txt +4 -7
- service/chatbot.py +13 -12
app.py
CHANGED
@@ -1,16 +1,21 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
|
4 |
|
5 |
-
def
|
6 |
-
|
7 |
-
|
8 |
-
inputs=gr.Textbox(label="Pergunta do Usuário"),
|
9 |
-
outputs=gr.Textbox(label="Melhor Resposta"),
|
10 |
-
title="🤖 Chatbot em Cascata com Avaliação Rápida"
|
11 |
-
)
|
12 |
-
interface.launch()
|
13 |
|
14 |
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from logic.pipeline import process_question
|
3 |
|
4 |
|
5 |
+
def handle_input(question):
|
6 |
+
result = process_question(question)
|
7 |
+
return result["answer_model_1"], result["answer_model_2"], result["best_answer"]
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
|
10 |
+
iface = gr.Interface(
|
11 |
+
fn=handle_input,
|
12 |
+
inputs=gr.Textbox(label="Pergunta"),
|
13 |
+
outputs=[
|
14 |
+
gr.Textbox(label="Resposta do Modelo 1"),
|
15 |
+
gr.Textbox(label="Resposta do Modelo 2"),
|
16 |
+
gr.Textbox(label="Melhor Resposta (segundo Avaliador)")
|
17 |
+
]
|
18 |
+
)
|
19 |
+
|
20 |
+
if __name__ == "__main__":
|
21 |
+
iface.launch()
|
models/arbitrator.py
CHANGED
@@ -1,16 +1,10 @@
|
|
1 |
from sentence_transformers import SentenceTransformer, util
|
2 |
|
|
|
3 |
|
4 |
-
class Arbitrator:
|
5 |
-
def __init__(self):
|
6 |
-
self.model = SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2')
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
sim_a = util.cos_sim(prompt_emb, emb_a)
|
14 |
-
sim_b = util.cos_sim(prompt_emb, emb_b)
|
15 |
-
|
16 |
-
return response_a if sim_a > sim_b else response_b
|
|
|
1 |
from sentence_transformers import SentenceTransformer, util
|
2 |
|
3 |
+
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
4 |
|
|
|
|
|
|
|
5 |
|
6 |
+
def choose_best_response(question, answer1, answer2):
|
7 |
+
embeddings = model.encode([question, answer1, answer2])
|
8 |
+
score1 = util.cos_sim(embeddings[0], embeddings[1])
|
9 |
+
score2 = util.cos_sim(embeddings[0], embeddings[2])
|
10 |
+
return answer1 if score1 > score2 else answer2
|
|
|
|
|
|
|
|
models/model.py
CHANGED
@@ -22,4 +22,4 @@ class Model:
|
|
22 |
do_sample=True
|
23 |
)
|
24 |
|
25 |
-
return self.tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
|
|
|
22 |
do_sample=True
|
23 |
)
|
24 |
|
25 |
+
return self.tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
|
requirements.txt
CHANGED
@@ -1,8 +1,5 @@
|
|
1 |
huggingface_hub==0.25.2
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
sentence-transformers
|
6 |
-
accelerate>=1.7.0
|
7 |
-
bitsandbytes>=0.46.0
|
8 |
-
sentencepiece>=0.2.0
|
|
|
1 |
huggingface_hub==0.25.2
|
2 |
+
transformers
|
3 |
+
torch
|
4 |
+
gradio
|
5 |
+
sentence-transformers
|
|
|
|
|
|
service/chatbot.py
CHANGED
@@ -1,17 +1,18 @@
|
|
1 |
from models.model import Model
|
2 |
from configuration.config import MODEL_FLAN_T5, MODEL_FALCON_RW_1B
|
3 |
-
from models.arbitrator import
|
4 |
-
from sentence_transformers import SentenceTransformer, util
|
5 |
|
6 |
-
model_a = Model(
|
7 |
-
model_b = Model(
|
8 |
-
arbitrator = Arbitrator()
|
9 |
|
10 |
-
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
1 |
from models.model import Model
|
2 |
from configuration.config import MODEL_FLAN_T5, MODEL_FALCON_RW_1B
|
3 |
+
from models.arbitrator import choose_best_response
|
|
|
4 |
|
5 |
+
model_a = Model(model_name=MODEL_FLAN_T5)
|
6 |
+
model_b = Model(model_name=MODEL_FALCON_RW_1B)
|
|
|
7 |
|
|
|
8 |
|
9 |
+
def process_question(question):
|
10 |
+
answer1 = model_a.generate_response_model_1(question)
|
11 |
+
answer2 = model_b.generate_response_model_2(question)
|
12 |
+
best = choose_best_response(question, answer1, answer2)
|
13 |
+
return {
|
14 |
+
"question": question,
|
15 |
+
"answer_model_1": answer1,
|
16 |
+
"answer_model_2": answer2,
|
17 |
+
"best_answer": best
|
18 |
+
}
|