# Emilia Dataset: https://huggingface.co/datasets/amphion/Emilia-Dataset/tree/fc71e07 # if use updated new version, i.e. WebDataset, feel free to modify / draft your own script # generate audio text map for Emilia ZH & EN # evaluate for vocab size import sys import os sys.path.append(os.getcwd()) from pathlib import Path import json from tqdm import tqdm from concurrent.futures import ProcessPoolExecutor from datasets.arrow_writer import ArrowWriter from model.utils import ( repetition_found, convert_char_to_pinyin, ) out_zh = { "ZH_B00041_S06226", "ZH_B00042_S09204", "ZH_B00065_S09430", "ZH_B00065_S09431", "ZH_B00066_S09327", "ZH_B00066_S09328", } zh_filters = ["い", "て"] # seems synthesized audios, or heavily code-switched out_en = { "EN_B00013_S00913", "EN_B00042_S00120", "EN_B00055_S04111", "EN_B00061_S00693", "EN_B00061_S01494", "EN_B00061_S03375", "EN_B00059_S00092", "EN_B00111_S04300", "EN_B00100_S03759", "EN_B00087_S03811", "EN_B00059_S00950", "EN_B00089_S00946", "EN_B00078_S05127", "EN_B00070_S04089", "EN_B00074_S09659", "EN_B00061_S06983", "EN_B00061_S07060", "EN_B00059_S08397", "EN_B00082_S06192", "EN_B00091_S01238", "EN_B00089_S07349", "EN_B00070_S04343", "EN_B00061_S02400", "EN_B00076_S01262", "EN_B00068_S06467", "EN_B00076_S02943", "EN_B00064_S05954", "EN_B00061_S05386", "EN_B00066_S06544", "EN_B00076_S06944", "EN_B00072_S08620", "EN_B00076_S07135", "EN_B00076_S09127", "EN_B00065_S00497", "EN_B00059_S06227", "EN_B00063_S02859", "EN_B00075_S01547", "EN_B00061_S08286", "EN_B00079_S02901", "EN_B00092_S03643", "EN_B00096_S08653", "EN_B00063_S04297", "EN_B00063_S04614", "EN_B00079_S04698", "EN_B00104_S01666", "EN_B00061_S09504", "EN_B00061_S09694", "EN_B00065_S05444", "EN_B00063_S06860", "EN_B00065_S05725", "EN_B00069_S07628", "EN_B00083_S03875", "EN_B00071_S07665", "EN_B00071_S07665", "EN_B00062_S04187", "EN_B00065_S09873", "EN_B00065_S09922", "EN_B00084_S02463", "EN_B00067_S05066", "EN_B00106_S08060", "EN_B00073_S06399", "EN_B00073_S09236", "EN_B00087_S00432", "EN_B00085_S05618", "EN_B00064_S01262", "EN_B00072_S01739", "EN_B00059_S03913", "EN_B00069_S04036", "EN_B00067_S05623", "EN_B00060_S05389", "EN_B00060_S07290", "EN_B00062_S08995", } en_filters = ["ا", "い", "て"] def deal_with_audio_dir(audio_dir): audio_jsonl = audio_dir.with_suffix(".jsonl") sub_result, durations = [], [] vocab_set = set() bad_case_zh = 0 bad_case_en = 0 with open(audio_jsonl, "r") as f: lines = f.readlines() for line in tqdm(lines, desc=f"{audio_jsonl.stem}"): obj = json.loads(line) text = obj["text"] if obj["language"] == "zh": if obj["wav"].split("/")[1] in out_zh or any(f in text for f in zh_filters) or repetition_found(text): bad_case_zh += 1 continue else: text = text.translate( str.maketrans({",": ",", "!": "!", "?": "?"}) ) # not "。" cuz much code-switched if obj["language"] == "en": if ( obj["wav"].split("/")[1] in out_en or any(f in text for f in en_filters) or repetition_found(text, length=4) ): bad_case_en += 1 continue if tokenizer == "pinyin": text = convert_char_to_pinyin([text], polyphone=polyphone)[0] duration = obj["duration"] sub_result.append({"audio_path": str(audio_dir.parent / obj["wav"]), "text": text, "duration": duration}) durations.append(duration) vocab_set.update(list(text)) return sub_result, durations, vocab_set, bad_case_zh, bad_case_en def main(): assert tokenizer in ["pinyin", "char"] result = [] duration_list = [] text_vocab_set = set() total_bad_case_zh = 0 total_bad_case_en = 0 # process raw data executor = ProcessPoolExecutor(max_workers=max_workers) futures = [] for lang in langs: dataset_path = Path(os.path.join(dataset_dir, lang)) [ futures.append(executor.submit(deal_with_audio_dir, audio_dir)) for audio_dir in dataset_path.iterdir() if audio_dir.is_dir() ] for futures in tqdm(futures, total=len(futures)): sub_result, durations, vocab_set, bad_case_zh, bad_case_en = futures.result() result.extend(sub_result) duration_list.extend(durations) text_vocab_set.update(vocab_set) total_bad_case_zh += bad_case_zh total_bad_case_en += bad_case_en executor.shutdown() # save preprocessed dataset to disk if not os.path.exists(f"data/{dataset_name}"): os.makedirs(f"data/{dataset_name}") print(f"\nSaving to data/{dataset_name} ...") # dataset = Dataset.from_dict({"audio_path": audio_path_list, "text": text_list, "duration": duration_list}) # oom # dataset.save_to_disk(f"data/{dataset_name}/raw", max_shard_size="2GB") with ArrowWriter(path=f"data/{dataset_name}/raw.arrow") as writer: for line in tqdm(result, desc="Writing to raw.arrow ..."): writer.write(line) # dup a json separately saving duration in case for DynamicBatchSampler ease with open(f"data/{dataset_name}/duration.json", "w", encoding="utf-8") as f: json.dump({"duration": duration_list}, f, ensure_ascii=False) # vocab map, i.e. tokenizer # add alphabets and symbols (optional, if plan to ft on de/fr etc.) # if tokenizer == "pinyin": # text_vocab_set.update([chr(i) for i in range(32, 127)] + [chr(i) for i in range(192, 256)]) with open(f"data/{dataset_name}/vocab.txt", "w") as f: for vocab in sorted(text_vocab_set): f.write(vocab + "\n") print(f"\nFor {dataset_name}, sample count: {len(result)}") print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}") print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours") if "ZH" in langs: print(f"Bad zh transcription case: {total_bad_case_zh}") if "EN" in langs: print(f"Bad en transcription case: {total_bad_case_en}\n") if __name__ == "__main__": max_workers = 32 tokenizer = "pinyin" # "pinyin" | "char" polyphone = True langs = ["ZH", "EN"] dataset_dir = "/Emilia_Dataset/raw" dataset_name = f"Emilia_{'_'.join(langs)}_{tokenizer}" print(f"\nPrepare for {dataset_name}\n") main() # Emilia ZH & EN # samples count 37837916 (after removal) # pinyin vocab size 2543 (polyphone) # total duration 95281.87 (hours) # bad zh asr cnt 230435 (samples) # bad eh asr cnt 37217 (samples) # vocab size may be slightly different due to jieba tokenizer and pypinyin (e.g. way of polyphoneme) # please be careful if using pretrained model, make sure the vocab.txt is same