from __future__ import annotations import os import re import time import html from typing import List, Optional from urllib.parse import urlencode import httpx from pydantic import BaseModel, Field, HttpUrl from fastmcp import FastMCP import logging # Logging configuration LOG_LEVEL = os.getenv("LOG_LEVEL", "INFO").upper() _numeric_level = getattr(logging, LOG_LEVEL, logging.INFO) logging.basicConfig( level=_numeric_level, format="%(asctime)s %(levelname)s %(name)s - %(message)s", ) logger = logging.getLogger("linkedin_mcp") logger.setLevel(_numeric_level) if not logger.handlers: _handler = logging.StreamHandler() _handler.setLevel(_numeric_level) _handler.setFormatter(logging.Formatter("%(asctime)s %(levelname)s %(name)s - %(message)s")) logger.addHandler(_handler) logger.propagate = False mcp = FastMCP( name="linkedin-jobs", host="0.0.0.0", port=7860, ) class JobPosting(BaseModel): title: str = Field(..., description="Job title") company: Optional[str] = Field(None, description="Company name if available") location: Optional[str] = Field(None, description="Job location if available") url: HttpUrl = Field(..., description="Direct link to the LinkedIn job page") job_id: Optional[str] = Field(None, description="LinkedIn job ID parsed from URL, if found") listed_text: Optional[str] = Field(None, description="Human-readable posted time text, e.g., '3 days ago'") def _default_headers(cookie: Optional[str]) -> dict: headers = { "User-Agent": ( "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) " "AppleWebKit/537.36 (KHTML, like Gecko) " "Chrome/125.0.0.0 Safari/537.36" ), "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8", "Accept-Language": "en-US,en;q=0.9", "Cache-Control": "no-cache", "Pragma": "no-cache", "Connection": "keep-alive", "Referer": "https://www.linkedin.com/jobs/", "Accept-Encoding": "gzip, deflate, br, zstd", "Upgrade-Insecure-Requests": "1", "sec-ch-ua": '"Chromium";v="125", "Not.A/Brand";v="24", "Google Chrome";v="125"', "sec-ch-ua-mobile": "?0", "sec-ch-ua-platform": '"macOS"', "Sec-Fetch-Site": "same-origin", "Sec-Fetch-Mode": "navigate", "Sec-Fetch-Dest": "document", } if cookie: headers["Cookie"] = cookie return headers def _ensure_absolute_url(href: str) -> str: if href.startswith("http://") or href.startswith("https://"): return href if href.startswith("/"): return f"https://www.linkedin.com{href}" return f"https://www.linkedin.com/{href}" def _detect_block_or_wall(text: str) -> Optional[str]: lowered = text.lower() hints = [ "captcha", "are you a robot", "robot check", "unusual activity", "sign in", "signin", "log in", "please sign in", "you’re seeing this message because", "to view this page, you must", ] for hint in hints: if hint in lowered: return hint return None def _summarize_body(text: str, limit: int = 300) -> str: collapsed = re.sub(r"\s+", " ", text).strip() return collapsed[:limit] + ("…" if len(collapsed) > limit else "") def _parse_jobs_from_html(html_text: str) -> list[JobPosting]: try: from selectolax.parser import HTMLParser except Exception: raise RuntimeError( "selectolax is required. Ensure it is listed in requirements.txt and installed." ) tree = HTMLParser(html_text) jobs: list[JobPosting] = [] # Prefer list items with data-occludable-job-id when available cards = tree.css("li[data-occludable-job-id], .base-search-card, .job-search-card") logger.debug("HTML parse: found %d potential job cards", len(cards)) for card in cards: job_id = card.attributes.get("data-occludable-job-id") # Link: any anchor pointing to /jobs/view/ link_el = card.css_first("a[href*='/jobs/view/']") or card.css_first( "a.base-card__full-link, a.hidden-nested-link, a" ) url = (link_el.attributes.get("href") if link_el else None) or "" if url: url = _ensure_absolute_url(url) if not job_id: job_id_match = re.search(r"/jobs/view/(\d+)", url) if job_id_match: job_id = job_id_match.group(1) # Title title_el = ( card.css_first("h3.base-search-card__title") or card.css_first(".base-search-card__title") or card.css_first(".job-card-list__title") or card.css_first(".sr-only") or card.css_first("a[href*='/jobs/view/']") ) title = (title_el.text(strip=True) if title_el else "").strip() # Company company_el = ( card.css_first("h4.base-search-card__subtitle") or card.css_first(".base-search-card__subtitle") or card.css_first(".job-search-card__subtitle") or card.css_first(".hidden-nested-link+div") or card.css_first(".job-card-container__company-name") or card.css_first(".job-card-container__primary-description") ) company = (company_el.text(strip=True) if company_el else None) # Location location_el = ( card.css_first(".job-search-card__location") or card.css_first(".base-search-card__metadata > .job-search-card__location") or card.css_first(".job-card-container__metadata-item") ) location = (location_el.text(strip=True) if location_el else None) # Time listed time_el = card.css_first("time, .job-search-card__listdate, .job-search-card__listdate--new") listed_text = (time_el.text(strip=True) if time_el else None) if not url or not title: continue # Clean up HTML entities and whitespace title = html.unescape(re.sub(r"\s+", " ", title)) if company: company = html.unescape(re.sub(r"\s+", " ", company)) if location: location = html.unescape(re.sub(r"\s+", " ", location)) if listed_text: listed_text = html.unescape(re.sub(r"\s+", " ", listed_text)) try: jobs.append( JobPosting( title=title, company=company, location=location, url=url, # type: ignore[arg-type] job_id=job_id, listed_text=listed_text, ) ) except Exception: continue # Fallback: grab anchors if no structured cards were detected if not jobs: anchors = tree.css("a[href*='/jobs/view/']") seen_ids: set[str] = set() logger.debug("HTML parse fallback: scanning %d anchors with /jobs/view/", len(anchors)) for a in anchors: href = a.attributes.get("href") or "" if not href: continue url = _ensure_absolute_url(href) job_id_match = re.search(r"/jobs/view/(\d+)", url) job_id = job_id_match.group(1) if job_id_match else None if job_id and job_id in seen_ids: continue title = a.text(strip=True) if not title: title = "LinkedIn Job" try: jobs.append( JobPosting( title=title, company=None, location=None, url=url, # type: ignore[arg-type] job_id=job_id, listed_text=None, ) ) if job_id: seen_ids.add(job_id) except Exception: continue logger.debug("HTML parse complete: %d jobs parsed", len(jobs)) return jobs # Mapping helpers to align with common notebook tutorials/filters _DATE_POSTED_TO_TPR = { # keys accepted by our API → LinkedIn f_TPR values "past_24_hours": "r86400", "past_week": "r604800", "past_month": "r2592000", } _EXPERIENCE_TO_E = { "internship": "1", "entry": "2", "associate": "3", "mid-senior": "4", "director": "5", "executive": "6", } _JOBTYPE_TO_JT = { "full-time": "F", "part-time": "P", "contract": "C", "temporary": "T", "internship": "I", "volunteer": "V", "other": "O", } _REMOTE_TO_WRA = { "on-site": "1", "remote": "2", "hybrid": "3", } def _build_search_params( *, keywords: str, location: Optional[str], start: int, sort_by: str = "relevance", date_posted: Optional[str] = None, experience_levels: Optional[List[str]] = None, job_types: Optional[List[str]] = None, remote: Optional[str] = None, geo_id: Optional[int] = None, ) -> dict: params: dict = { "keywords": keywords, "start": start, } if location: params["location"] = location if geo_id is not None: params["geoId"] = str(geo_id) # Sort: relevance (R) or date (DD) if sort_by: sb = sort_by.lower() if sb in {"relevance", "r"}: params["sortBy"] = "R" elif sb in {"date", "recent", "dd"}: params["sortBy"] = "DD" # Time posted if date_posted: tpr = _DATE_POSTED_TO_TPR.get(date_posted) if tpr: params["f_TPR"] = tpr # Experience levels if experience_levels: codes = [code for key in experience_levels if (code := _EXPERIENCE_TO_E.get(key))] if codes: params["f_E"] = ",".join(codes) # Job types if job_types: codes = [code for key in job_types if (code := _JOBTYPE_TO_JT.get(key))] if codes: params["f_JT"] = ",".join(codes) # Workplace type (on-site / remote / hybrid) if remote: code = _REMOTE_TO_WRA.get(remote) if code: params["f_WRA"] = code return params def _search_page( client: httpx.Client, *, params: dict, ) -> list[JobPosting]: base_url = "https://www.linkedin.com/jobs/search/?" + urlencode(params) logger.debug("GET main page: %s", base_url) resp = client.get(base_url, follow_redirects=True, timeout=20.0) logger.debug( "Main page status=%d bytes=%d content-type=%s", resp.status_code, len(resp.content), resp.headers.get("content-type"), ) jobs: list[JobPosting] = [] if resp.status_code == 200: block_hint = _detect_block_or_wall(resp.text) if block_hint: logger.warning("Main page may be blocked/walled (hint=%r)", block_hint) jobs = _parse_jobs_from_html(resp.text) logger.debug("Parsed %d jobs from main page", len(jobs)) elif resp.status_code in (999, 401, 403, 429): logger.warning("Main page blocked with status=%d; will try fragment", resp.status_code) else: # For other errors, raise to caller resp.raise_for_status() # If nothing parsed, try the fragment endpoint as a fallback regardless of page if len(jobs) == 0: fragment_url = ( "https://www.linkedin.com/jobs-guest/jobs/api/seeMoreJobPostings/search?" + urlencode(params) ) logger.debug("GET fragment fallback: %s", fragment_url) frag_resp = client.get(fragment_url, follow_redirects=True, timeout=20.0) logger.debug( "Fragment status=%d bytes=%d content-type=%s", frag_resp.status_code, len(frag_resp.content), frag_resp.headers.get("content-type"), ) if frag_resp.status_code == 200: block_hint = _detect_block_or_wall(frag_resp.text) if block_hint: logger.warning("Fragment page may be blocked/walled (hint=%r)", block_hint) jobs = _parse_jobs_from_html(frag_resp.text) logger.debug("Parsed %d jobs from fragment", len(jobs)) else: logger.debug("Fragment request returned status=%d", frag_resp.status_code) if len(jobs) == 0: logger.info( "Zero jobs after main+fragment. Body sample: %s", _summarize_body(resp.text if resp is not None and resp.text else (frag_resp.text if frag_resp is not None else "")), ) return jobs @mcp.tool(name="Linkedin_demo_search_linkedin_jobs", description="Search LinkedIn job listings and return structured job postings.") def _search_linkedin_jobs_impl( query: str, location: Optional[str] = None, limit: int = 25, pages: int = 1, *, sort_by: str = "relevance", date_posted: Optional[str] = None, experience_levels: Optional[List[str]] = None, job_types: Optional[List[str]] = None, remote: Optional[str] = None, geo_id: Optional[int] = None, ) -> List[JobPosting]: """ - query: Search keywords, e.g. "machine learning engineer" but not full sentences - location: Optional location filter, e.g. "Paris, Île-de-France, France" - limit: Maximum number of jobs to return (<= 200) - pages: Number of pages to fetch (each page is ~25 results) - sort_by: "relevance" or "date" (maps to LinkedIn sortBy R/DD) - date_posted: one of {"past_24_hours","past_week","past_month"} - experience_levels: list of {"internship","entry","associate","mid-senior","director","executive"} - job_types: list of {"full-time","part-time","contract","temporary","internship","volunteer","other"} - remote: one of {"on-site","remote","hybrid"} - geo_id: Optional numeric LinkedIn geoId for precise location targeting Note: LinkedIn may throttle or require authentication. You can set the environment variable LINKEDIN_COOKIE to a valid cookie string (e.g., including li_at) for better results. """ cookie = os.environ.get("LINKEDIN_COOKIE") max_items = max(1, min(limit, 200)) pages = max(1, min(pages, 8)) headers = _default_headers(cookie) all_jobs: list[JobPosting] = [] with httpx.Client(headers=headers) as client: start = 0 logger.info( "Search start: query=%r location=%r limit=%d pages=%d sort_by=%s date_posted=%s exp=%s job_types=%s remote=%s geo_id=%s cookie_present=%s", query, location, limit, pages, sort_by, date_posted, experience_levels, job_types, remote, geo_id, bool(cookie), ) for _page in range(pages): active_params = _build_search_params( keywords=query, location=location, start=start, sort_by=sort_by, date_posted=date_posted, experience_levels=experience_levels, job_types=job_types, remote=remote, geo_id=geo_id, ) try: logger.debug("Page fetch: start=%d params=%s", start, active_params) jobs = _search_page(client, params=active_params) except httpx.HTTPStatusError as e: status = e.response.status_code try: failed_url = str(e.request.url) except Exception: failed_url = "" logger.warning("HTTP error status=%d url=%s", status, failed_url) if status in (401, 403, 429): logger.info("Stopping due to auth/rate limit status=%d", status) break raise except Exception as ex: logger.exception("Unexpected error during page fetch: %s", ex) jobs = [] if not jobs: logger.info("No jobs parsed for start=%d; stopping further requests", start) break all_jobs.extend(jobs) if len(all_jobs) >= max_items: logger.info("Reached max_items=%d; stopping pagination", max_items) break start += 25 time.sleep(0.8) logger.info("Search complete: returning %d jobs", len(all_jobs[:max_items])) return all_jobs[:max_items] # Log tool registration explicitly for visibility in managed environments logger.info("Tool registered: Linkedin_demo_search_linkedin_jobs") logger.info("Tool registered: search_linkedin_jobs") if __name__ == "__main__": logger.info("Starting linkedin-jobs MCP server (streamable-http) on %s:%s", "0.0.0.0", 7860) mcp.run(transport="streamable-http")