Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,542 Bytes
fe5070c be0cea3 fe5070c be0cea3 fe5070c 567ff97 fe5070c d71891a 9b179e0 d71891a 9b179e0 d71891a 567ff97 d71891a 567ff97 d71891a 9b179e0 fe5070c d71891a eaa86c1 d71891a fe5070c d71891a fe5070c d71891a fe5070c d71891a 00ff9a0 d71891a b4444a2 fe5070c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
#!/usr/bin/env python3
# svg_compare_gradio.py
# ------------------------------------------------------------
import spaces
import re, os, torch, cairosvg, lpips, clip, gradio as gr
from io import BytesIO
from pathlib import Path
from PIL import Image
from transformers import BitsAndBytesConfig, AutoTokenizer
import gradio as gr
# ---------- paths YOU may want to edit ----------------------
ADAPTER_DIR = "unsloth_trained_weights/checkpoint-1700" # LoRA ckpt
BASE_MODEL = "Qwen/Qwen2.5-Coder-7B-Instruct"
MAX_NEW = 512
DEVICE = "cuda" # if torch.cuda.is_available() else "cpu"
# ---------- utils -------------------------------------------
SVG_PAT = re.compile(r"<svg[^>]*>.*?</svg>", re.S | re.I)
def extract_svg(txt:str):
m = list(SVG_PAT.finditer(txt))
return m[-1].group(0) if m else None # last match β
def svg2pil(svg:str):
try:
png = cairosvg.svg2png(bytestring=svg.encode())
return Image.open(BytesIO(png)).convert("RGB")
except Exception:
return None
# ---------- backbone loaders (CLIP + LPIPS) -----------------
_CLIP,_PREP,_LP=None,None,None
@spaces.GPU
def _load_backbones():
global _CLIP,_PREP,_LP
if _CLIP is None:
_CLIP,_PREP = clip.load("ViT-L/14", device=DEVICE); _CLIP.eval()
if _LP is None:
_LP = lpips.LPIPS(net="vgg").to(DEVICE).eval()
@spaces.GPU
@torch.no_grad()
def fused_sim(a:Image.Image,b:Image.Image,Ξ±=.5):
_load_backbones()
ta,tb = _PREP(a).unsqueeze(0).to(DEVICE), _PREP(b).unsqueeze(0).to(DEVICE)
fa = _CLIP.encode_image(ta); fa/=fa.norm(dim=-1,keepdim=True)
fb = _CLIP.encode_image(tb); fb/=fb.norm(dim=-1,keepdim=True)
clip_sim=(([email protected]).item()+1)/2
lp_sim = 1 - _LP(ta,tb,normalize=True).item()
return Ξ±*clip_sim + (1-Ξ±)*lp_sim
bnb_cfg = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_use_double_quant=True)
# ---------- load models once at startup ---------------------
_base = _lora = _tok = None
_CLIP = _PREP = _LP = None
@spaces.GPU
def ensure_models():
"""Create base, lora, tok **once per worker**."""
from unsloth import FastLanguageModel
global _base, _lora, _tok
if _base is None:
_base, _tok = FastLanguageModel.from_pretrained(
BASE_MODEL, max_seq_length=2048,
quantization_config=bnb_cfg, device_map="auto")
_tok.pad_token = _tok.eos_token
_lora, _ = FastLanguageModel.from_pretrained(
ADAPTER_DIR, max_seq_length=2048,
quantization_config=bnb_cfg, device_map="auto")
return True
@spaces.GPU
@torch.no_grad()
def draw(model_flag, desc):
ensure_models()
model = _base if model_flag == "base" else _lora
prompt = _tok.apply_chat_template(
[{"role":"system","content":"You are an SVG illustrator."},
{"role":"user",
"content":f"ONLY reply with a valid, complete <svg>β¦</svg> file that depicts: {desc}"}],
tokenize=False, add_generation_prompt=True)
ids = _tok(prompt, return_tensors="pt").to(DEVICE)
out = model.generate(**ids, max_new_tokens=MAX_NEW,
do_sample=True, temperature=.7, top_p=.8)
svg = extract_svg(_tok.decode(out[0], skip_special_tokens=True))
img = svg2pil(svg) if svg else None
return img, svg or "(no SVG found)"
# ---------- gradio interface --------------------------------
#
def compare(desc):
img_b, svg_b = draw("base", desc)
img_l, svg_l = draw("lora", desc)
caption = "Thanks for trying our model π\nIf you don't see an image for the base or GRPO model that means it didn't generate a valid SVG!"
return img_b, img_l, caption, svg_b, svg_l
with gr.Blocks(theme="gradio/Base") as demo:
gr.Markdown("## ποΈ Qwen-2.5 SVG Generator β base vs GRPO-LoRA")
gr.Markdown(
"Type an image **description** (e.g. *a purple forest at dusk*). "
"Click **Generate** to see what the base model and your fine-tuned LoRA produce."
)
inp = gr.Textbox(label="Description", placeholder="a purple forest at dusk")
btn = gr.Button("Generate")
with gr.Row():
out_base = gr.Image(label="Base model", type="pil")
out_lora = gr.Image(label="LoRA-tuned model", type="pil")
sim_lbl = gr.Markdown()
with gr.Accordion("βοΈ Raw SVG code", open=False):
svg_base_box = gr.Textbox(label="Base SVG", lines=6)
svg_lora_box = gr.Textbox(label="LoRA SVG", lines=6)
btn.click(compare, inp, [out_base, out_lora, sim_lbl, svg_base_box, svg_lora_box])
demo.launch()
|