File size: 4,542 Bytes
fe5070c
 
 
be0cea3
fe5070c
 
 
 
 
 
be0cea3
fe5070c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
567ff97
 
fe5070c
d71891a
 
 
9b179e0
d71891a
 
9b179e0
d71891a
 
 
567ff97
d71891a
 
 
567ff97
d71891a
 
9b179e0
fe5070c
 
d71891a
eaa86c1
d71891a
 
 
 
 
 
 
fe5070c
 
d71891a
fe5070c
 
 
 
d71891a
fe5070c
d71891a
 
00ff9a0
d71891a
 
b4444a2
fe5070c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#!/usr/bin/env python3
# svg_compare_gradio.py
# ------------------------------------------------------------
import spaces
import re, os, torch, cairosvg, lpips, clip, gradio as gr
from io import BytesIO
from pathlib import Path
from PIL import Image
from transformers import BitsAndBytesConfig, AutoTokenizer
import gradio as gr


# ---------- paths YOU may want to edit ----------------------
ADAPTER_DIR = "unsloth_trained_weights/checkpoint-1700"  # LoRA ckpt
BASE_MODEL  = "Qwen/Qwen2.5-Coder-7B-Instruct"
MAX_NEW     = 512
DEVICE      = "cuda" # if torch.cuda.is_available() else "cpu"

# ---------- utils -------------------------------------------
SVG_PAT = re.compile(r"<svg[^>]*>.*?</svg>", re.S | re.I)
def extract_svg(txt:str):
    m = list(SVG_PAT.finditer(txt))
    return m[-1].group(0) if m else None                       # last match βœ”

def svg2pil(svg:str):
    try:
        png = cairosvg.svg2png(bytestring=svg.encode())
        return Image.open(BytesIO(png)).convert("RGB")
    except Exception:
        return None

# ---------- backbone loaders (CLIP + LPIPS) -----------------
_CLIP,_PREP,_LP=None,None,None
@spaces.GPU
def _load_backbones():
    global _CLIP,_PREP,_LP
    if _CLIP is None:
        _CLIP,_PREP = clip.load("ViT-L/14", device=DEVICE); _CLIP.eval()
    if _LP is None:
        _LP = lpips.LPIPS(net="vgg").to(DEVICE).eval()

@spaces.GPU
@torch.no_grad()
def fused_sim(a:Image.Image,b:Image.Image,Ξ±=.5):
    _load_backbones()
    ta,tb = _PREP(a).unsqueeze(0).to(DEVICE), _PREP(b).unsqueeze(0).to(DEVICE)
    fa = _CLIP.encode_image(ta); fa/=fa.norm(dim=-1,keepdim=True)
    fb = _CLIP.encode_image(tb); fb/=fb.norm(dim=-1,keepdim=True)
    clip_sim=(([email protected]).item()+1)/2
    lp_sim = 1 - _LP(ta,tb,normalize=True).item()
    return Ξ±*clip_sim + (1-Ξ±)*lp_sim

bnb_cfg = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_use_double_quant=True)

# ---------- load models once at startup ---------------------
_base = _lora = _tok = None
_CLIP = _PREP = _LP = None

@spaces.GPU
def ensure_models():
    """Create base, lora, tok **once per worker**."""
    from unsloth import FastLanguageModel
    global _base, _lora, _tok
    if _base is None:
        _base, _tok = FastLanguageModel.from_pretrained(
            BASE_MODEL, max_seq_length=2048,
            quantization_config=bnb_cfg, device_map="auto")
        _tok.pad_token = _tok.eos_token
        _lora, _ = FastLanguageModel.from_pretrained(
            ADAPTER_DIR, max_seq_length=2048,
            quantization_config=bnb_cfg, device_map="auto")
    return True

@spaces.GPU
@torch.no_grad()
def draw(model_flag, desc):
    ensure_models()
    model = _base if model_flag == "base" else _lora
    prompt = _tok.apply_chat_template(
        [{"role":"system","content":"You are an SVG illustrator."},
         {"role":"user",
          "content":f"ONLY reply with a valid, complete <svg>…</svg> file that depicts: {desc}"}],
        tokenize=False, add_generation_prompt=True)
    ids = _tok(prompt, return_tensors="pt").to(DEVICE)
    out = model.generate(**ids, max_new_tokens=MAX_NEW,
                         do_sample=True, temperature=.7, top_p=.8)
    svg = extract_svg(_tok.decode(out[0], skip_special_tokens=True))
    img = svg2pil(svg) if svg else None
    return img, svg or "(no SVG found)"

# ---------- gradio interface --------------------------------
#
def compare(desc):
    img_b, svg_b = draw("base", desc)
    img_l, svg_l = draw("lora", desc)
    caption = "Thanks for trying our model 😊\nIf you don't see an image for the base or GRPO model that means it didn't generate a valid SVG!"
    return img_b, img_l, caption, svg_b, svg_l

with gr.Blocks(theme="gradio/Base") as demo:
    gr.Markdown("## πŸ–ŒοΈ Qwen-2.5 SVG Generator β€” base vs GRPO-LoRA")
    gr.Markdown(
        "Type an image **description** (e.g. *a purple forest at dusk*). "
        "Click **Generate** to see what the base model and your fine-tuned LoRA produce."
    )
    inp = gr.Textbox(label="Description", placeholder="a purple forest at dusk")
    btn = gr.Button("Generate")
    with gr.Row():
        out_base = gr.Image(label="Base model", type="pil")
        out_lora = gr.Image(label="LoRA-tuned model", type="pil")
    sim_lbl = gr.Markdown()
    with gr.Accordion("βš™οΈ  Raw SVG code", open=False):
        svg_base_box = gr.Textbox(label="Base SVG", lines=6)
        svg_lora_box = gr.Textbox(label="LoRA SVG", lines=6)
    btn.click(compare, inp, [out_base, out_lora, sim_lbl, svg_base_box, svg_lora_box])

demo.launch()