#!/usr/bin/env python3
# svg_compare_gradio.py
# ------------------------------------------------------------
import spaces
import re, os, torch, cairosvg, lpips, clip, gradio as gr
from io import BytesIO
from pathlib import Path
from PIL import Image
from transformers import BitsAndBytesConfig, AutoTokenizer
import gradio as gr
# ---------- paths YOU may want to edit ----------------------
ADAPTER_DIR = "unsloth_trained_weights/checkpoint-1700" # LoRA ckpt
BASE_MODEL = "Qwen/Qwen2.5-Coder-7B-Instruct"
MAX_NEW = 512
DEVICE = "cuda" # if torch.cuda.is_available() else "cpu"
# ---------- utils -------------------------------------------
SVG_PAT = re.compile(r"", re.S | re.I)
def extract_svg(txt:str):
m = list(SVG_PAT.finditer(txt))
return m[-1].group(0) if m else None # last match ✔
def svg2pil(svg:str):
try:
png = cairosvg.svg2png(bytestring=svg.encode())
return Image.open(BytesIO(png)).convert("RGB")
except Exception:
return None
# ---------- backbone loaders (CLIP + LPIPS) -----------------
_CLIP,_PREP,_LP=None,None,None
@spaces.GPU
def _load_backbones():
global _CLIP,_PREP,_LP
if _CLIP is None:
_CLIP,_PREP = clip.load("ViT-L/14", device=DEVICE); _CLIP.eval()
if _LP is None:
_LP = lpips.LPIPS(net="vgg").to(DEVICE).eval()
@spaces.GPU
@torch.no_grad()
def fused_sim(a:Image.Image,b:Image.Image,α=.5):
_load_backbones()
ta,tb = _PREP(a).unsqueeze(0).to(DEVICE), _PREP(b).unsqueeze(0).to(DEVICE)
fa = _CLIP.encode_image(ta); fa/=fa.norm(dim=-1,keepdim=True)
fb = _CLIP.encode_image(tb); fb/=fb.norm(dim=-1,keepdim=True)
clip_sim=((fa@fb.T).item()+1)/2
lp_sim = 1 - _LP(ta,tb,normalize=True).item()
return α*clip_sim + (1-α)*lp_sim
bnb_cfg = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_use_double_quant=True)
# ---------- load models once at startup ---------------------
_base = _lora = _tok = None
_CLIP = _PREP = _LP = None
@spaces.GPU
def ensure_models():
"""Create base, lora, tok **once per worker**."""
from unsloth import FastLanguageModel
global _base, _lora, _tok
if _base is None:
_base, _tok = FastLanguageModel.from_pretrained(
BASE_MODEL, max_seq_length=2048,
quantization_config=bnb_cfg, device_map="auto")
_tok.pad_token = _tok.eos_token
_lora, _ = FastLanguageModel.from_pretrained(
ADAPTER_DIR, max_seq_length=2048,
quantization_config=bnb_cfg, device_map="auto")
return True
@spaces.GPU
@torch.no_grad()
def draw(model_flag, desc):
ensure_models()
model = _base if model_flag == "base" else _lora
prompt = _tok.apply_chat_template(
[{"role":"system","content":"You are an SVG illustrator."},
{"role":"user",
"content":f"ONLY reply with a valid, complete file that depicts: {desc}"}],
tokenize=False, add_generation_prompt=True)
ids = _tok(prompt, return_tensors="pt").to(DEVICE)
out = model.generate(**ids, max_new_tokens=MAX_NEW,
do_sample=True, temperature=.7, top_p=.8)
svg = extract_svg(_tok.decode(out[0], skip_special_tokens=True))
img = svg2pil(svg) if svg else None
return img, svg or "(no SVG found)"
# ---------- gradio interface --------------------------------
#
def compare(desc):
img_b, svg_b = draw("base", desc)
img_l, svg_l = draw("lora", desc)
caption = "Thanks for trying our model 😊\nIf you don't see an image for the base or GRPO model that means it didn't generate a valid SVG!"
return img_b, img_l, caption, svg_b, svg_l
with gr.Blocks(theme="gradio/Base") as demo:
gr.Markdown("## 🖌️ Qwen-2.5 SVG Generator — base vs GRPO-LoRA")
gr.Markdown(
"Type an image **description** (e.g. *a purple forest at dusk*). "
"Click **Generate** to see what the base model and your fine-tuned LoRA produce."
)
inp = gr.Textbox(label="Description", placeholder="a purple forest at dusk")
btn = gr.Button("Generate")
with gr.Row():
out_base = gr.Image(label="Base model", type="pil")
out_lora = gr.Image(label="LoRA-tuned model", type="pil")
sim_lbl = gr.Markdown()
with gr.Accordion("⚙️ Raw SVG code", open=False):
svg_base_box = gr.Textbox(label="Base SVG", lines=6)
svg_lora_box = gr.Textbox(label="LoRA SVG", lines=6)
btn.click(compare, inp, [out_base, out_lora, sim_lbl, svg_base_box, svg_lora_box])
demo.launch()