#!/usr/bin/env python3 # svg_compare_gradio.py # ------------------------------------------------------------ import spaces import re, os, torch, cairosvg, lpips, clip, gradio as gr from io import BytesIO from pathlib import Path from PIL import Image from transformers import BitsAndBytesConfig, AutoTokenizer import gradio as gr # ---------- paths YOU may want to edit ---------------------- ADAPTER_DIR = "unsloth_trained_weights/checkpoint-1700" # LoRA ckpt BASE_MODEL = "Qwen/Qwen2.5-Coder-7B-Instruct" MAX_NEW = 512 DEVICE = "cuda" # if torch.cuda.is_available() else "cpu" # ---------- utils ------------------------------------------- SVG_PAT = re.compile(r"]*>.*?", re.S | re.I) def extract_svg(txt:str): m = list(SVG_PAT.finditer(txt)) return m[-1].group(0) if m else None # last match ✔ def svg2pil(svg:str): try: png = cairosvg.svg2png(bytestring=svg.encode()) return Image.open(BytesIO(png)).convert("RGB") except Exception: return None # ---------- backbone loaders (CLIP + LPIPS) ----------------- _CLIP,_PREP,_LP=None,None,None @spaces.GPU def _load_backbones(): global _CLIP,_PREP,_LP if _CLIP is None: _CLIP,_PREP = clip.load("ViT-L/14", device=DEVICE); _CLIP.eval() if _LP is None: _LP = lpips.LPIPS(net="vgg").to(DEVICE).eval() @spaces.GPU @torch.no_grad() def fused_sim(a:Image.Image,b:Image.Image,α=.5): _load_backbones() ta,tb = _PREP(a).unsqueeze(0).to(DEVICE), _PREP(b).unsqueeze(0).to(DEVICE) fa = _CLIP.encode_image(ta); fa/=fa.norm(dim=-1,keepdim=True) fb = _CLIP.encode_image(tb); fb/=fb.norm(dim=-1,keepdim=True) clip_sim=((fa@fb.T).item()+1)/2 lp_sim = 1 - _LP(ta,tb,normalize=True).item() return α*clip_sim + (1-α)*lp_sim bnb_cfg = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_use_double_quant=True) # ---------- load models once at startup --------------------- _base = _lora = _tok = None _CLIP = _PREP = _LP = None @spaces.GPU def ensure_models(): """Create base, lora, tok **once per worker**.""" from unsloth import FastLanguageModel global _base, _lora, _tok if _base is None: _base, _tok = FastLanguageModel.from_pretrained( BASE_MODEL, max_seq_length=2048, quantization_config=bnb_cfg, device_map="auto") _tok.pad_token = _tok.eos_token _lora, _ = FastLanguageModel.from_pretrained( ADAPTER_DIR, max_seq_length=2048, quantization_config=bnb_cfg, device_map="auto") return True @spaces.GPU @torch.no_grad() def draw(model_flag, desc): ensure_models() model = _base if model_flag == "base" else _lora prompt = _tok.apply_chat_template( [{"role":"system","content":"You are an SVG illustrator."}, {"role":"user", "content":f"ONLY reply with a valid, complete file that depicts: {desc}"}], tokenize=False, add_generation_prompt=True) ids = _tok(prompt, return_tensors="pt").to(DEVICE) out = model.generate(**ids, max_new_tokens=MAX_NEW, do_sample=True, temperature=.7, top_p=.8) svg = extract_svg(_tok.decode(out[0], skip_special_tokens=True)) img = svg2pil(svg) if svg else None return img, svg or "(no SVG found)" # ---------- gradio interface -------------------------------- # def compare(desc): img_b, svg_b = draw("base", desc) img_l, svg_l = draw("lora", desc) caption = "Thanks for trying our model 😊\nIf you don't see an image for the base or GRPO model that means it didn't generate a valid SVG!" return img_b, img_l, caption, svg_b, svg_l with gr.Blocks(theme="gradio/Base") as demo: gr.Markdown("## 🖌️ Qwen-2.5 SVG Generator — base vs GRPO-LoRA") gr.Markdown( "Type an image **description** (e.g. *a purple forest at dusk*). " "Click **Generate** to see what the base model and your fine-tuned LoRA produce." ) inp = gr.Textbox(label="Description", placeholder="a purple forest at dusk") btn = gr.Button("Generate") with gr.Row(): out_base = gr.Image(label="Base model", type="pil") out_lora = gr.Image(label="LoRA-tuned model", type="pil") sim_lbl = gr.Markdown() with gr.Accordion("⚙️ Raw SVG code", open=False): svg_base_box = gr.Textbox(label="Base SVG", lines=6) svg_lora_box = gr.Textbox(label="LoRA SVG", lines=6) btn.click(compare, inp, [out_base, out_lora, sim_lbl, svg_base_box, svg_lora_box]) demo.launch()