Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	add app
Browse filesThis view is limited to 50 files because it contains too many changes.  
							See raw diff
- LICENSE +28 -0
- README.md +128 -13
- app.py +107 -0
- configs/inference/inference.yaml +26 -0
- configs/prompts/animation.yaml +42 -0
- demo/animate.py +195 -0
- inputs/applications/driving/densepose/.nfs006c000000039d6800000023 +0 -0
- inputs/applications/driving/densepose/.nfs006c00000003a32d00000024 +0 -0
- inputs/applications/driving/densepose/dancing2.mp4 +0 -0
- inputs/applications/driving/densepose/demo4.mp4 +0 -0
- inputs/applications/driving/densepose/multi_dancing.mp4 +0 -0
- inputs/applications/driving/densepose/running.mp4 +0 -0
- inputs/applications/driving/densepose/running2.mp4 +0 -0
- inputs/applications/source_image/0002.png +0 -0
- inputs/applications/source_image/dalle2.jpeg +0 -0
- inputs/applications/source_image/dalle8.jpeg +0 -0
- inputs/applications/source_image/demo4.png +0 -0
- inputs/applications/source_image/monalisa.png +0 -0
- inputs/applications/source_image/multi1_source.png +0 -0
- magicanimate/models/__pycache__/appearance_encoder.cpython-38.pyc +0 -0
- magicanimate/models/__pycache__/attention.cpython-38.pyc +0 -0
- magicanimate/models/__pycache__/controlnet.cpython-38.pyc +0 -0
- magicanimate/models/__pycache__/embeddings.cpython-38.pyc +0 -0
- magicanimate/models/__pycache__/motion_module.cpython-38.pyc +0 -0
- magicanimate/models/__pycache__/mutual_self_attention.cpython-38.pyc +0 -0
- magicanimate/models/__pycache__/orig_attention.cpython-38.pyc +0 -0
- magicanimate/models/__pycache__/resnet.cpython-38.pyc +0 -0
- magicanimate/models/__pycache__/stable_diffusion_controlnet_reference.cpython-38.pyc +0 -0
- magicanimate/models/__pycache__/unet_3d_blocks.cpython-38.pyc +0 -0
- magicanimate/models/__pycache__/unet_controlnet.cpython-38.pyc +0 -0
- magicanimate/models/appearance_encoder.py +1066 -0
- magicanimate/models/attention.py +320 -0
- magicanimate/models/controlnet.py +578 -0
- magicanimate/models/embeddings.py +385 -0
- magicanimate/models/motion_module.py +334 -0
- magicanimate/models/mutual_self_attention.py +642 -0
- magicanimate/models/orig_attention.py +988 -0
- magicanimate/models/resnet.py +212 -0
- magicanimate/models/stable_diffusion_controlnet_reference.py +840 -0
- magicanimate/models/unet.py +508 -0
- magicanimate/models/unet_3d_blocks.py +751 -0
- magicanimate/models/unet_controlnet.py +525 -0
- magicanimate/pipelines/__pycache__/animation.cpython-37.pyc +0 -0
- magicanimate/pipelines/__pycache__/animation.cpython-38.pyc +0 -0
- magicanimate/pipelines/__pycache__/context.cpython-38.pyc +0 -0
- magicanimate/pipelines/__pycache__/dist_animation.cpython-37.pyc +0 -0
- magicanimate/pipelines/__pycache__/dist_animation.cpython-38.pyc +0 -0
- magicanimate/pipelines/__pycache__/pipeline_animation.cpython-38.pyc +0 -0
- magicanimate/pipelines/animation.py +282 -0
- magicanimate/pipelines/context.py +76 -0
    	
        LICENSE
    ADDED
    
    | @@ -0,0 +1,28 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            BSD 3-Clause License
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            Copyright 2023 MagicAnimate Team All rights reserved.
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            Redistribution and use in source and binary forms, with or without
         | 
| 6 | 
            +
            modification, are permitted provided that the following conditions are met:
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            1. Redistributions of source code must retain the above copyright notice, this
         | 
| 9 | 
            +
               list of conditions and the following disclaimer.
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            2. Redistributions in binary form must reproduce the above copyright notice,
         | 
| 12 | 
            +
               this list of conditions and the following disclaimer in the documentation
         | 
| 13 | 
            +
               and/or other materials provided with the distribution.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            3. Neither the name of the copyright holder nor the names of its
         | 
| 16 | 
            +
               contributors may be used to endorse or promote products derived from
         | 
| 17 | 
            +
               this software without specific prior written permission.
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
         | 
| 20 | 
            +
            AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
         | 
| 21 | 
            +
            IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
         | 
| 22 | 
            +
            DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
         | 
| 23 | 
            +
            FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
         | 
| 24 | 
            +
            DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
         | 
| 25 | 
            +
            SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
         | 
| 26 | 
            +
            CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
         | 
| 27 | 
            +
            OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
         | 
| 28 | 
            +
            OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
         | 
    	
        README.md
    CHANGED
    
    | @@ -1,13 +1,128 @@ | |
| 1 | 
            -
             | 
| 2 | 
            -
             | 
| 3 | 
            -
             | 
| 4 | 
            -
             | 
| 5 | 
            -
             | 
| 6 | 
            -
             | 
| 7 | 
            -
             | 
| 8 | 
            -
             | 
| 9 | 
            -
             | 
| 10 | 
            -
             | 
| 11 | 
            -
             | 
| 12 | 
            -
             | 
| 13 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            <!-- # magic-edit.github.io -->
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            <p align="center">
         | 
| 4 | 
            +
             | 
| 5 | 
            +
              <h2 align="center">MagicAnimate: Temporally Consistent Human Image Animation using Diffusion Model</h2>
         | 
| 6 | 
            +
              <p align="center">
         | 
| 7 | 
            +
                <a href="https://scholar.google.com/citations?user=-4iADzMAAAAJ&hl=en"><strong>Zhongcong Xu</strong></a>
         | 
| 8 | 
            +
                ·
         | 
| 9 | 
            +
                <a href="http://jeff95.me/"><strong>Jianfeng Zhang</strong></a>
         | 
| 10 | 
            +
                ·
         | 
| 11 | 
            +
                <a href="https://scholar.google.com.sg/citations?user=8gm-CYYAAAAJ&hl=en"><strong>Jun Hao Liew</strong></a>
         | 
| 12 | 
            +
                ·
         | 
| 13 | 
            +
                <a href="https://hanshuyan.github.io/"><strong>Hanshu Yan</strong></a>
         | 
| 14 | 
            +
                ·
         | 
| 15 | 
            +
                <a href="https://scholar.google.com/citations?user=stQQf7wAAAAJ&hl=en"><strong>Jia-Wei Liu</strong></a>
         | 
| 16 | 
            +
                ·
         | 
| 17 | 
            +
                <a href="https://zhangchenxu528.github.io/"><strong>Chenxu Zhang</strong></a>
         | 
| 18 | 
            +
                ·
         | 
| 19 | 
            +
                <a href="https://sites.google.com/site/jshfeng/home"><strong>Jiashi Feng</strong></a>
         | 
| 20 | 
            +
                ·
         | 
| 21 | 
            +
                <a href="https://sites.google.com/view/showlab"><strong>Mike Zheng Shou</strong></a>
         | 
| 22 | 
            +
                <br>
         | 
| 23 | 
            +
                <br>
         | 
| 24 | 
            +
                    <a href="https://arxiv.org/abs/2311.16498"><img src='https://img.shields.io/badge/arXiv-MagicAnimate-red' alt='Paper PDF'></a>
         | 
| 25 | 
            +
                    <a href='https://showlab.github.io/magicanimate'><img src='https://img.shields.io/badge/Project_Page-MagicAnimate-green' alt='Project Page'></a>
         | 
| 26 | 
            +
                    <a href=''><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
         | 
| 27 | 
            +
                <br>
         | 
| 28 | 
            +
                <b>National University of Singapore   |    ByteDance</b>
         | 
| 29 | 
            +
              </p>
         | 
| 30 | 
            +
              
         | 
| 31 | 
            +
              <table align="center">
         | 
| 32 | 
            +
                <tr>
         | 
| 33 | 
            +
                <td>
         | 
| 34 | 
            +
                  <img src="assets/teaser/t1.gif">
         | 
| 35 | 
            +
                </td>
         | 
| 36 | 
            +
                <td>
         | 
| 37 | 
            +
                  <img src="assets/teaser/t4.gif">
         | 
| 38 | 
            +
                </td>
         | 
| 39 | 
            +
                </tr>
         | 
| 40 | 
            +
                <tr>
         | 
| 41 | 
            +
                <td>
         | 
| 42 | 
            +
                  <img src="assets/teaser/t3.gif">
         | 
| 43 | 
            +
                </td>
         | 
| 44 | 
            +
                <td>
         | 
| 45 | 
            +
                  <img src="assets/teaser/t2.gif">
         | 
| 46 | 
            +
                </td>
         | 
| 47 | 
            +
                </tr>
         | 
| 48 | 
            +
              </table>
         | 
| 49 | 
            +
             | 
| 50 | 
            +
            ## 📢 News
         | 
| 51 | 
            +
            * **[2023.12.4]** Release inference code and gradio demo. We are working to improve MagicAnimate, stay tuned!
         | 
| 52 | 
            +
            * **[2023.11.23]** Release MagicAnimate paper and project page.
         | 
| 53 | 
            +
             | 
| 54 | 
            +
            ## 🏃♂️ Getting Started
         | 
| 55 | 
            +
            Please download the pretrained base models for [StableDiffusion V1.5](https://huggingface.co/runwayml/stable-diffusion-v1-5) and [MSE-finetuned VAE](https://huggingface.co/stabilityai/sd-vae-ft-mse).
         | 
| 56 | 
            +
             | 
| 57 | 
            +
            Download our MagicAnimate [checkpints](https://huggingface.co/zcxu-eric/MagicAnimate).
         | 
| 58 | 
            +
             | 
| 59 | 
            +
            **Place them as following:**
         | 
| 60 | 
            +
            ```bash
         | 
| 61 | 
            +
            magic-animate
         | 
| 62 | 
            +
            |----pretrained_models
         | 
| 63 | 
            +
              |----MagicAnimate
         | 
| 64 | 
            +
                |----appearance_encoder
         | 
| 65 | 
            +
                  |----diffusion_pytorch_model.safetensors
         | 
| 66 | 
            +
                  |----config.json
         | 
| 67 | 
            +
                |----densepose_controlnet
         | 
| 68 | 
            +
                  |----diffusion_pytorch_model.safetensors
         | 
| 69 | 
            +
                  |----config.json
         | 
| 70 | 
            +
                |----temporal_attention
         | 
| 71 | 
            +
                  |----temporal_attention.ckpt
         | 
| 72 | 
            +
              |----sd-vae-ft-mse
         | 
| 73 | 
            +
                |----...
         | 
| 74 | 
            +
              |----stable-diffusion-v1-5
         | 
| 75 | 
            +
                |----...
         | 
| 76 | 
            +
            |----...
         | 
| 77 | 
            +
            ```
         | 
| 78 | 
            +
             | 
| 79 | 
            +
            ## ⚒️ Installation
         | 
| 80 | 
            +
            prerequisites: `python>=3.8`, `CUDA>=11.3`, and `ffmpeg`.
         | 
| 81 | 
            +
             | 
| 82 | 
            +
            Install with `conda`: 
         | 
| 83 | 
            +
            ```bash
         | 
| 84 | 
            +
            conda env create -f environment.yml
         | 
| 85 | 
            +
            conda activate manimate
         | 
| 86 | 
            +
            ```
         | 
| 87 | 
            +
            or `pip`:
         | 
| 88 | 
            +
            ```bash
         | 
| 89 | 
            +
            pip3 install -r requirements.txt
         | 
| 90 | 
            +
            ```
         | 
| 91 | 
            +
             | 
| 92 | 
            +
            ## 💃 Inference
         | 
| 93 | 
            +
            Run inference on single GPU:
         | 
| 94 | 
            +
            ```bash
         | 
| 95 | 
            +
            bash scripts/animate.sh
         | 
| 96 | 
            +
            ```
         | 
| 97 | 
            +
            Run inference with multiple GPUs:
         | 
| 98 | 
            +
            ```bash
         | 
| 99 | 
            +
            bash scripts/animate_dist.sh
         | 
| 100 | 
            +
            ```
         | 
| 101 | 
            +
             | 
| 102 | 
            +
            ## 🎨 Gradio Demo 
         | 
| 103 | 
            +
             | 
| 104 | 
            +
            #### Online Gradio Demo:
         | 
| 105 | 
            +
            Try our [online gradio demo]() quickly.
         | 
| 106 | 
            +
             | 
| 107 | 
            +
            #### Local Gradio Demo:
         | 
| 108 | 
            +
            Launch local gradio demo on single GPU:
         | 
| 109 | 
            +
            ```bash
         | 
| 110 | 
            +
            python3 -m demo.gradio_animate
         | 
| 111 | 
            +
            ```
         | 
| 112 | 
            +
            Launch local gradio demo if you have multiple GPUs:
         | 
| 113 | 
            +
            ```bash
         | 
| 114 | 
            +
            python3 -m demo.gradio_animate_dist
         | 
| 115 | 
            +
            ```
         | 
| 116 | 
            +
            Then open gradio demo in local browser.
         | 
| 117 | 
            +
             | 
| 118 | 
            +
            ## 🎓 Citation
         | 
| 119 | 
            +
            If you find this codebase useful for your research, please use the following entry.
         | 
| 120 | 
            +
            ```BibTeX
         | 
| 121 | 
            +
            @inproceedings{xu2023magicanimate,
         | 
| 122 | 
            +
                author    = {Xu, Zhongcong and Zhang, Jianfeng and Liew, Jun Hao and Yan, Hanshu and Liu, Jia-Wei and Zhang, Chenxu and Feng, Jiashi and Shou, Mike Zheng},
         | 
| 123 | 
            +
                title     = {MagicAnimate: Temporally Consistent Human Image Animation using Diffusion Model},
         | 
| 124 | 
            +
                booktitle = {arXiv},
         | 
| 125 | 
            +
                year      = {2023}
         | 
| 126 | 
            +
            }
         | 
| 127 | 
            +
            ```
         | 
| 128 | 
            +
             | 
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,107 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2023 ByteDance and/or its affiliates.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Copyright (2023) MagicAnimate Authors
         | 
| 4 | 
            +
            #
         | 
| 5 | 
            +
            # ByteDance, its affiliates and licensors retain all intellectual
         | 
| 6 | 
            +
            # property and proprietary rights in and to this material, related
         | 
| 7 | 
            +
            # documentation and any modifications thereto. Any use, reproduction,
         | 
| 8 | 
            +
            # disclosure or distribution of this material and related documentation
         | 
| 9 | 
            +
            # without an express license agreement from ByteDance or
         | 
| 10 | 
            +
            # its affiliates is strictly prohibited.
         | 
| 11 | 
            +
            import argparse
         | 
| 12 | 
            +
            import imageio
         | 
| 13 | 
            +
            import numpy as np
         | 
| 14 | 
            +
            import gradio as gr
         | 
| 15 | 
            +
            from PIL import Image
         | 
| 16 | 
            +
            from subprocess import PIPE, run
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            from demo.animate import MagicAnimate
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            for command in [
         | 
| 21 | 
            +
                'mkdir ./pretrained_models && cd pretrained_models',
         | 
| 22 | 
            +
                'git lfs clone https://huggingface.co/zcxu-eric/MagicAnimate',
         | 
| 23 | 
            +
                'git lfs clone https://huggingface.co/runwayml/stable-diffusion-v1-5',
         | 
| 24 | 
            +
                'git lfs clone https://huggingface.co/stabilityai/sd-vae-ft-mse',
         | 
| 25 | 
            +
                'cd ..',
         | 
| 26 | 
            +
            ]:
         | 
| 27 | 
            +
                run(command, stdout=PIPE, stderr=PIPE, universal_newlines=True, shell=True)
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            animator = MagicAnimate()
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            def animate(reference_image, motion_sequence_state, seed, steps, guidance_scale):
         | 
| 32 | 
            +
                return animator(reference_image, motion_sequence_state, seed, steps, guidance_scale)
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            with gr.Blocks() as demo:
         | 
| 35 | 
            +
             | 
| 36 | 
            +
                gr.HTML(
         | 
| 37 | 
            +
                    """
         | 
| 38 | 
            +
                    <div style="text-align: center; max-width: 1200px; margin: 20px auto;">
         | 
| 39 | 
            +
                    <h1 style="font-weight: 800; font-size: 2rem; margin: 0rem">
         | 
| 40 | 
            +
                        MagicAnimate: Temporally Consistent Human Image Animation
         | 
| 41 | 
            +
                    </h1>
         | 
| 42 | 
            +
                    <br>
         | 
| 43 | 
            +
                    <h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
         | 
| 44 | 
            +
                        <a href="https://showlab.github.io/magicanimate">Project page</a> | 
         | 
| 45 | 
            +
                        <a href="https://github.com/magic-research/magic-animate"> GitHub </a> | 
         | 
| 46 | 
            +
                        <a href="https://arxiv.org/abs/2311.16498"> arXiv </a>
         | 
| 47 | 
            +
                    </h2>
         | 
| 48 | 
            +
                    </div>
         | 
| 49 | 
            +
                    """)
         | 
| 50 | 
            +
                animation = gr.Video(format="mp4", label="Animation Results", autoplay=True)
         | 
| 51 | 
            +
                
         | 
| 52 | 
            +
                with gr.Row():
         | 
| 53 | 
            +
                    reference_image  = gr.Image(label="Reference Image")
         | 
| 54 | 
            +
                    motion_sequence  = gr.Video(format="mp4", label="Motion Sequence")
         | 
| 55 | 
            +
                    
         | 
| 56 | 
            +
                    with gr.Column():
         | 
| 57 | 
            +
                        random_seed         = gr.Textbox(label="Random seed", value=1, info="default: -1")
         | 
| 58 | 
            +
                        sampling_steps      = gr.Textbox(label="Sampling steps", value=25, info="default: 25")
         | 
| 59 | 
            +
                        guidance_scale      = gr.Textbox(label="Guidance scale", value=7.5, info="default: 7.5")
         | 
| 60 | 
            +
                        submit              = gr.Button("Animate")
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                def read_video(video):
         | 
| 63 | 
            +
                    size = int(size)
         | 
| 64 | 
            +
                    reader = imageio.get_reader(video)
         | 
| 65 | 
            +
                    fps = reader.get_meta_data()['fps']
         | 
| 66 | 
            +
                    assert fps == 25.0, f'Expected video fps: 25, but {fps} fps found'
         | 
| 67 | 
            +
                    return video
         | 
| 68 | 
            +
                
         | 
| 69 | 
            +
                def read_image(image, size=512):
         | 
| 70 | 
            +
                    return np.array(Image.fromarray(image).resize((size, size)))
         | 
| 71 | 
            +
                
         | 
| 72 | 
            +
                # when user uploads a new video
         | 
| 73 | 
            +
                motion_sequence.upload(
         | 
| 74 | 
            +
                    read_video,
         | 
| 75 | 
            +
                    motion_sequence,
         | 
| 76 | 
            +
                    motion_sequence
         | 
| 77 | 
            +
                )
         | 
| 78 | 
            +
                # when `first_frame` is updated
         | 
| 79 | 
            +
                reference_image.upload(
         | 
| 80 | 
            +
                    read_image,
         | 
| 81 | 
            +
                    reference_image,
         | 
| 82 | 
            +
                    reference_image
         | 
| 83 | 
            +
                )
         | 
| 84 | 
            +
                # when the `submit` button is clicked
         | 
| 85 | 
            +
                submit.click(
         | 
| 86 | 
            +
                    animate,
         | 
| 87 | 
            +
                    [reference_image, motion_sequence, random_seed, sampling_steps, guidance_scale], 
         | 
| 88 | 
            +
                    animation
         | 
| 89 | 
            +
                )
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                # Examples
         | 
| 92 | 
            +
                gr.Markdown("## Examples")
         | 
| 93 | 
            +
                gr.Examples(
         | 
| 94 | 
            +
                    examples=[
         | 
| 95 | 
            +
                        ["inputs/applications/source_image/monalisa.png", "inputs/applications/driving/densepose/running.mp4"],
         | 
| 96 | 
            +
                        ["inputs/applications/source_image/demo4.png", "inputs/applications/driving/densepose/demo4.mp4"],
         | 
| 97 | 
            +
                        ["inputs/applications/source_image/0002.png", "inputs/applications/driving/densepose/demo4.mp4"],
         | 
| 98 | 
            +
                        ["inputs/applications/source_image/dalle2.jpeg", "inputs/applications/driving/densepose/running2.mp4"],
         | 
| 99 | 
            +
                        ["inputs/applications/source_image/dalle8.jpeg", "inputs/applications/driving/densepose/dancing2.mp4"],
         | 
| 100 | 
            +
                        ["inputs/applications/source_image/multi1_source.png", "inputs/applications/driving/densepose/multi_dancing.mp4"],
         | 
| 101 | 
            +
                    ],
         | 
| 102 | 
            +
                    inputs=[reference_image, motion_sequence],
         | 
| 103 | 
            +
                    outputs=animation,
         | 
| 104 | 
            +
                )
         | 
| 105 | 
            +
             | 
| 106 | 
            +
             | 
| 107 | 
            +
            demo.launch(share=True)
         | 
    	
        configs/inference/inference.yaml
    ADDED
    
    | @@ -0,0 +1,26 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            unet_additional_kwargs:
         | 
| 2 | 
            +
              unet_use_cross_frame_attention: false
         | 
| 3 | 
            +
              unet_use_temporal_attention: false
         | 
| 4 | 
            +
              use_motion_module: true
         | 
| 5 | 
            +
              motion_module_resolutions:
         | 
| 6 | 
            +
              - 1
         | 
| 7 | 
            +
              - 2
         | 
| 8 | 
            +
              - 4
         | 
| 9 | 
            +
              - 8
         | 
| 10 | 
            +
              motion_module_mid_block: false
         | 
| 11 | 
            +
              motion_module_decoder_only: false
         | 
| 12 | 
            +
              motion_module_type: Vanilla
         | 
| 13 | 
            +
              motion_module_kwargs:
         | 
| 14 | 
            +
                num_attention_heads: 8
         | 
| 15 | 
            +
                num_transformer_block: 1
         | 
| 16 | 
            +
                attention_block_types:
         | 
| 17 | 
            +
                - Temporal_Self
         | 
| 18 | 
            +
                - Temporal_Self
         | 
| 19 | 
            +
                temporal_position_encoding: true
         | 
| 20 | 
            +
                temporal_position_encoding_max_len: 24
         | 
| 21 | 
            +
                temporal_attention_dim_div: 1
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            noise_scheduler_kwargs:
         | 
| 24 | 
            +
              beta_start: 0.00085
         | 
| 25 | 
            +
              beta_end: 0.012
         | 
| 26 | 
            +
              beta_schedule: "linear"
         | 
    	
        configs/prompts/animation.yaml
    ADDED
    
    | @@ -0,0 +1,42 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            pretrained_model_path: "pretrained_models/stable-diffusion-v1-5"
         | 
| 2 | 
            +
            pretrained_vae_path: "pretrained_models/sd-vae-ft-mse"
         | 
| 3 | 
            +
            pretrained_controlnet_path: "pretrained_models/MagicAnimate/densepose_controlnet"
         | 
| 4 | 
            +
            pretrained_appearance_encoder_path: "pretrained_models/MagicAnimate/appearance_encoder"
         | 
| 5 | 
            +
            pretrained_unet_path: ""
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            motion_module: "pretrained_models/MagicAnimate/temporal_attention/temporal_attention.ckpt"
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            savename: null
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            fusion_blocks: "midup"
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            seed:           [1]
         | 
| 14 | 
            +
            steps:          25
         | 
| 15 | 
            +
            guidance_scale: 7.5
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            source_image:
         | 
| 18 | 
            +
              - "inputs/applications/source_image/monalisa.png"
         | 
| 19 | 
            +
              - "inputs/applications/source_image/0002.png"
         | 
| 20 | 
            +
              - "inputs/applications/source_image/demo4.png"
         | 
| 21 | 
            +
              - "inputs/applications/source_image/dalle2.jpeg"
         | 
| 22 | 
            +
              - "inputs/applications/source_image/dalle8.jpeg"
         | 
| 23 | 
            +
              - "inputs/applications/source_image/multi1_source.png"
         | 
| 24 | 
            +
            video_path:
         | 
| 25 | 
            +
              - "inputs/applications/driving/densepose/running.mp4"
         | 
| 26 | 
            +
              - "inputs/applications/driving/densepose/demo4.mp4"
         | 
| 27 | 
            +
              - "inputs/applications/driving/densepose/demo4.mp4"
         | 
| 28 | 
            +
              - "inputs/applications/driving/densepose/running2.mp4"
         | 
| 29 | 
            +
              - "inputs/applications/driving/densepose/dancing2.mp4"
         | 
| 30 | 
            +
              - "inputs/applications/driving/densepose/multi_dancing.mp4"
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            inference_config: "configs/inference/inference.yaml"
         | 
| 33 | 
            +
            size: 512
         | 
| 34 | 
            +
            L:    16
         | 
| 35 | 
            +
            S:    1 
         | 
| 36 | 
            +
            I:    0
         | 
| 37 | 
            +
            clip: 0
         | 
| 38 | 
            +
            offset: 0
         | 
| 39 | 
            +
            max_length: null
         | 
| 40 | 
            +
            video_type: "condition"
         | 
| 41 | 
            +
            invert_video: false
         | 
| 42 | 
            +
            save_individual_videos: false
         | 
    	
        demo/animate.py
    ADDED
    
    | @@ -0,0 +1,195 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2023 ByteDance and/or its affiliates.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Copyright (2023) MagicAnimate Authors
         | 
| 4 | 
            +
            #
         | 
| 5 | 
            +
            # ByteDance, its affiliates and licensors retain all intellectual
         | 
| 6 | 
            +
            # property and proprietary rights in and to this material, related
         | 
| 7 | 
            +
            # documentation and any modifications thereto. Any use, reproduction,
         | 
| 8 | 
            +
            # disclosure or distribution of this material and related documentation
         | 
| 9 | 
            +
            # without an express license agreement from ByteDance or
         | 
| 10 | 
            +
            # its affiliates is strictly prohibited.
         | 
| 11 | 
            +
            import argparse
         | 
| 12 | 
            +
            import argparse
         | 
| 13 | 
            +
            import datetime
         | 
| 14 | 
            +
            import inspect
         | 
| 15 | 
            +
            import os
         | 
| 16 | 
            +
            import numpy as np
         | 
| 17 | 
            +
            from PIL import Image
         | 
| 18 | 
            +
            from omegaconf import OmegaConf
         | 
| 19 | 
            +
            from collections import OrderedDict
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            import torch
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            from diffusers import AutoencoderKL, DDIMScheduler, UniPCMultistepScheduler
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            from tqdm import tqdm
         | 
| 26 | 
            +
            from transformers import CLIPTextModel, CLIPTokenizer
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            from magicanimate.models.unet_controlnet import UNet3DConditionModel
         | 
| 29 | 
            +
            from magicanimate.models.controlnet import ControlNetModel
         | 
| 30 | 
            +
            from magicanimate.models.appearance_encoder import AppearanceEncoderModel
         | 
| 31 | 
            +
            from magicanimate.models.mutual_self_attention import ReferenceAttentionControl
         | 
| 32 | 
            +
            from magicanimate.pipelines.pipeline_animation import AnimationPipeline
         | 
| 33 | 
            +
            from magicanimate.utils.util import save_videos_grid
         | 
| 34 | 
            +
            from accelerate.utils import set_seed
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            from magicanimate.utils.videoreader import VideoReader
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            from einops import rearrange, repeat
         | 
| 39 | 
            +
             | 
| 40 | 
            +
            import csv, pdb, glob
         | 
| 41 | 
            +
            from safetensors import safe_open
         | 
| 42 | 
            +
            import math
         | 
| 43 | 
            +
            from pathlib import Path
         | 
| 44 | 
            +
             | 
| 45 | 
            +
            class MagicAnimate():
         | 
| 46 | 
            +
                def __init__(self, config="configs/prompts/animation.yaml") -> None:
         | 
| 47 | 
            +
                    print("Initializing MagicAnimate Pipeline...")
         | 
| 48 | 
            +
                    *_, func_args = inspect.getargvalues(inspect.currentframe())
         | 
| 49 | 
            +
                    func_args = dict(func_args)
         | 
| 50 | 
            +
                    
         | 
| 51 | 
            +
                    config  = OmegaConf.load(config)
         | 
| 52 | 
            +
                    
         | 
| 53 | 
            +
                    inference_config = OmegaConf.load(config.inference_config)
         | 
| 54 | 
            +
                        
         | 
| 55 | 
            +
                    motion_module = config.motion_module
         | 
| 56 | 
            +
                   
         | 
| 57 | 
            +
                    ### >>> create animation pipeline >>> ###
         | 
| 58 | 
            +
                    tokenizer = CLIPTokenizer.from_pretrained(config.pretrained_model_path, subfolder="tokenizer")
         | 
| 59 | 
            +
                    text_encoder = CLIPTextModel.from_pretrained(config.pretrained_model_path, subfolder="text_encoder")
         | 
| 60 | 
            +
                    if config.pretrained_unet_path:
         | 
| 61 | 
            +
                        unet = UNet3DConditionModel.from_pretrained_2d(config.pretrained_unet_path, unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs))
         | 
| 62 | 
            +
                    else:
         | 
| 63 | 
            +
                        unet = UNet3DConditionModel.from_pretrained_2d(config.pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs))
         | 
| 64 | 
            +
                    self.appearance_encoder = AppearanceEncoderModel.from_pretrained(config.pretrained_appearance_encoder_path, subfolder="appearance_encoder").cuda()
         | 
| 65 | 
            +
                    self.reference_control_writer = ReferenceAttentionControl(self.appearance_encoder, do_classifier_free_guidance=True, mode='write', fusion_blocks=config.fusion_blocks)
         | 
| 66 | 
            +
                    self.reference_control_reader = ReferenceAttentionControl(unet, do_classifier_free_guidance=True, mode='read', fusion_blocks=config.fusion_blocks)
         | 
| 67 | 
            +
                    if config.pretrained_vae_path is not None:
         | 
| 68 | 
            +
                        vae = AutoencoderKL.from_pretrained(config.pretrained_vae_path)
         | 
| 69 | 
            +
                    else:
         | 
| 70 | 
            +
                        vae = AutoencoderKL.from_pretrained(config.pretrained_model_path, subfolder="vae")
         | 
| 71 | 
            +
             | 
| 72 | 
            +
                    ### Load controlnet
         | 
| 73 | 
            +
                    controlnet   = ControlNetModel.from_pretrained(config.pretrained_controlnet_path)
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                    vae.to(torch.float16)
         | 
| 76 | 
            +
                    unet.to(torch.float16)
         | 
| 77 | 
            +
                    text_encoder.to(torch.float16)
         | 
| 78 | 
            +
                    controlnet.to(torch.float16)
         | 
| 79 | 
            +
                    self.appearance_encoder.to(torch.float16)
         | 
| 80 | 
            +
                    
         | 
| 81 | 
            +
                    unet.enable_xformers_memory_efficient_attention()
         | 
| 82 | 
            +
                    self.appearance_encoder.enable_xformers_memory_efficient_attention()
         | 
| 83 | 
            +
                    controlnet.enable_xformers_memory_efficient_attention()
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                    self.pipeline = AnimationPipeline(
         | 
| 86 | 
            +
                        vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, controlnet=controlnet,
         | 
| 87 | 
            +
                        scheduler=DDIMScheduler(**OmegaConf.to_container(inference_config.noise_scheduler_kwargs)),
         | 
| 88 | 
            +
                        # NOTE: UniPCMultistepScheduler
         | 
| 89 | 
            +
                    ).to("cuda")
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                    # 1. unet ckpt
         | 
| 92 | 
            +
                    # 1.1 motion module
         | 
| 93 | 
            +
                    motion_module_state_dict = torch.load(motion_module, map_location="cpu")
         | 
| 94 | 
            +
                    if "global_step" in motion_module_state_dict: func_args.update({"global_step": motion_module_state_dict["global_step"]})
         | 
| 95 | 
            +
                    motion_module_state_dict = motion_module_state_dict['state_dict'] if 'state_dict' in motion_module_state_dict else motion_module_state_dict
         | 
| 96 | 
            +
                    try:
         | 
| 97 | 
            +
                        # extra steps for self-trained models
         | 
| 98 | 
            +
                        state_dict = OrderedDict()
         | 
| 99 | 
            +
                        for key in motion_module_state_dict.keys():
         | 
| 100 | 
            +
                            if key.startswith("module."):
         | 
| 101 | 
            +
                                _key = key.split("module.")[-1]
         | 
| 102 | 
            +
                                state_dict[_key] = motion_module_state_dict[key]
         | 
| 103 | 
            +
                            else:
         | 
| 104 | 
            +
                                state_dict[key] = motion_module_state_dict[key]
         | 
| 105 | 
            +
                        motion_module_state_dict = state_dict
         | 
| 106 | 
            +
                        del state_dict
         | 
| 107 | 
            +
                        missing, unexpected = self.pipeline.unet.load_state_dict(motion_module_state_dict, strict=False)
         | 
| 108 | 
            +
                        assert len(unexpected) == 0
         | 
| 109 | 
            +
                    except:
         | 
| 110 | 
            +
                        _tmp_ = OrderedDict()
         | 
| 111 | 
            +
                        for key in motion_module_state_dict.keys():
         | 
| 112 | 
            +
                            if "motion_modules" in key:
         | 
| 113 | 
            +
                                if key.startswith("unet."):
         | 
| 114 | 
            +
                                    _key = key.split('unet.')[-1]
         | 
| 115 | 
            +
                                    _tmp_[_key] = motion_module_state_dict[key]
         | 
| 116 | 
            +
                                else:
         | 
| 117 | 
            +
                                    _tmp_[key] = motion_module_state_dict[key]
         | 
| 118 | 
            +
                        missing, unexpected = unet.load_state_dict(_tmp_, strict=False)
         | 
| 119 | 
            +
                        assert len(unexpected) == 0
         | 
| 120 | 
            +
                        del _tmp_
         | 
| 121 | 
            +
                    del motion_module_state_dict
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                    self.pipeline.to("cuda")
         | 
| 124 | 
            +
                    self.L = config.L
         | 
| 125 | 
            +
                    
         | 
| 126 | 
            +
                    print("Initialization Done!")
         | 
| 127 | 
            +
                    
         | 
| 128 | 
            +
                def __call__(self, source_image, motion_sequence, random_seed, step, guidance_scale, size=512):
         | 
| 129 | 
            +
                        prompt = n_prompt = ""
         | 
| 130 | 
            +
                        random_seed = int(random_seed)
         | 
| 131 | 
            +
                        step = int(step)
         | 
| 132 | 
            +
                        guidance_scale = float(guidance_scale)
         | 
| 133 | 
            +
                        samples_per_video = []
         | 
| 134 | 
            +
                        # manually set random seed for reproduction
         | 
| 135 | 
            +
                        if random_seed != -1: 
         | 
| 136 | 
            +
                            torch.manual_seed(random_seed)
         | 
| 137 | 
            +
                            set_seed(random_seed)
         | 
| 138 | 
            +
                        else:
         | 
| 139 | 
            +
                            torch.seed()
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                        if motion_sequence.endswith('.mp4'):
         | 
| 142 | 
            +
                            control = VideoReader(motion_sequence).read()
         | 
| 143 | 
            +
                            if control[0].shape[0] != size:
         | 
| 144 | 
            +
                                control = [np.array(Image.fromarray(c).resize((size, size))) for c in control]
         | 
| 145 | 
            +
                            control = np.array(control)
         | 
| 146 | 
            +
                        
         | 
| 147 | 
            +
                        if source_image.shape[0] != size:
         | 
| 148 | 
            +
                            source_image = np.array(Image.fromarray(source_image).resize((size, size)))
         | 
| 149 | 
            +
                        H, W, C = source_image.shape
         | 
| 150 | 
            +
                        
         | 
| 151 | 
            +
                        init_latents = None
         | 
| 152 | 
            +
                        original_length = control.shape[0]
         | 
| 153 | 
            +
                        if control.shape[0] % self.L > 0:
         | 
| 154 | 
            +
                            control = np.pad(control, ((0, self.L-control.shape[0] % self.L), (0, 0), (0, 0), (0, 0)), mode='edge')
         | 
| 155 | 
            +
                        generator = torch.Generator(device=torch.device("cuda:0"))
         | 
| 156 | 
            +
                        generator.manual_seed(torch.initial_seed())
         | 
| 157 | 
            +
                        sample = self.pipeline(
         | 
| 158 | 
            +
                            prompt,
         | 
| 159 | 
            +
                            negative_prompt         = n_prompt,
         | 
| 160 | 
            +
                            num_inference_steps     = step,
         | 
| 161 | 
            +
                            guidance_scale          = guidance_scale,
         | 
| 162 | 
            +
                            width                   = W,
         | 
| 163 | 
            +
                            height                  = H,
         | 
| 164 | 
            +
                            video_length            = len(control),
         | 
| 165 | 
            +
                            controlnet_condition    = control,
         | 
| 166 | 
            +
                            init_latents            = init_latents,
         | 
| 167 | 
            +
                            generator               = generator,
         | 
| 168 | 
            +
                            appearance_encoder       = self.appearance_encoder, 
         | 
| 169 | 
            +
                            reference_control_writer = self.reference_control_writer,
         | 
| 170 | 
            +
                            reference_control_reader = self.reference_control_reader,
         | 
| 171 | 
            +
                            source_image             = source_image,
         | 
| 172 | 
            +
                        ).videos
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                        source_images = np.array([source_image] * original_length)
         | 
| 175 | 
            +
                        source_images = rearrange(torch.from_numpy(source_images), "t h w c -> 1 c t h w") / 255.0
         | 
| 176 | 
            +
                        samples_per_video.append(source_images)
         | 
| 177 | 
            +
                        
         | 
| 178 | 
            +
                        control = control / 255.0
         | 
| 179 | 
            +
                        control = rearrange(control, "t h w c -> 1 c t h w")
         | 
| 180 | 
            +
                        control = torch.from_numpy(control)
         | 
| 181 | 
            +
                        samples_per_video.append(control[:, :, :original_length])
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                        samples_per_video.append(sample[:, :, :original_length])
         | 
| 184 | 
            +
             | 
| 185 | 
            +
                        samples_per_video = torch.cat(samples_per_video)
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                        time_str = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
         | 
| 188 | 
            +
                        savedir = f"demo/outputs"
         | 
| 189 | 
            +
                        animation_path = f"{savedir}/{time_str}.mp4"
         | 
| 190 | 
            +
             | 
| 191 | 
            +
                        os.makedirs(savedir, exist_ok=True)
         | 
| 192 | 
            +
                        save_videos_grid(samples_per_video, animation_path)
         | 
| 193 | 
            +
                        
         | 
| 194 | 
            +
                        return animation_path
         | 
| 195 | 
            +
                        
         | 
    	
        inputs/applications/driving/densepose/.nfs006c000000039d6800000023
    ADDED
    
    | Binary file (966 kB). View file | 
|  | 
    	
        inputs/applications/driving/densepose/.nfs006c00000003a32d00000024
    ADDED
    
    | Binary file (151 kB). View file | 
|  | 
    	
        inputs/applications/driving/densepose/dancing2.mp4
    ADDED
    
    | Binary file (130 kB). View file | 
|  | 
    	
        inputs/applications/driving/densepose/demo4.mp4
    ADDED
    
    | Binary file (156 kB). View file | 
|  | 
    	
        inputs/applications/driving/densepose/multi_dancing.mp4
    ADDED
    
    | Binary file (219 kB). View file | 
|  | 
    	
        inputs/applications/driving/densepose/running.mp4
    ADDED
    
    | Binary file (63.2 kB). View file | 
|  | 
    	
        inputs/applications/driving/densepose/running2.mp4
    ADDED
    
    | Binary file (152 kB). View file | 
|  | 
    	
        inputs/applications/source_image/0002.png
    ADDED
    
    |   | 
    	
        inputs/applications/source_image/dalle2.jpeg
    ADDED
    
    |   | 
    	
        inputs/applications/source_image/dalle8.jpeg
    ADDED
    
    |   | 
    	
        inputs/applications/source_image/demo4.png
    ADDED
    
    |   | 
    	
        inputs/applications/source_image/monalisa.png
    ADDED
    
    |   | 
    	
        inputs/applications/source_image/multi1_source.png
    ADDED
    
    |   | 
    	
        magicanimate/models/__pycache__/appearance_encoder.cpython-38.pyc
    ADDED
    
    | Binary file (33 kB). View file | 
|  | 
    	
        magicanimate/models/__pycache__/attention.cpython-38.pyc
    ADDED
    
    | Binary file (6.74 kB). View file | 
|  | 
    	
        magicanimate/models/__pycache__/controlnet.cpython-38.pyc
    ADDED
    
    | Binary file (12.6 kB). View file | 
|  | 
    	
        magicanimate/models/__pycache__/embeddings.cpython-38.pyc
    ADDED
    
    | Binary file (11.1 kB). View file | 
|  | 
    	
        magicanimate/models/__pycache__/motion_module.cpython-38.pyc
    ADDED
    
    | Binary file (8.34 kB). View file | 
|  | 
    	
        magicanimate/models/__pycache__/mutual_self_attention.cpython-38.pyc
    ADDED
    
    | Binary file (19 kB). View file | 
|  | 
    	
        magicanimate/models/__pycache__/orig_attention.cpython-38.pyc
    ADDED
    
    | Binary file (29.7 kB). View file | 
|  | 
    	
        magicanimate/models/__pycache__/resnet.cpython-38.pyc
    ADDED
    
    | Binary file (4.96 kB). View file | 
|  | 
    	
        magicanimate/models/__pycache__/stable_diffusion_controlnet_reference.cpython-38.pyc
    ADDED
    
    | Binary file (24.9 kB). View file | 
|  | 
    	
        magicanimate/models/__pycache__/unet_3d_blocks.cpython-38.pyc
    ADDED
    
    | Binary file (12 kB). View file | 
|  | 
    	
        magicanimate/models/__pycache__/unet_controlnet.cpython-38.pyc
    ADDED
    
    | Binary file (12.3 kB). View file | 
|  | 
    	
        magicanimate/models/appearance_encoder.py
    ADDED
    
    | @@ -0,0 +1,1066 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # *************************************************************************
         | 
| 2 | 
            +
            # This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo-
         | 
| 3 | 
            +
            # difications”). All Bytedance Inc.'s Modifications are Copyright (2023) B-
         | 
| 4 | 
            +
            # ytedance Inc..  
         | 
| 5 | 
            +
            # *************************************************************************
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Copyright 2023 The HuggingFace Team. All rights reserved.
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            from dataclasses import dataclass
         | 
| 21 | 
            +
            from typing import Any, Dict, List, Optional, Tuple, Union
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            import torch
         | 
| 24 | 
            +
            import torch.nn as nn
         | 
| 25 | 
            +
            import torch.utils.checkpoint
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            from diffusers.configuration_utils import ConfigMixin, register_to_config
         | 
| 28 | 
            +
            from diffusers.loaders import UNet2DConditionLoadersMixin
         | 
| 29 | 
            +
            from diffusers.utils import BaseOutput, logging
         | 
| 30 | 
            +
            from diffusers.models.activations import get_activation
         | 
| 31 | 
            +
            from diffusers.models.attention_processor import (
         | 
| 32 | 
            +
                ADDED_KV_ATTENTION_PROCESSORS,
         | 
| 33 | 
            +
                CROSS_ATTENTION_PROCESSORS,
         | 
| 34 | 
            +
                AttentionProcessor,
         | 
| 35 | 
            +
                AttnAddedKVProcessor,
         | 
| 36 | 
            +
                AttnProcessor,
         | 
| 37 | 
            +
            )
         | 
| 38 | 
            +
            from diffusers.models.lora import LoRALinearLayer
         | 
| 39 | 
            +
            from diffusers.models.embeddings import (
         | 
| 40 | 
            +
                GaussianFourierProjection,
         | 
| 41 | 
            +
                ImageHintTimeEmbedding,
         | 
| 42 | 
            +
                ImageProjection,
         | 
| 43 | 
            +
                ImageTimeEmbedding,
         | 
| 44 | 
            +
                PositionNet,
         | 
| 45 | 
            +
                TextImageProjection,
         | 
| 46 | 
            +
                TextImageTimeEmbedding,
         | 
| 47 | 
            +
                TextTimeEmbedding,
         | 
| 48 | 
            +
                TimestepEmbedding,
         | 
| 49 | 
            +
                Timesteps,
         | 
| 50 | 
            +
            )
         | 
| 51 | 
            +
            from diffusers.models.modeling_utils import ModelMixin
         | 
| 52 | 
            +
            from diffusers.models.unet_2d_blocks import (
         | 
| 53 | 
            +
                UNetMidBlock2DCrossAttn,
         | 
| 54 | 
            +
                UNetMidBlock2DSimpleCrossAttn,
         | 
| 55 | 
            +
                get_down_block,
         | 
| 56 | 
            +
                get_up_block,
         | 
| 57 | 
            +
            )
         | 
| 58 | 
            +
             | 
| 59 | 
            +
             | 
| 60 | 
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 61 | 
            +
             | 
| 62 | 
            +
             | 
| 63 | 
            +
            class Identity(torch.nn.Module):
         | 
| 64 | 
            +
                r"""A placeholder identity operator that is argument-insensitive.
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                Args:
         | 
| 67 | 
            +
                    args: any argument (unused)
         | 
| 68 | 
            +
                    kwargs: any keyword argument (unused)
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                Shape:
         | 
| 71 | 
            +
                    - Input: :math:`(*)`, where :math:`*` means any number of dimensions.
         | 
| 72 | 
            +
                    - Output: :math:`(*)`, same shape as the input.
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                Examples::
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                    >>> m = nn.Identity(54, unused_argument1=0.1, unused_argument2=False)
         | 
| 77 | 
            +
                    >>> input = torch.randn(128, 20)
         | 
| 78 | 
            +
                    >>> output = m(input)
         | 
| 79 | 
            +
                    >>> print(output.size())
         | 
| 80 | 
            +
                    torch.Size([128, 20])
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                """
         | 
| 83 | 
            +
                def __init__(self, scale=None, *args, **kwargs) -> None:
         | 
| 84 | 
            +
                    super(Identity, self).__init__()
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                def forward(self, input, *args, **kwargs):
         | 
| 87 | 
            +
                    return input
         | 
| 88 | 
            +
             | 
| 89 | 
            +
             | 
| 90 | 
            +
             | 
| 91 | 
            +
            class _LoRACompatibleLinear(nn.Module):
         | 
| 92 | 
            +
                """
         | 
| 93 | 
            +
                A Linear layer that can be used with LoRA.
         | 
| 94 | 
            +
                """
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                def __init__(self, *args, lora_layer: Optional[LoRALinearLayer] = None, **kwargs):
         | 
| 97 | 
            +
                    super().__init__(*args, **kwargs)
         | 
| 98 | 
            +
                    self.lora_layer = lora_layer
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                def set_lora_layer(self, lora_layer: Optional[LoRALinearLayer]):
         | 
| 101 | 
            +
                    self.lora_layer = lora_layer
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                def _fuse_lora(self):
         | 
| 104 | 
            +
                    pass
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                def _unfuse_lora(self):
         | 
| 107 | 
            +
                    pass
         | 
| 108 | 
            +
             | 
| 109 | 
            +
                def forward(self, hidden_states, scale=None, lora_scale: int = 1):
         | 
| 110 | 
            +
                    return hidden_states
         | 
| 111 | 
            +
             | 
| 112 | 
            +
             | 
| 113 | 
            +
            @dataclass
         | 
| 114 | 
            +
            class UNet2DConditionOutput(BaseOutput):
         | 
| 115 | 
            +
                """
         | 
| 116 | 
            +
                The output of [`UNet2DConditionModel`].
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                Args:
         | 
| 119 | 
            +
                    sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
         | 
| 120 | 
            +
                        The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
         | 
| 121 | 
            +
                """
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                sample: torch.FloatTensor = None
         | 
| 124 | 
            +
             | 
| 125 | 
            +
             | 
| 126 | 
            +
            class AppearanceEncoderModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
         | 
| 127 | 
            +
                r"""
         | 
| 128 | 
            +
                A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
         | 
| 129 | 
            +
                shaped output.
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
         | 
| 132 | 
            +
                for all models (such as downloading or saving).
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                Parameters:
         | 
| 135 | 
            +
                    sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
         | 
| 136 | 
            +
                        Height and width of input/output sample.
         | 
| 137 | 
            +
                    in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
         | 
| 138 | 
            +
                    out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
         | 
| 139 | 
            +
                    center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
         | 
| 140 | 
            +
                    flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
         | 
| 141 | 
            +
                        Whether to flip the sin to cos in the time embedding.
         | 
| 142 | 
            +
                    freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
         | 
| 143 | 
            +
                    down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
         | 
| 144 | 
            +
                        The tuple of downsample blocks to use.
         | 
| 145 | 
            +
                    mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
         | 
| 146 | 
            +
                        Block type for middle of UNet, it can be either `UNetMidBlock2DCrossAttn` or
         | 
| 147 | 
            +
                        `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
         | 
| 148 | 
            +
                    up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
         | 
| 149 | 
            +
                        The tuple of upsample blocks to use.
         | 
| 150 | 
            +
                    only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
         | 
| 151 | 
            +
                        Whether to include self-attention in the basic transformer blocks, see
         | 
| 152 | 
            +
                        [`~models.attention.BasicTransformerBlock`].
         | 
| 153 | 
            +
                    block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
         | 
| 154 | 
            +
                        The tuple of output channels for each block.
         | 
| 155 | 
            +
                    layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
         | 
| 156 | 
            +
                    downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
         | 
| 157 | 
            +
                    mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
         | 
| 158 | 
            +
                    act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
         | 
| 159 | 
            +
                    norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
         | 
| 160 | 
            +
                        If `None`, normalization and activation layers is skipped in post-processing.
         | 
| 161 | 
            +
                    norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
         | 
| 162 | 
            +
                    cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
         | 
| 163 | 
            +
                        The dimension of the cross attention features.
         | 
| 164 | 
            +
                    transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
         | 
| 165 | 
            +
                        The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
         | 
| 166 | 
            +
                        [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
         | 
| 167 | 
            +
                        [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
         | 
| 168 | 
            +
                    encoder_hid_dim (`int`, *optional*, defaults to None):
         | 
| 169 | 
            +
                        If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
         | 
| 170 | 
            +
                        dimension to `cross_attention_dim`.
         | 
| 171 | 
            +
                    encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
         | 
| 172 | 
            +
                        If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
         | 
| 173 | 
            +
                        embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
         | 
| 174 | 
            +
                    attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
         | 
| 175 | 
            +
                    num_attention_heads (`int`, *optional*):
         | 
| 176 | 
            +
                        The number of attention heads. If not defined, defaults to `attention_head_dim`
         | 
| 177 | 
            +
                    resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
         | 
| 178 | 
            +
                        for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
         | 
| 179 | 
            +
                    class_embed_type (`str`, *optional*, defaults to `None`):
         | 
| 180 | 
            +
                        The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
         | 
| 181 | 
            +
                        `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
         | 
| 182 | 
            +
                    addition_embed_type (`str`, *optional*, defaults to `None`):
         | 
| 183 | 
            +
                        Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
         | 
| 184 | 
            +
                        "text". "text" will use the `TextTimeEmbedding` layer.
         | 
| 185 | 
            +
                    addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
         | 
| 186 | 
            +
                        Dimension for the timestep embeddings.
         | 
| 187 | 
            +
                    num_class_embeds (`int`, *optional*, defaults to `None`):
         | 
| 188 | 
            +
                        Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
         | 
| 189 | 
            +
                        class conditioning with `class_embed_type` equal to `None`.
         | 
| 190 | 
            +
                    time_embedding_type (`str`, *optional*, defaults to `positional`):
         | 
| 191 | 
            +
                        The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
         | 
| 192 | 
            +
                    time_embedding_dim (`int`, *optional*, defaults to `None`):
         | 
| 193 | 
            +
                        An optional override for the dimension of the projected time embedding.
         | 
| 194 | 
            +
                    time_embedding_act_fn (`str`, *optional*, defaults to `None`):
         | 
| 195 | 
            +
                        Optional activation function to use only once on the time embeddings before they are passed to the rest of
         | 
| 196 | 
            +
                        the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
         | 
| 197 | 
            +
                    timestep_post_act (`str`, *optional*, defaults to `None`):
         | 
| 198 | 
            +
                        The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
         | 
| 199 | 
            +
                    time_cond_proj_dim (`int`, *optional*, defaults to `None`):
         | 
| 200 | 
            +
                        The dimension of `cond_proj` layer in the timestep embedding.
         | 
| 201 | 
            +
                    conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
         | 
| 202 | 
            +
                    conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
         | 
| 203 | 
            +
                    projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
         | 
| 204 | 
            +
                        `class_embed_type="projection"`. Required when `class_embed_type="projection"`.
         | 
| 205 | 
            +
                    class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
         | 
| 206 | 
            +
                        embeddings with the class embeddings.
         | 
| 207 | 
            +
                    mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
         | 
| 208 | 
            +
                        Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
         | 
| 209 | 
            +
                        `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
         | 
| 210 | 
            +
                        `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
         | 
| 211 | 
            +
                        otherwise.
         | 
| 212 | 
            +
                """
         | 
| 213 | 
            +
             | 
| 214 | 
            +
                _supports_gradient_checkpointing = True
         | 
| 215 | 
            +
             | 
| 216 | 
            +
                @register_to_config
         | 
| 217 | 
            +
                def __init__(
         | 
| 218 | 
            +
                    self,
         | 
| 219 | 
            +
                    sample_size: Optional[int] = None,
         | 
| 220 | 
            +
                    in_channels: int = 4,
         | 
| 221 | 
            +
                    out_channels: int = 4,
         | 
| 222 | 
            +
                    center_input_sample: bool = False,
         | 
| 223 | 
            +
                    flip_sin_to_cos: bool = True,
         | 
| 224 | 
            +
                    freq_shift: int = 0,
         | 
| 225 | 
            +
                    down_block_types: Tuple[str] = (
         | 
| 226 | 
            +
                        "CrossAttnDownBlock2D",
         | 
| 227 | 
            +
                        "CrossAttnDownBlock2D",
         | 
| 228 | 
            +
                        "CrossAttnDownBlock2D",
         | 
| 229 | 
            +
                        "DownBlock2D",
         | 
| 230 | 
            +
                    ),
         | 
| 231 | 
            +
                    mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
         | 
| 232 | 
            +
                    up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
         | 
| 233 | 
            +
                    only_cross_attention: Union[bool, Tuple[bool]] = False,
         | 
| 234 | 
            +
                    block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
         | 
| 235 | 
            +
                    layers_per_block: Union[int, Tuple[int]] = 2,
         | 
| 236 | 
            +
                    downsample_padding: int = 1,
         | 
| 237 | 
            +
                    mid_block_scale_factor: float = 1,
         | 
| 238 | 
            +
                    act_fn: str = "silu",
         | 
| 239 | 
            +
                    norm_num_groups: Optional[int] = 32,
         | 
| 240 | 
            +
                    norm_eps: float = 1e-5,
         | 
| 241 | 
            +
                    cross_attention_dim: Union[int, Tuple[int]] = 1280,
         | 
| 242 | 
            +
                    transformer_layers_per_block: Union[int, Tuple[int]] = 1,
         | 
| 243 | 
            +
                    encoder_hid_dim: Optional[int] = None,
         | 
| 244 | 
            +
                    encoder_hid_dim_type: Optional[str] = None,
         | 
| 245 | 
            +
                    attention_head_dim: Union[int, Tuple[int]] = 8,
         | 
| 246 | 
            +
                    num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
         | 
| 247 | 
            +
                    dual_cross_attention: bool = False,
         | 
| 248 | 
            +
                    use_linear_projection: bool = False,
         | 
| 249 | 
            +
                    class_embed_type: Optional[str] = None,
         | 
| 250 | 
            +
                    addition_embed_type: Optional[str] = None,
         | 
| 251 | 
            +
                    addition_time_embed_dim: Optional[int] = None,
         | 
| 252 | 
            +
                    num_class_embeds: Optional[int] = None,
         | 
| 253 | 
            +
                    upcast_attention: bool = False,
         | 
| 254 | 
            +
                    resnet_time_scale_shift: str = "default",
         | 
| 255 | 
            +
                    resnet_skip_time_act: bool = False,
         | 
| 256 | 
            +
                    resnet_out_scale_factor: int = 1.0,
         | 
| 257 | 
            +
                    time_embedding_type: str = "positional",
         | 
| 258 | 
            +
                    time_embedding_dim: Optional[int] = None,
         | 
| 259 | 
            +
                    time_embedding_act_fn: Optional[str] = None,
         | 
| 260 | 
            +
                    timestep_post_act: Optional[str] = None,
         | 
| 261 | 
            +
                    time_cond_proj_dim: Optional[int] = None,
         | 
| 262 | 
            +
                    conv_in_kernel: int = 3,
         | 
| 263 | 
            +
                    conv_out_kernel: int = 3,
         | 
| 264 | 
            +
                    projection_class_embeddings_input_dim: Optional[int] = None,
         | 
| 265 | 
            +
                    attention_type: str = "default",
         | 
| 266 | 
            +
                    class_embeddings_concat: bool = False,
         | 
| 267 | 
            +
                    mid_block_only_cross_attention: Optional[bool] = None,
         | 
| 268 | 
            +
                    cross_attention_norm: Optional[str] = None,
         | 
| 269 | 
            +
                    addition_embed_type_num_heads=64,
         | 
| 270 | 
            +
                ):
         | 
| 271 | 
            +
                    super().__init__()
         | 
| 272 | 
            +
             | 
| 273 | 
            +
                    self.sample_size = sample_size
         | 
| 274 | 
            +
             | 
| 275 | 
            +
                    if num_attention_heads is not None:
         | 
| 276 | 
            +
                        raise ValueError(
         | 
| 277 | 
            +
                            "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
         | 
| 278 | 
            +
                        )
         | 
| 279 | 
            +
             | 
| 280 | 
            +
                    # If `num_attention_heads` is not defined (which is the case for most models)
         | 
| 281 | 
            +
                    # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
         | 
| 282 | 
            +
                    # The reason for this behavior is to correct for incorrectly named variables that were introduced
         | 
| 283 | 
            +
                    # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
         | 
| 284 | 
            +
                    # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
         | 
| 285 | 
            +
                    # which is why we correct for the naming here.
         | 
| 286 | 
            +
                    num_attention_heads = num_attention_heads or attention_head_dim
         | 
| 287 | 
            +
             | 
| 288 | 
            +
                    # Check inputs
         | 
| 289 | 
            +
                    if len(down_block_types) != len(up_block_types):
         | 
| 290 | 
            +
                        raise ValueError(
         | 
| 291 | 
            +
                            f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
         | 
| 292 | 
            +
                        )
         | 
| 293 | 
            +
             | 
| 294 | 
            +
                    if len(block_out_channels) != len(down_block_types):
         | 
| 295 | 
            +
                        raise ValueError(
         | 
| 296 | 
            +
                            f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
         | 
| 297 | 
            +
                        )
         | 
| 298 | 
            +
             | 
| 299 | 
            +
                    if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
         | 
| 300 | 
            +
                        raise ValueError(
         | 
| 301 | 
            +
                            f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
         | 
| 302 | 
            +
                        )
         | 
| 303 | 
            +
             | 
| 304 | 
            +
                    if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
         | 
| 305 | 
            +
                        raise ValueError(
         | 
| 306 | 
            +
                            f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
         | 
| 307 | 
            +
                        )
         | 
| 308 | 
            +
             | 
| 309 | 
            +
                    if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
         | 
| 310 | 
            +
                        raise ValueError(
         | 
| 311 | 
            +
                            f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
         | 
| 312 | 
            +
                        )
         | 
| 313 | 
            +
             | 
| 314 | 
            +
                    if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
         | 
| 315 | 
            +
                        raise ValueError(
         | 
| 316 | 
            +
                            f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
         | 
| 317 | 
            +
                        )
         | 
| 318 | 
            +
             | 
| 319 | 
            +
                    if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
         | 
| 320 | 
            +
                        raise ValueError(
         | 
| 321 | 
            +
                            f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
         | 
| 322 | 
            +
                        )
         | 
| 323 | 
            +
             | 
| 324 | 
            +
                    # input
         | 
| 325 | 
            +
                    conv_in_padding = (conv_in_kernel - 1) // 2
         | 
| 326 | 
            +
                    self.conv_in = nn.Conv2d(
         | 
| 327 | 
            +
                        in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
         | 
| 328 | 
            +
                    )
         | 
| 329 | 
            +
             | 
| 330 | 
            +
                    # time
         | 
| 331 | 
            +
                    if time_embedding_type == "fourier":
         | 
| 332 | 
            +
                        time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
         | 
| 333 | 
            +
                        if time_embed_dim % 2 != 0:
         | 
| 334 | 
            +
                            raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
         | 
| 335 | 
            +
                        self.time_proj = GaussianFourierProjection(
         | 
| 336 | 
            +
                            time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
         | 
| 337 | 
            +
                        )
         | 
| 338 | 
            +
                        timestep_input_dim = time_embed_dim
         | 
| 339 | 
            +
                    elif time_embedding_type == "positional":
         | 
| 340 | 
            +
                        time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
         | 
| 341 | 
            +
             | 
| 342 | 
            +
                        self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
         | 
| 343 | 
            +
                        timestep_input_dim = block_out_channels[0]
         | 
| 344 | 
            +
                    else:
         | 
| 345 | 
            +
                        raise ValueError(
         | 
| 346 | 
            +
                            f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
         | 
| 347 | 
            +
                        )
         | 
| 348 | 
            +
             | 
| 349 | 
            +
                    self.time_embedding = TimestepEmbedding(
         | 
| 350 | 
            +
                        timestep_input_dim,
         | 
| 351 | 
            +
                        time_embed_dim,
         | 
| 352 | 
            +
                        act_fn=act_fn,
         | 
| 353 | 
            +
                        post_act_fn=timestep_post_act,
         | 
| 354 | 
            +
                        cond_proj_dim=time_cond_proj_dim,
         | 
| 355 | 
            +
                    )
         | 
| 356 | 
            +
             | 
| 357 | 
            +
                    if encoder_hid_dim_type is None and encoder_hid_dim is not None:
         | 
| 358 | 
            +
                        encoder_hid_dim_type = "text_proj"
         | 
| 359 | 
            +
                        self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
         | 
| 360 | 
            +
                        logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
         | 
| 361 | 
            +
             | 
| 362 | 
            +
                    if encoder_hid_dim is None and encoder_hid_dim_type is not None:
         | 
| 363 | 
            +
                        raise ValueError(
         | 
| 364 | 
            +
                            f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
         | 
| 365 | 
            +
                        )
         | 
| 366 | 
            +
             | 
| 367 | 
            +
                    if encoder_hid_dim_type == "text_proj":
         | 
| 368 | 
            +
                        self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
         | 
| 369 | 
            +
                    elif encoder_hid_dim_type == "text_image_proj":
         | 
| 370 | 
            +
                        # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
         | 
| 371 | 
            +
                        # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
         | 
| 372 | 
            +
                        # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
         | 
| 373 | 
            +
                        self.encoder_hid_proj = TextImageProjection(
         | 
| 374 | 
            +
                            text_embed_dim=encoder_hid_dim,
         | 
| 375 | 
            +
                            image_embed_dim=cross_attention_dim,
         | 
| 376 | 
            +
                            cross_attention_dim=cross_attention_dim,
         | 
| 377 | 
            +
                        )
         | 
| 378 | 
            +
                    elif encoder_hid_dim_type == "image_proj":
         | 
| 379 | 
            +
                        # Kandinsky 2.2
         | 
| 380 | 
            +
                        self.encoder_hid_proj = ImageProjection(
         | 
| 381 | 
            +
                            image_embed_dim=encoder_hid_dim,
         | 
| 382 | 
            +
                            cross_attention_dim=cross_attention_dim,
         | 
| 383 | 
            +
                        )
         | 
| 384 | 
            +
                    elif encoder_hid_dim_type is not None:
         | 
| 385 | 
            +
                        raise ValueError(
         | 
| 386 | 
            +
                            f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
         | 
| 387 | 
            +
                        )
         | 
| 388 | 
            +
                    else:
         | 
| 389 | 
            +
                        self.encoder_hid_proj = None
         | 
| 390 | 
            +
             | 
| 391 | 
            +
                    # class embedding
         | 
| 392 | 
            +
                    if class_embed_type is None and num_class_embeds is not None:
         | 
| 393 | 
            +
                        self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
         | 
| 394 | 
            +
                    elif class_embed_type == "timestep":
         | 
| 395 | 
            +
                        self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
         | 
| 396 | 
            +
                    elif class_embed_type == "identity":
         | 
| 397 | 
            +
                        self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
         | 
| 398 | 
            +
                    elif class_embed_type == "projection":
         | 
| 399 | 
            +
                        if projection_class_embeddings_input_dim is None:
         | 
| 400 | 
            +
                            raise ValueError(
         | 
| 401 | 
            +
                                "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
         | 
| 402 | 
            +
                            )
         | 
| 403 | 
            +
                        # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
         | 
| 404 | 
            +
                        # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
         | 
| 405 | 
            +
                        # 2. it projects from an arbitrary input dimension.
         | 
| 406 | 
            +
                        #
         | 
| 407 | 
            +
                        # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
         | 
| 408 | 
            +
                        # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
         | 
| 409 | 
            +
                        # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
         | 
| 410 | 
            +
                        self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
         | 
| 411 | 
            +
                    elif class_embed_type == "simple_projection":
         | 
| 412 | 
            +
                        if projection_class_embeddings_input_dim is None:
         | 
| 413 | 
            +
                            raise ValueError(
         | 
| 414 | 
            +
                                "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
         | 
| 415 | 
            +
                            )
         | 
| 416 | 
            +
                        self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
         | 
| 417 | 
            +
                    else:
         | 
| 418 | 
            +
                        self.class_embedding = None
         | 
| 419 | 
            +
             | 
| 420 | 
            +
                    if addition_embed_type == "text":
         | 
| 421 | 
            +
                        if encoder_hid_dim is not None:
         | 
| 422 | 
            +
                            text_time_embedding_from_dim = encoder_hid_dim
         | 
| 423 | 
            +
                        else:
         | 
| 424 | 
            +
                            text_time_embedding_from_dim = cross_attention_dim
         | 
| 425 | 
            +
             | 
| 426 | 
            +
                        self.add_embedding = TextTimeEmbedding(
         | 
| 427 | 
            +
                            text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
         | 
| 428 | 
            +
                        )
         | 
| 429 | 
            +
                    elif addition_embed_type == "text_image":
         | 
| 430 | 
            +
                        # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
         | 
| 431 | 
            +
                        # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
         | 
| 432 | 
            +
                        # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
         | 
| 433 | 
            +
                        self.add_embedding = TextImageTimeEmbedding(
         | 
| 434 | 
            +
                            text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
         | 
| 435 | 
            +
                        )
         | 
| 436 | 
            +
                    elif addition_embed_type == "text_time":
         | 
| 437 | 
            +
                        self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
         | 
| 438 | 
            +
                        self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
         | 
| 439 | 
            +
                    elif addition_embed_type == "image":
         | 
| 440 | 
            +
                        # Kandinsky 2.2
         | 
| 441 | 
            +
                        self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
         | 
| 442 | 
            +
                    elif addition_embed_type == "image_hint":
         | 
| 443 | 
            +
                        # Kandinsky 2.2 ControlNet
         | 
| 444 | 
            +
                        self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
         | 
| 445 | 
            +
                    elif addition_embed_type is not None:
         | 
| 446 | 
            +
                        raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
         | 
| 447 | 
            +
             | 
| 448 | 
            +
                    if time_embedding_act_fn is None:
         | 
| 449 | 
            +
                        self.time_embed_act = None
         | 
| 450 | 
            +
                    else:
         | 
| 451 | 
            +
                        self.time_embed_act = get_activation(time_embedding_act_fn)
         | 
| 452 | 
            +
             | 
| 453 | 
            +
                    self.down_blocks = nn.ModuleList([])
         | 
| 454 | 
            +
                    self.up_blocks = nn.ModuleList([])
         | 
| 455 | 
            +
             | 
| 456 | 
            +
                    if isinstance(only_cross_attention, bool):
         | 
| 457 | 
            +
                        if mid_block_only_cross_attention is None:
         | 
| 458 | 
            +
                            mid_block_only_cross_attention = only_cross_attention
         | 
| 459 | 
            +
             | 
| 460 | 
            +
                        only_cross_attention = [only_cross_attention] * len(down_block_types)
         | 
| 461 | 
            +
             | 
| 462 | 
            +
                    if mid_block_only_cross_attention is None:
         | 
| 463 | 
            +
                        mid_block_only_cross_attention = False
         | 
| 464 | 
            +
             | 
| 465 | 
            +
                    if isinstance(num_attention_heads, int):
         | 
| 466 | 
            +
                        num_attention_heads = (num_attention_heads,) * len(down_block_types)
         | 
| 467 | 
            +
             | 
| 468 | 
            +
                    if isinstance(attention_head_dim, int):
         | 
| 469 | 
            +
                        attention_head_dim = (attention_head_dim,) * len(down_block_types)
         | 
| 470 | 
            +
             | 
| 471 | 
            +
                    if isinstance(cross_attention_dim, int):
         | 
| 472 | 
            +
                        cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
         | 
| 473 | 
            +
             | 
| 474 | 
            +
                    if isinstance(layers_per_block, int):
         | 
| 475 | 
            +
                        layers_per_block = [layers_per_block] * len(down_block_types)
         | 
| 476 | 
            +
             | 
| 477 | 
            +
                    if isinstance(transformer_layers_per_block, int):
         | 
| 478 | 
            +
                        transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
         | 
| 479 | 
            +
             | 
| 480 | 
            +
                    if class_embeddings_concat:
         | 
| 481 | 
            +
                        # The time embeddings are concatenated with the class embeddings. The dimension of the
         | 
| 482 | 
            +
                        # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
         | 
| 483 | 
            +
                        # regular time embeddings
         | 
| 484 | 
            +
                        blocks_time_embed_dim = time_embed_dim * 2
         | 
| 485 | 
            +
                    else:
         | 
| 486 | 
            +
                        blocks_time_embed_dim = time_embed_dim
         | 
| 487 | 
            +
             | 
| 488 | 
            +
                    # down
         | 
| 489 | 
            +
                    output_channel = block_out_channels[0]
         | 
| 490 | 
            +
                    for i, down_block_type in enumerate(down_block_types):
         | 
| 491 | 
            +
                        input_channel = output_channel
         | 
| 492 | 
            +
                        output_channel = block_out_channels[i]
         | 
| 493 | 
            +
                        is_final_block = i == len(block_out_channels) - 1
         | 
| 494 | 
            +
             | 
| 495 | 
            +
                        down_block = get_down_block(
         | 
| 496 | 
            +
                            down_block_type,
         | 
| 497 | 
            +
                            num_layers=layers_per_block[i],
         | 
| 498 | 
            +
                            transformer_layers_per_block=transformer_layers_per_block[i],
         | 
| 499 | 
            +
                            in_channels=input_channel,
         | 
| 500 | 
            +
                            out_channels=output_channel,
         | 
| 501 | 
            +
                            temb_channels=blocks_time_embed_dim,
         | 
| 502 | 
            +
                            add_downsample=not is_final_block,
         | 
| 503 | 
            +
                            resnet_eps=norm_eps,
         | 
| 504 | 
            +
                            resnet_act_fn=act_fn,
         | 
| 505 | 
            +
                            resnet_groups=norm_num_groups,
         | 
| 506 | 
            +
                            cross_attention_dim=cross_attention_dim[i],
         | 
| 507 | 
            +
                            num_attention_heads=num_attention_heads[i],
         | 
| 508 | 
            +
                            downsample_padding=downsample_padding,
         | 
| 509 | 
            +
                            dual_cross_attention=dual_cross_attention,
         | 
| 510 | 
            +
                            use_linear_projection=use_linear_projection,
         | 
| 511 | 
            +
                            only_cross_attention=only_cross_attention[i],
         | 
| 512 | 
            +
                            upcast_attention=upcast_attention,
         | 
| 513 | 
            +
                            resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 514 | 
            +
                            attention_type=attention_type,
         | 
| 515 | 
            +
                            resnet_skip_time_act=resnet_skip_time_act,
         | 
| 516 | 
            +
                            resnet_out_scale_factor=resnet_out_scale_factor,
         | 
| 517 | 
            +
                            cross_attention_norm=cross_attention_norm,
         | 
| 518 | 
            +
                            attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
         | 
| 519 | 
            +
                        )
         | 
| 520 | 
            +
                        self.down_blocks.append(down_block)
         | 
| 521 | 
            +
             | 
| 522 | 
            +
                    # mid
         | 
| 523 | 
            +
                    if mid_block_type == "UNetMidBlock2DCrossAttn":
         | 
| 524 | 
            +
                        self.mid_block = UNetMidBlock2DCrossAttn(
         | 
| 525 | 
            +
                            transformer_layers_per_block=transformer_layers_per_block[-1],
         | 
| 526 | 
            +
                            in_channels=block_out_channels[-1],
         | 
| 527 | 
            +
                            temb_channels=blocks_time_embed_dim,
         | 
| 528 | 
            +
                            resnet_eps=norm_eps,
         | 
| 529 | 
            +
                            resnet_act_fn=act_fn,
         | 
| 530 | 
            +
                            output_scale_factor=mid_block_scale_factor,
         | 
| 531 | 
            +
                            resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 532 | 
            +
                            cross_attention_dim=cross_attention_dim[-1],
         | 
| 533 | 
            +
                            num_attention_heads=num_attention_heads[-1],
         | 
| 534 | 
            +
                            resnet_groups=norm_num_groups,
         | 
| 535 | 
            +
                            dual_cross_attention=dual_cross_attention,
         | 
| 536 | 
            +
                            use_linear_projection=use_linear_projection,
         | 
| 537 | 
            +
                            upcast_attention=upcast_attention,
         | 
| 538 | 
            +
                            attention_type=attention_type,
         | 
| 539 | 
            +
                        )
         | 
| 540 | 
            +
                    elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
         | 
| 541 | 
            +
                        self.mid_block = UNetMidBlock2DSimpleCrossAttn(
         | 
| 542 | 
            +
                            in_channels=block_out_channels[-1],
         | 
| 543 | 
            +
                            temb_channels=blocks_time_embed_dim,
         | 
| 544 | 
            +
                            resnet_eps=norm_eps,
         | 
| 545 | 
            +
                            resnet_act_fn=act_fn,
         | 
| 546 | 
            +
                            output_scale_factor=mid_block_scale_factor,
         | 
| 547 | 
            +
                            cross_attention_dim=cross_attention_dim[-1],
         | 
| 548 | 
            +
                            attention_head_dim=attention_head_dim[-1],
         | 
| 549 | 
            +
                            resnet_groups=norm_num_groups,
         | 
| 550 | 
            +
                            resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 551 | 
            +
                            skip_time_act=resnet_skip_time_act,
         | 
| 552 | 
            +
                            only_cross_attention=mid_block_only_cross_attention,
         | 
| 553 | 
            +
                            cross_attention_norm=cross_attention_norm,
         | 
| 554 | 
            +
                        )
         | 
| 555 | 
            +
                    elif mid_block_type is None:
         | 
| 556 | 
            +
                        self.mid_block = None
         | 
| 557 | 
            +
                    else:
         | 
| 558 | 
            +
                        raise ValueError(f"unknown mid_block_type : {mid_block_type}")
         | 
| 559 | 
            +
             | 
| 560 | 
            +
                    # count how many layers upsample the images
         | 
| 561 | 
            +
                    self.num_upsamplers = 0
         | 
| 562 | 
            +
             | 
| 563 | 
            +
                    # up
         | 
| 564 | 
            +
                    reversed_block_out_channels = list(reversed(block_out_channels))
         | 
| 565 | 
            +
                    reversed_num_attention_heads = list(reversed(num_attention_heads))
         | 
| 566 | 
            +
                    reversed_layers_per_block = list(reversed(layers_per_block))
         | 
| 567 | 
            +
                    reversed_cross_attention_dim = list(reversed(cross_attention_dim))
         | 
| 568 | 
            +
                    reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
         | 
| 569 | 
            +
                    only_cross_attention = list(reversed(only_cross_attention))
         | 
| 570 | 
            +
             | 
| 571 | 
            +
                    output_channel = reversed_block_out_channels[0]
         | 
| 572 | 
            +
                    for i, up_block_type in enumerate(up_block_types):
         | 
| 573 | 
            +
                        is_final_block = i == len(block_out_channels) - 1
         | 
| 574 | 
            +
             | 
| 575 | 
            +
                        prev_output_channel = output_channel
         | 
| 576 | 
            +
                        output_channel = reversed_block_out_channels[i]
         | 
| 577 | 
            +
                        input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
         | 
| 578 | 
            +
             | 
| 579 | 
            +
                        # add upsample block for all BUT final layer
         | 
| 580 | 
            +
                        if not is_final_block:
         | 
| 581 | 
            +
                            add_upsample = True
         | 
| 582 | 
            +
                            self.num_upsamplers += 1
         | 
| 583 | 
            +
                        else:
         | 
| 584 | 
            +
                            add_upsample = False
         | 
| 585 | 
            +
             | 
| 586 | 
            +
                        up_block = get_up_block(
         | 
| 587 | 
            +
                            up_block_type,
         | 
| 588 | 
            +
                            num_layers=reversed_layers_per_block[i] + 1,
         | 
| 589 | 
            +
                            transformer_layers_per_block=reversed_transformer_layers_per_block[i],
         | 
| 590 | 
            +
                            in_channels=input_channel,
         | 
| 591 | 
            +
                            out_channels=output_channel,
         | 
| 592 | 
            +
                            prev_output_channel=prev_output_channel,
         | 
| 593 | 
            +
                            temb_channels=blocks_time_embed_dim,
         | 
| 594 | 
            +
                            add_upsample=add_upsample,
         | 
| 595 | 
            +
                            resnet_eps=norm_eps,
         | 
| 596 | 
            +
                            resnet_act_fn=act_fn,
         | 
| 597 | 
            +
                            resnet_groups=norm_num_groups,
         | 
| 598 | 
            +
                            cross_attention_dim=reversed_cross_attention_dim[i],
         | 
| 599 | 
            +
                            num_attention_heads=reversed_num_attention_heads[i],
         | 
| 600 | 
            +
                            dual_cross_attention=dual_cross_attention,
         | 
| 601 | 
            +
                            use_linear_projection=use_linear_projection,
         | 
| 602 | 
            +
                            only_cross_attention=only_cross_attention[i],
         | 
| 603 | 
            +
                            upcast_attention=upcast_attention,
         | 
| 604 | 
            +
                            resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 605 | 
            +
                            attention_type=attention_type,
         | 
| 606 | 
            +
                            resnet_skip_time_act=resnet_skip_time_act,
         | 
| 607 | 
            +
                            resnet_out_scale_factor=resnet_out_scale_factor,
         | 
| 608 | 
            +
                            cross_attention_norm=cross_attention_norm,
         | 
| 609 | 
            +
                            attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
         | 
| 610 | 
            +
                        )
         | 
| 611 | 
            +
                        self.up_blocks.append(up_block)
         | 
| 612 | 
            +
                        prev_output_channel = output_channel
         | 
| 613 | 
            +
                    self.up_blocks[3].attentions[2].transformer_blocks[0].attn1.to_q = _LoRACompatibleLinear()
         | 
| 614 | 
            +
                    self.up_blocks[3].attentions[2].transformer_blocks[0].attn1.to_k = _LoRACompatibleLinear()
         | 
| 615 | 
            +
                    self.up_blocks[3].attentions[2].transformer_blocks[0].attn1.to_v = _LoRACompatibleLinear()
         | 
| 616 | 
            +
                    self.up_blocks[3].attentions[2].transformer_blocks[0].attn1.to_out = nn.ModuleList([Identity(), Identity()])
         | 
| 617 | 
            +
                    self.up_blocks[3].attentions[2].transformer_blocks[0].norm2 = Identity()
         | 
| 618 | 
            +
                    self.up_blocks[3].attentions[2].transformer_blocks[0].attn2 = None
         | 
| 619 | 
            +
                    self.up_blocks[3].attentions[2].transformer_blocks[0].norm3 = Identity()
         | 
| 620 | 
            +
                    self.up_blocks[3].attentions[2].transformer_blocks[0].ff = Identity()
         | 
| 621 | 
            +
                    self.up_blocks[3].attentions[2].proj_out = Identity()
         | 
| 622 | 
            +
             | 
| 623 | 
            +
                    if attention_type in ["gated", "gated-text-image"]:
         | 
| 624 | 
            +
                        positive_len = 768
         | 
| 625 | 
            +
                        if isinstance(cross_attention_dim, int):
         | 
| 626 | 
            +
                            positive_len = cross_attention_dim
         | 
| 627 | 
            +
                        elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
         | 
| 628 | 
            +
                            positive_len = cross_attention_dim[0]
         | 
| 629 | 
            +
             | 
| 630 | 
            +
                        feature_type = "text-only" if attention_type == "gated" else "text-image"
         | 
| 631 | 
            +
                        self.position_net = PositionNet(
         | 
| 632 | 
            +
                            positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
         | 
| 633 | 
            +
                        )
         | 
| 634 | 
            +
             | 
| 635 | 
            +
                @property
         | 
| 636 | 
            +
                def attn_processors(self) -> Dict[str, AttentionProcessor]:
         | 
| 637 | 
            +
                    r"""
         | 
| 638 | 
            +
                    Returns:
         | 
| 639 | 
            +
                        `dict` of attention processors: A dictionary containing all attention processors used in the model with
         | 
| 640 | 
            +
                        indexed by its weight name.
         | 
| 641 | 
            +
                    """
         | 
| 642 | 
            +
                    # set recursively
         | 
| 643 | 
            +
                    processors = {}
         | 
| 644 | 
            +
             | 
| 645 | 
            +
                    def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
         | 
| 646 | 
            +
                        if hasattr(module, "get_processor"):
         | 
| 647 | 
            +
                            processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
         | 
| 648 | 
            +
             | 
| 649 | 
            +
                        for sub_name, child in module.named_children():
         | 
| 650 | 
            +
                            fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
         | 
| 651 | 
            +
             | 
| 652 | 
            +
                        return processors
         | 
| 653 | 
            +
             | 
| 654 | 
            +
                    for name, module in self.named_children():
         | 
| 655 | 
            +
                        fn_recursive_add_processors(name, module, processors)
         | 
| 656 | 
            +
             | 
| 657 | 
            +
                    return processors
         | 
| 658 | 
            +
             | 
| 659 | 
            +
                def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
         | 
| 660 | 
            +
                    r"""
         | 
| 661 | 
            +
                    Sets the attention processor to use to compute attention.
         | 
| 662 | 
            +
             | 
| 663 | 
            +
                    Parameters:
         | 
| 664 | 
            +
                        processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
         | 
| 665 | 
            +
                            The instantiated processor class or a dictionary of processor classes that will be set as the processor
         | 
| 666 | 
            +
                            for **all** `Attention` layers.
         | 
| 667 | 
            +
             | 
| 668 | 
            +
                            If `processor` is a dict, the key needs to define the path to the corresponding cross attention
         | 
| 669 | 
            +
                            processor. This is strongly recommended when setting trainable attention processors.
         | 
| 670 | 
            +
             | 
| 671 | 
            +
                    """
         | 
| 672 | 
            +
                    count = len(self.attn_processors.keys())
         | 
| 673 | 
            +
             | 
| 674 | 
            +
                    if isinstance(processor, dict) and len(processor) != count:
         | 
| 675 | 
            +
                        raise ValueError(
         | 
| 676 | 
            +
                            f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
         | 
| 677 | 
            +
                            f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
         | 
| 678 | 
            +
                        )
         | 
| 679 | 
            +
             | 
| 680 | 
            +
                    def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
         | 
| 681 | 
            +
                        if hasattr(module, "set_processor"):
         | 
| 682 | 
            +
                            if not isinstance(processor, dict):
         | 
| 683 | 
            +
                                module.set_processor(processor)
         | 
| 684 | 
            +
                            else:
         | 
| 685 | 
            +
                                module.set_processor(processor.pop(f"{name}.processor"))
         | 
| 686 | 
            +
             | 
| 687 | 
            +
                        for sub_name, child in module.named_children():
         | 
| 688 | 
            +
                            fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
         | 
| 689 | 
            +
             | 
| 690 | 
            +
                    for name, module in self.named_children():
         | 
| 691 | 
            +
                        fn_recursive_attn_processor(name, module, processor)
         | 
| 692 | 
            +
             | 
| 693 | 
            +
                def set_default_attn_processor(self):
         | 
| 694 | 
            +
                    """
         | 
| 695 | 
            +
                    Disables custom attention processors and sets the default attention implementation.
         | 
| 696 | 
            +
                    """
         | 
| 697 | 
            +
                    if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
         | 
| 698 | 
            +
                        processor = AttnAddedKVProcessor()
         | 
| 699 | 
            +
                    elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
         | 
| 700 | 
            +
                        processor = AttnProcessor()
         | 
| 701 | 
            +
                    else:
         | 
| 702 | 
            +
                        raise ValueError(
         | 
| 703 | 
            +
                            f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
         | 
| 704 | 
            +
                        )
         | 
| 705 | 
            +
             | 
| 706 | 
            +
                    self.set_attn_processor(processor)
         | 
| 707 | 
            +
             | 
| 708 | 
            +
                def set_attention_slice(self, slice_size):
         | 
| 709 | 
            +
                    r"""
         | 
| 710 | 
            +
                    Enable sliced attention computation.
         | 
| 711 | 
            +
             | 
| 712 | 
            +
                    When this option is enabled, the attention module splits the input tensor in slices to compute attention in
         | 
| 713 | 
            +
                    several steps. This is useful for saving some memory in exchange for a small decrease in speed.
         | 
| 714 | 
            +
             | 
| 715 | 
            +
                    Args:
         | 
| 716 | 
            +
                        slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
         | 
| 717 | 
            +
                            When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
         | 
| 718 | 
            +
                            `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
         | 
| 719 | 
            +
                            provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
         | 
| 720 | 
            +
                            must be a multiple of `slice_size`.
         | 
| 721 | 
            +
                    """
         | 
| 722 | 
            +
                    sliceable_head_dims = []
         | 
| 723 | 
            +
             | 
| 724 | 
            +
                    def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
         | 
| 725 | 
            +
                        if hasattr(module, "set_attention_slice"):
         | 
| 726 | 
            +
                            sliceable_head_dims.append(module.sliceable_head_dim)
         | 
| 727 | 
            +
             | 
| 728 | 
            +
                        for child in module.children():
         | 
| 729 | 
            +
                            fn_recursive_retrieve_sliceable_dims(child)
         | 
| 730 | 
            +
             | 
| 731 | 
            +
                    # retrieve number of attention layers
         | 
| 732 | 
            +
                    for module in self.children():
         | 
| 733 | 
            +
                        fn_recursive_retrieve_sliceable_dims(module)
         | 
| 734 | 
            +
             | 
| 735 | 
            +
                    num_sliceable_layers = len(sliceable_head_dims)
         | 
| 736 | 
            +
             | 
| 737 | 
            +
                    if slice_size == "auto":
         | 
| 738 | 
            +
                        # half the attention head size is usually a good trade-off between
         | 
| 739 | 
            +
                        # speed and memory
         | 
| 740 | 
            +
                        slice_size = [dim // 2 for dim in sliceable_head_dims]
         | 
| 741 | 
            +
                    elif slice_size == "max":
         | 
| 742 | 
            +
                        # make smallest slice possible
         | 
| 743 | 
            +
                        slice_size = num_sliceable_layers * [1]
         | 
| 744 | 
            +
             | 
| 745 | 
            +
                    slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
         | 
| 746 | 
            +
             | 
| 747 | 
            +
                    if len(slice_size) != len(sliceable_head_dims):
         | 
| 748 | 
            +
                        raise ValueError(
         | 
| 749 | 
            +
                            f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
         | 
| 750 | 
            +
                            f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
         | 
| 751 | 
            +
                        )
         | 
| 752 | 
            +
             | 
| 753 | 
            +
                    for i in range(len(slice_size)):
         | 
| 754 | 
            +
                        size = slice_size[i]
         | 
| 755 | 
            +
                        dim = sliceable_head_dims[i]
         | 
| 756 | 
            +
                        if size is not None and size > dim:
         | 
| 757 | 
            +
                            raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
         | 
| 758 | 
            +
             | 
| 759 | 
            +
                    # Recursively walk through all the children.
         | 
| 760 | 
            +
                    # Any children which exposes the set_attention_slice method
         | 
| 761 | 
            +
                    # gets the message
         | 
| 762 | 
            +
                    def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
         | 
| 763 | 
            +
                        if hasattr(module, "set_attention_slice"):
         | 
| 764 | 
            +
                            module.set_attention_slice(slice_size.pop())
         | 
| 765 | 
            +
             | 
| 766 | 
            +
                        for child in module.children():
         | 
| 767 | 
            +
                            fn_recursive_set_attention_slice(child, slice_size)
         | 
| 768 | 
            +
             | 
| 769 | 
            +
                    reversed_slice_size = list(reversed(slice_size))
         | 
| 770 | 
            +
                    for module in self.children():
         | 
| 771 | 
            +
                        fn_recursive_set_attention_slice(module, reversed_slice_size)
         | 
| 772 | 
            +
             | 
| 773 | 
            +
                def _set_gradient_checkpointing(self, module, value=False):
         | 
| 774 | 
            +
                    if hasattr(module, "gradient_checkpointing"):
         | 
| 775 | 
            +
                        module.gradient_checkpointing = value
         | 
| 776 | 
            +
             | 
| 777 | 
            +
                def forward(
         | 
| 778 | 
            +
                    self,
         | 
| 779 | 
            +
                    sample: torch.FloatTensor,
         | 
| 780 | 
            +
                    timestep: Union[torch.Tensor, float, int],
         | 
| 781 | 
            +
                    encoder_hidden_states: torch.Tensor,
         | 
| 782 | 
            +
                    class_labels: Optional[torch.Tensor] = None,
         | 
| 783 | 
            +
                    timestep_cond: Optional[torch.Tensor] = None,
         | 
| 784 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 785 | 
            +
                    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 786 | 
            +
                    added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
         | 
| 787 | 
            +
                    down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
         | 
| 788 | 
            +
                    mid_block_additional_residual: Optional[torch.Tensor] = None,
         | 
| 789 | 
            +
                    encoder_attention_mask: Optional[torch.Tensor] = None,
         | 
| 790 | 
            +
                    return_dict: bool = True,
         | 
| 791 | 
            +
                ) -> Union[UNet2DConditionOutput, Tuple]:
         | 
| 792 | 
            +
                    r"""
         | 
| 793 | 
            +
                    The [`UNet2DConditionModel`] forward method.
         | 
| 794 | 
            +
             | 
| 795 | 
            +
                    Args:
         | 
| 796 | 
            +
                        sample (`torch.FloatTensor`):
         | 
| 797 | 
            +
                            The noisy input tensor with the following shape `(batch, channel, height, width)`.
         | 
| 798 | 
            +
                        timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
         | 
| 799 | 
            +
                        encoder_hidden_states (`torch.FloatTensor`):
         | 
| 800 | 
            +
                            The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
         | 
| 801 | 
            +
                        encoder_attention_mask (`torch.Tensor`):
         | 
| 802 | 
            +
                            A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
         | 
| 803 | 
            +
                            `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
         | 
| 804 | 
            +
                            which adds large negative values to the attention scores corresponding to "discard" tokens.
         | 
| 805 | 
            +
                        return_dict (`bool`, *optional*, defaults to `True`):
         | 
| 806 | 
            +
                            Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
         | 
| 807 | 
            +
                            tuple.
         | 
| 808 | 
            +
                        cross_attention_kwargs (`dict`, *optional*):
         | 
| 809 | 
            +
                            A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
         | 
| 810 | 
            +
                        added_cond_kwargs: (`dict`, *optional*):
         | 
| 811 | 
            +
                            A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
         | 
| 812 | 
            +
                            are passed along to the UNet blocks.
         | 
| 813 | 
            +
             | 
| 814 | 
            +
                    Returns:
         | 
| 815 | 
            +
                        [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
         | 
| 816 | 
            +
                            If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
         | 
| 817 | 
            +
                            a `tuple` is returned where the first element is the sample tensor.
         | 
| 818 | 
            +
                    """
         | 
| 819 | 
            +
                    # By default samples have to be AT least a multiple of the overall upsampling factor.
         | 
| 820 | 
            +
                    # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
         | 
| 821 | 
            +
                    # However, the upsampling interpolation output size can be forced to fit any upsampling size
         | 
| 822 | 
            +
                    # on the fly if necessary.
         | 
| 823 | 
            +
                    default_overall_up_factor = 2**self.num_upsamplers
         | 
| 824 | 
            +
             | 
| 825 | 
            +
                    # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
         | 
| 826 | 
            +
                    forward_upsample_size = False
         | 
| 827 | 
            +
                    upsample_size = None
         | 
| 828 | 
            +
             | 
| 829 | 
            +
                    if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
         | 
| 830 | 
            +
                        logger.info("Forward upsample size to force interpolation output size.")
         | 
| 831 | 
            +
                        forward_upsample_size = True
         | 
| 832 | 
            +
             | 
| 833 | 
            +
                    if attention_mask is not None:
         | 
| 834 | 
            +
                        attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
         | 
| 835 | 
            +
                        attention_mask = attention_mask.unsqueeze(1)
         | 
| 836 | 
            +
             | 
| 837 | 
            +
                    # convert encoder_attention_mask to a bias the same way we do for attention_mask
         | 
| 838 | 
            +
                    if encoder_attention_mask is not None:
         | 
| 839 | 
            +
                        encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
         | 
| 840 | 
            +
                        encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
         | 
| 841 | 
            +
             | 
| 842 | 
            +
                    # 0. center input if necessary
         | 
| 843 | 
            +
                    if self.config.center_input_sample:
         | 
| 844 | 
            +
                        sample = 2 * sample - 1.0
         | 
| 845 | 
            +
             | 
| 846 | 
            +
                    # 1. time
         | 
| 847 | 
            +
                    timesteps = timestep
         | 
| 848 | 
            +
                    if not torch.is_tensor(timesteps):
         | 
| 849 | 
            +
                        # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
         | 
| 850 | 
            +
                        # This would be a good case for the `match` statement (Python 3.10+)
         | 
| 851 | 
            +
                        is_mps = sample.device.type == "mps"
         | 
| 852 | 
            +
                        if isinstance(timestep, float):
         | 
| 853 | 
            +
                            dtype = torch.float32 if is_mps else torch.float64
         | 
| 854 | 
            +
                        else:
         | 
| 855 | 
            +
                            dtype = torch.int32 if is_mps else torch.int64
         | 
| 856 | 
            +
                        timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
         | 
| 857 | 
            +
                    elif len(timesteps.shape) == 0:
         | 
| 858 | 
            +
                        timesteps = timesteps[None].to(sample.device)
         | 
| 859 | 
            +
             | 
| 860 | 
            +
                    # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
         | 
| 861 | 
            +
                    timesteps = timesteps.expand(sample.shape[0])
         | 
| 862 | 
            +
             | 
| 863 | 
            +
                    t_emb = self.time_proj(timesteps)
         | 
| 864 | 
            +
             | 
| 865 | 
            +
                    # `Timesteps` does not contain any weights and will always return f32 tensors
         | 
| 866 | 
            +
                    # but time_embedding might actually be running in fp16. so we need to cast here.
         | 
| 867 | 
            +
                    # there might be better ways to encapsulate this.
         | 
| 868 | 
            +
                    t_emb = t_emb.to(dtype=sample.dtype)
         | 
| 869 | 
            +
             | 
| 870 | 
            +
                    emb = self.time_embedding(t_emb, timestep_cond)
         | 
| 871 | 
            +
                    aug_emb = None
         | 
| 872 | 
            +
             | 
| 873 | 
            +
                    if self.class_embedding is not None:
         | 
| 874 | 
            +
                        if class_labels is None:
         | 
| 875 | 
            +
                            raise ValueError("class_labels should be provided when num_class_embeds > 0")
         | 
| 876 | 
            +
             | 
| 877 | 
            +
                        if self.config.class_embed_type == "timestep":
         | 
| 878 | 
            +
                            class_labels = self.time_proj(class_labels)
         | 
| 879 | 
            +
             | 
| 880 | 
            +
                            # `Timesteps` does not contain any weights and will always return f32 tensors
         | 
| 881 | 
            +
                            # there might be better ways to encapsulate this.
         | 
| 882 | 
            +
                            class_labels = class_labels.to(dtype=sample.dtype)
         | 
| 883 | 
            +
             | 
| 884 | 
            +
                        class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
         | 
| 885 | 
            +
             | 
| 886 | 
            +
                        if self.config.class_embeddings_concat:
         | 
| 887 | 
            +
                            emb = torch.cat([emb, class_emb], dim=-1)
         | 
| 888 | 
            +
                        else:
         | 
| 889 | 
            +
                            emb = emb + class_emb
         | 
| 890 | 
            +
             | 
| 891 | 
            +
                    if self.config.addition_embed_type == "text":
         | 
| 892 | 
            +
                        aug_emb = self.add_embedding(encoder_hidden_states)
         | 
| 893 | 
            +
                    elif self.config.addition_embed_type == "text_image":
         | 
| 894 | 
            +
                        # Kandinsky 2.1 - style
         | 
| 895 | 
            +
                        if "image_embeds" not in added_cond_kwargs:
         | 
| 896 | 
            +
                            raise ValueError(
         | 
| 897 | 
            +
                                f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
         | 
| 898 | 
            +
                            )
         | 
| 899 | 
            +
             | 
| 900 | 
            +
                        image_embs = added_cond_kwargs.get("image_embeds")
         | 
| 901 | 
            +
                        text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
         | 
| 902 | 
            +
                        aug_emb = self.add_embedding(text_embs, image_embs)
         | 
| 903 | 
            +
                    elif self.config.addition_embed_type == "text_time":
         | 
| 904 | 
            +
                        # SDXL - style
         | 
| 905 | 
            +
                        if "text_embeds" not in added_cond_kwargs:
         | 
| 906 | 
            +
                            raise ValueError(
         | 
| 907 | 
            +
                                f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
         | 
| 908 | 
            +
                            )
         | 
| 909 | 
            +
                        text_embeds = added_cond_kwargs.get("text_embeds")
         | 
| 910 | 
            +
                        if "time_ids" not in added_cond_kwargs:
         | 
| 911 | 
            +
                            raise ValueError(
         | 
| 912 | 
            +
                                f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
         | 
| 913 | 
            +
                            )
         | 
| 914 | 
            +
                        time_ids = added_cond_kwargs.get("time_ids")
         | 
| 915 | 
            +
                        time_embeds = self.add_time_proj(time_ids.flatten())
         | 
| 916 | 
            +
                        time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
         | 
| 917 | 
            +
             | 
| 918 | 
            +
                        add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
         | 
| 919 | 
            +
                        add_embeds = add_embeds.to(emb.dtype)
         | 
| 920 | 
            +
                        aug_emb = self.add_embedding(add_embeds)
         | 
| 921 | 
            +
                    elif self.config.addition_embed_type == "image":
         | 
| 922 | 
            +
                        # Kandinsky 2.2 - style
         | 
| 923 | 
            +
                        if "image_embeds" not in added_cond_kwargs:
         | 
| 924 | 
            +
                            raise ValueError(
         | 
| 925 | 
            +
                                f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
         | 
| 926 | 
            +
                            )
         | 
| 927 | 
            +
                        image_embs = added_cond_kwargs.get("image_embeds")
         | 
| 928 | 
            +
                        aug_emb = self.add_embedding(image_embs)
         | 
| 929 | 
            +
                    elif self.config.addition_embed_type == "image_hint":
         | 
| 930 | 
            +
                        # Kandinsky 2.2 - style
         | 
| 931 | 
            +
                        if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
         | 
| 932 | 
            +
                            raise ValueError(
         | 
| 933 | 
            +
                                f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
         | 
| 934 | 
            +
                            )
         | 
| 935 | 
            +
                        image_embs = added_cond_kwargs.get("image_embeds")
         | 
| 936 | 
            +
                        hint = added_cond_kwargs.get("hint")
         | 
| 937 | 
            +
                        aug_emb, hint = self.add_embedding(image_embs, hint)
         | 
| 938 | 
            +
                        sample = torch.cat([sample, hint], dim=1)
         | 
| 939 | 
            +
             | 
| 940 | 
            +
                    emb = emb + aug_emb if aug_emb is not None else emb
         | 
| 941 | 
            +
             | 
| 942 | 
            +
                    if self.time_embed_act is not None:
         | 
| 943 | 
            +
                        emb = self.time_embed_act(emb)
         | 
| 944 | 
            +
             | 
| 945 | 
            +
                    if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
         | 
| 946 | 
            +
                        encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
         | 
| 947 | 
            +
                    elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
         | 
| 948 | 
            +
                        # Kadinsky 2.1 - style
         | 
| 949 | 
            +
                        if "image_embeds" not in added_cond_kwargs:
         | 
| 950 | 
            +
                            raise ValueError(
         | 
| 951 | 
            +
                                f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
         | 
| 952 | 
            +
                            )
         | 
| 953 | 
            +
             | 
| 954 | 
            +
                        image_embeds = added_cond_kwargs.get("image_embeds")
         | 
| 955 | 
            +
                        encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
         | 
| 956 | 
            +
                    elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
         | 
| 957 | 
            +
                        # Kandinsky 2.2 - style
         | 
| 958 | 
            +
                        if "image_embeds" not in added_cond_kwargs:
         | 
| 959 | 
            +
                            raise ValueError(
         | 
| 960 | 
            +
                                f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
         | 
| 961 | 
            +
                            )
         | 
| 962 | 
            +
                        image_embeds = added_cond_kwargs.get("image_embeds")
         | 
| 963 | 
            +
                        encoder_hidden_states = self.encoder_hid_proj(image_embeds)
         | 
| 964 | 
            +
                    # 2. pre-process
         | 
| 965 | 
            +
                    sample = self.conv_in(sample)
         | 
| 966 | 
            +
             | 
| 967 | 
            +
                    # 2.5 GLIGEN position net
         | 
| 968 | 
            +
                    if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
         | 
| 969 | 
            +
                        cross_attention_kwargs = cross_attention_kwargs.copy()
         | 
| 970 | 
            +
                        gligen_args = cross_attention_kwargs.pop("gligen")
         | 
| 971 | 
            +
                        cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
         | 
| 972 | 
            +
             | 
| 973 | 
            +
                    # 3. down
         | 
| 974 | 
            +
             | 
| 975 | 
            +
                    is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
         | 
| 976 | 
            +
                    is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None
         | 
| 977 | 
            +
             | 
| 978 | 
            +
                    down_block_res_samples = (sample,)
         | 
| 979 | 
            +
                    for downsample_block in self.down_blocks:
         | 
| 980 | 
            +
                        if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
         | 
| 981 | 
            +
                            # For t2i-adapter CrossAttnDownBlock2D
         | 
| 982 | 
            +
                            additional_residuals = {}
         | 
| 983 | 
            +
                            if is_adapter and len(down_block_additional_residuals) > 0:
         | 
| 984 | 
            +
                                additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0)
         | 
| 985 | 
            +
             | 
| 986 | 
            +
                            sample, res_samples = downsample_block(
         | 
| 987 | 
            +
                                hidden_states=sample,
         | 
| 988 | 
            +
                                temb=emb,
         | 
| 989 | 
            +
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 990 | 
            +
                                attention_mask=attention_mask,
         | 
| 991 | 
            +
                                cross_attention_kwargs=cross_attention_kwargs,
         | 
| 992 | 
            +
                                encoder_attention_mask=encoder_attention_mask,
         | 
| 993 | 
            +
                                **additional_residuals,
         | 
| 994 | 
            +
                            )
         | 
| 995 | 
            +
                        else:
         | 
| 996 | 
            +
                            sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
         | 
| 997 | 
            +
             | 
| 998 | 
            +
                            if is_adapter and len(down_block_additional_residuals) > 0:
         | 
| 999 | 
            +
                                sample += down_block_additional_residuals.pop(0)
         | 
| 1000 | 
            +
             | 
| 1001 | 
            +
                        down_block_res_samples += res_samples
         | 
| 1002 | 
            +
             | 
| 1003 | 
            +
                    if is_controlnet:
         | 
| 1004 | 
            +
                        new_down_block_res_samples = ()
         | 
| 1005 | 
            +
             | 
| 1006 | 
            +
                        for down_block_res_sample, down_block_additional_residual in zip(
         | 
| 1007 | 
            +
                            down_block_res_samples, down_block_additional_residuals
         | 
| 1008 | 
            +
                        ):
         | 
| 1009 | 
            +
                            down_block_res_sample = down_block_res_sample + down_block_additional_residual
         | 
| 1010 | 
            +
                            new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
         | 
| 1011 | 
            +
             | 
| 1012 | 
            +
                        down_block_res_samples = new_down_block_res_samples
         | 
| 1013 | 
            +
             | 
| 1014 | 
            +
                    # 4. mid
         | 
| 1015 | 
            +
                    if self.mid_block is not None:
         | 
| 1016 | 
            +
                        sample = self.mid_block(
         | 
| 1017 | 
            +
                            sample,
         | 
| 1018 | 
            +
                            emb,
         | 
| 1019 | 
            +
                            encoder_hidden_states=encoder_hidden_states,
         | 
| 1020 | 
            +
                            attention_mask=attention_mask,
         | 
| 1021 | 
            +
                            cross_attention_kwargs=cross_attention_kwargs,
         | 
| 1022 | 
            +
                            encoder_attention_mask=encoder_attention_mask,
         | 
| 1023 | 
            +
                        )
         | 
| 1024 | 
            +
                        # To support T2I-Adapter-XL
         | 
| 1025 | 
            +
                        if (
         | 
| 1026 | 
            +
                            is_adapter
         | 
| 1027 | 
            +
                            and len(down_block_additional_residuals) > 0
         | 
| 1028 | 
            +
                            and sample.shape == down_block_additional_residuals[0].shape
         | 
| 1029 | 
            +
                        ):
         | 
| 1030 | 
            +
                            sample += down_block_additional_residuals.pop(0)
         | 
| 1031 | 
            +
             | 
| 1032 | 
            +
                    if is_controlnet:
         | 
| 1033 | 
            +
                        sample = sample + mid_block_additional_residual
         | 
| 1034 | 
            +
             | 
| 1035 | 
            +
                    # 5. up
         | 
| 1036 | 
            +
                    for i, upsample_block in enumerate(self.up_blocks):
         | 
| 1037 | 
            +
                        is_final_block = i == len(self.up_blocks) - 1
         | 
| 1038 | 
            +
             | 
| 1039 | 
            +
                        res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
         | 
| 1040 | 
            +
                        down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
         | 
| 1041 | 
            +
             | 
| 1042 | 
            +
                        # if we have not reached the final block and need to forward the
         | 
| 1043 | 
            +
                        # upsample size, we do it here
         | 
| 1044 | 
            +
                        if not is_final_block and forward_upsample_size:
         | 
| 1045 | 
            +
                            upsample_size = down_block_res_samples[-1].shape[2:]
         | 
| 1046 | 
            +
             | 
| 1047 | 
            +
                        if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
         | 
| 1048 | 
            +
                            sample = upsample_block(
         | 
| 1049 | 
            +
                                hidden_states=sample,
         | 
| 1050 | 
            +
                                temb=emb,
         | 
| 1051 | 
            +
                                res_hidden_states_tuple=res_samples,
         | 
| 1052 | 
            +
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 1053 | 
            +
                                cross_attention_kwargs=cross_attention_kwargs,
         | 
| 1054 | 
            +
                                upsample_size=upsample_size,
         | 
| 1055 | 
            +
                                attention_mask=attention_mask,
         | 
| 1056 | 
            +
                                encoder_attention_mask=encoder_attention_mask,
         | 
| 1057 | 
            +
                            )
         | 
| 1058 | 
            +
                        else:
         | 
| 1059 | 
            +
                            sample = upsample_block(
         | 
| 1060 | 
            +
                                hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
         | 
| 1061 | 
            +
                            )
         | 
| 1062 | 
            +
             | 
| 1063 | 
            +
                    if not return_dict:
         | 
| 1064 | 
            +
                        return (sample,)
         | 
| 1065 | 
            +
             | 
| 1066 | 
            +
                    return UNet2DConditionOutput(sample=sample)
         | 
    	
        magicanimate/models/attention.py
    ADDED
    
    | @@ -0,0 +1,320 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # *************************************************************************
         | 
| 2 | 
            +
            # This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo-
         | 
| 3 | 
            +
            # difications”). All Bytedance Inc.'s Modifications are Copyright (2023) B-
         | 
| 4 | 
            +
            # ytedance Inc..  
         | 
| 5 | 
            +
            # *************************************************************************
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Copyright 2023 The HuggingFace Team. All rights reserved.
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            from dataclasses import dataclass
         | 
| 21 | 
            +
            from typing import Optional
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            import torch
         | 
| 24 | 
            +
            import torch.nn.functional as F
         | 
| 25 | 
            +
            from torch import nn
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            from diffusers.configuration_utils import ConfigMixin, register_to_config
         | 
| 28 | 
            +
            from diffusers.models.modeling_utils import ModelMixin
         | 
| 29 | 
            +
            from diffusers.utils import BaseOutput
         | 
| 30 | 
            +
            from diffusers.utils.import_utils import is_xformers_available
         | 
| 31 | 
            +
            from diffusers.models.attention import FeedForward, AdaLayerNorm
         | 
| 32 | 
            +
            from diffusers.models.attention import Attention as CrossAttention
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            from einops import rearrange, repeat
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            @dataclass
         | 
| 37 | 
            +
            class Transformer3DModelOutput(BaseOutput):
         | 
| 38 | 
            +
                sample: torch.FloatTensor
         | 
| 39 | 
            +
             | 
| 40 | 
            +
             | 
| 41 | 
            +
            if is_xformers_available():
         | 
| 42 | 
            +
                import xformers
         | 
| 43 | 
            +
                import xformers.ops
         | 
| 44 | 
            +
            else:
         | 
| 45 | 
            +
                xformers = None
         | 
| 46 | 
            +
             | 
| 47 | 
            +
             | 
| 48 | 
            +
            class Transformer3DModel(ModelMixin, ConfigMixin):
         | 
| 49 | 
            +
                @register_to_config
         | 
| 50 | 
            +
                def __init__(
         | 
| 51 | 
            +
                    self,
         | 
| 52 | 
            +
                    num_attention_heads: int = 16,
         | 
| 53 | 
            +
                    attention_head_dim: int = 88,
         | 
| 54 | 
            +
                    in_channels: Optional[int] = None,
         | 
| 55 | 
            +
                    num_layers: int = 1,
         | 
| 56 | 
            +
                    dropout: float = 0.0,
         | 
| 57 | 
            +
                    norm_num_groups: int = 32,
         | 
| 58 | 
            +
                    cross_attention_dim: Optional[int] = None,
         | 
| 59 | 
            +
                    attention_bias: bool = False,
         | 
| 60 | 
            +
                    activation_fn: str = "geglu",
         | 
| 61 | 
            +
                    num_embeds_ada_norm: Optional[int] = None,
         | 
| 62 | 
            +
                    use_linear_projection: bool = False,
         | 
| 63 | 
            +
                    only_cross_attention: bool = False,
         | 
| 64 | 
            +
                    upcast_attention: bool = False,
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                    unet_use_cross_frame_attention=None,
         | 
| 67 | 
            +
                    unet_use_temporal_attention=None,
         | 
| 68 | 
            +
                ):
         | 
| 69 | 
            +
                    super().__init__()
         | 
| 70 | 
            +
                    self.use_linear_projection = use_linear_projection
         | 
| 71 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 72 | 
            +
                    self.attention_head_dim = attention_head_dim
         | 
| 73 | 
            +
                    inner_dim = num_attention_heads * attention_head_dim
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                    # Define input layers
         | 
| 76 | 
            +
                    self.in_channels = in_channels
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                    self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
         | 
| 79 | 
            +
                    if use_linear_projection:
         | 
| 80 | 
            +
                        self.proj_in = nn.Linear(in_channels, inner_dim)
         | 
| 81 | 
            +
                    else:
         | 
| 82 | 
            +
                        self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                    # Define transformers blocks
         | 
| 85 | 
            +
                    self.transformer_blocks = nn.ModuleList(
         | 
| 86 | 
            +
                        [
         | 
| 87 | 
            +
                            BasicTransformerBlock(
         | 
| 88 | 
            +
                                inner_dim,
         | 
| 89 | 
            +
                                num_attention_heads,
         | 
| 90 | 
            +
                                attention_head_dim,
         | 
| 91 | 
            +
                                dropout=dropout,
         | 
| 92 | 
            +
                                cross_attention_dim=cross_attention_dim,
         | 
| 93 | 
            +
                                activation_fn=activation_fn,
         | 
| 94 | 
            +
                                num_embeds_ada_norm=num_embeds_ada_norm,
         | 
| 95 | 
            +
                                attention_bias=attention_bias,
         | 
| 96 | 
            +
                                only_cross_attention=only_cross_attention,
         | 
| 97 | 
            +
                                upcast_attention=upcast_attention,
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                                unet_use_cross_frame_attention=unet_use_cross_frame_attention,
         | 
| 100 | 
            +
                                unet_use_temporal_attention=unet_use_temporal_attention,
         | 
| 101 | 
            +
                            )
         | 
| 102 | 
            +
                            for d in range(num_layers)
         | 
| 103 | 
            +
                        ]
         | 
| 104 | 
            +
                    )
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                    # 4. Define output layers
         | 
| 107 | 
            +
                    if use_linear_projection:
         | 
| 108 | 
            +
                        self.proj_out = nn.Linear(in_channels, inner_dim)
         | 
| 109 | 
            +
                    else:
         | 
| 110 | 
            +
                        self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
         | 
| 113 | 
            +
                    # Input
         | 
| 114 | 
            +
                    assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
         | 
| 115 | 
            +
                    video_length = hidden_states.shape[2]
         | 
| 116 | 
            +
                    hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
         | 
| 117 | 
            +
                    # JH: need not repeat when a list of prompts are given 
         | 
| 118 | 
            +
                    if encoder_hidden_states.shape[0] != hidden_states.shape[0]:
         | 
| 119 | 
            +
                        encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length)
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                    batch, channel, height, weight = hidden_states.shape
         | 
| 122 | 
            +
                    residual = hidden_states
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                    hidden_states = self.norm(hidden_states)
         | 
| 125 | 
            +
                    if not self.use_linear_projection:
         | 
| 126 | 
            +
                        hidden_states = self.proj_in(hidden_states)
         | 
| 127 | 
            +
                        inner_dim = hidden_states.shape[1]
         | 
| 128 | 
            +
                        hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
         | 
| 129 | 
            +
                    else:
         | 
| 130 | 
            +
                        inner_dim = hidden_states.shape[1]
         | 
| 131 | 
            +
                        hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
         | 
| 132 | 
            +
                        hidden_states = self.proj_in(hidden_states)
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                    # Blocks
         | 
| 135 | 
            +
                    for block in self.transformer_blocks:
         | 
| 136 | 
            +
                        hidden_states = block(
         | 
| 137 | 
            +
                            hidden_states,
         | 
| 138 | 
            +
                            encoder_hidden_states=encoder_hidden_states,
         | 
| 139 | 
            +
                            timestep=timestep,
         | 
| 140 | 
            +
                            video_length=video_length
         | 
| 141 | 
            +
                        )
         | 
| 142 | 
            +
             | 
| 143 | 
            +
                    # Output
         | 
| 144 | 
            +
                    if not self.use_linear_projection:
         | 
| 145 | 
            +
                        hidden_states = (
         | 
| 146 | 
            +
                            hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
         | 
| 147 | 
            +
                        )
         | 
| 148 | 
            +
                        hidden_states = self.proj_out(hidden_states)
         | 
| 149 | 
            +
                    else:
         | 
| 150 | 
            +
                        hidden_states = self.proj_out(hidden_states)
         | 
| 151 | 
            +
                        hidden_states = (
         | 
| 152 | 
            +
                            hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
         | 
| 153 | 
            +
                        )
         | 
| 154 | 
            +
             | 
| 155 | 
            +
                    output = hidden_states + residual
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                    output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
         | 
| 158 | 
            +
                    if not return_dict:
         | 
| 159 | 
            +
                        return (output,)
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                    return Transformer3DModelOutput(sample=output)
         | 
| 162 | 
            +
             | 
| 163 | 
            +
             | 
| 164 | 
            +
            class BasicTransformerBlock(nn.Module):
         | 
| 165 | 
            +
                def __init__(
         | 
| 166 | 
            +
                    self,
         | 
| 167 | 
            +
                    dim: int,
         | 
| 168 | 
            +
                    num_attention_heads: int,
         | 
| 169 | 
            +
                    attention_head_dim: int,
         | 
| 170 | 
            +
                    dropout=0.0,
         | 
| 171 | 
            +
                    cross_attention_dim: Optional[int] = None,
         | 
| 172 | 
            +
                    activation_fn: str = "geglu",
         | 
| 173 | 
            +
                    num_embeds_ada_norm: Optional[int] = None,
         | 
| 174 | 
            +
                    attention_bias: bool = False,
         | 
| 175 | 
            +
                    only_cross_attention: bool = False,
         | 
| 176 | 
            +
                    upcast_attention: bool = False,
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                    unet_use_cross_frame_attention = None,
         | 
| 179 | 
            +
                    unet_use_temporal_attention = None,
         | 
| 180 | 
            +
                ):
         | 
| 181 | 
            +
                    super().__init__()
         | 
| 182 | 
            +
                    self.only_cross_attention = only_cross_attention
         | 
| 183 | 
            +
                    self.use_ada_layer_norm = num_embeds_ada_norm is not None
         | 
| 184 | 
            +
                    self.unet_use_cross_frame_attention = unet_use_cross_frame_attention
         | 
| 185 | 
            +
                    self.unet_use_temporal_attention = unet_use_temporal_attention
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                    # SC-Attn
         | 
| 188 | 
            +
                    assert unet_use_cross_frame_attention is not None
         | 
| 189 | 
            +
                    if unet_use_cross_frame_attention:
         | 
| 190 | 
            +
                        self.attn1 = SparseCausalAttention2D(
         | 
| 191 | 
            +
                            query_dim=dim,
         | 
| 192 | 
            +
                            heads=num_attention_heads,
         | 
| 193 | 
            +
                            dim_head=attention_head_dim,
         | 
| 194 | 
            +
                            dropout=dropout,
         | 
| 195 | 
            +
                            bias=attention_bias,
         | 
| 196 | 
            +
                            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
         | 
| 197 | 
            +
                            upcast_attention=upcast_attention,
         | 
| 198 | 
            +
                        )
         | 
| 199 | 
            +
                    else:
         | 
| 200 | 
            +
                        self.attn1 = CrossAttention(
         | 
| 201 | 
            +
                            query_dim=dim,
         | 
| 202 | 
            +
                            heads=num_attention_heads,
         | 
| 203 | 
            +
                            dim_head=attention_head_dim,
         | 
| 204 | 
            +
                            dropout=dropout,
         | 
| 205 | 
            +
                            bias=attention_bias,
         | 
| 206 | 
            +
                            upcast_attention=upcast_attention,
         | 
| 207 | 
            +
                        )
         | 
| 208 | 
            +
                    self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
         | 
| 209 | 
            +
             | 
| 210 | 
            +
                    # Cross-Attn
         | 
| 211 | 
            +
                    if cross_attention_dim is not None:
         | 
| 212 | 
            +
                        self.attn2 = CrossAttention(
         | 
| 213 | 
            +
                            query_dim=dim,
         | 
| 214 | 
            +
                            cross_attention_dim=cross_attention_dim,
         | 
| 215 | 
            +
                            heads=num_attention_heads,
         | 
| 216 | 
            +
                            dim_head=attention_head_dim,
         | 
| 217 | 
            +
                            dropout=dropout,
         | 
| 218 | 
            +
                            bias=attention_bias,
         | 
| 219 | 
            +
                            upcast_attention=upcast_attention,
         | 
| 220 | 
            +
                        )
         | 
| 221 | 
            +
                    else:
         | 
| 222 | 
            +
                        self.attn2 = None
         | 
| 223 | 
            +
             | 
| 224 | 
            +
                    if cross_attention_dim is not None:
         | 
| 225 | 
            +
                        self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
         | 
| 226 | 
            +
                    else:
         | 
| 227 | 
            +
                        self.norm2 = None
         | 
| 228 | 
            +
             | 
| 229 | 
            +
                    # Feed-forward
         | 
| 230 | 
            +
                    self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
         | 
| 231 | 
            +
                    self.norm3 = nn.LayerNorm(dim)
         | 
| 232 | 
            +
                    self.use_ada_layer_norm_zero = False
         | 
| 233 | 
            +
                    
         | 
| 234 | 
            +
                    # Temp-Attn
         | 
| 235 | 
            +
                    assert unet_use_temporal_attention is not None
         | 
| 236 | 
            +
                    if unet_use_temporal_attention:
         | 
| 237 | 
            +
                        self.attn_temp = CrossAttention(
         | 
| 238 | 
            +
                            query_dim=dim,
         | 
| 239 | 
            +
                            heads=num_attention_heads,
         | 
| 240 | 
            +
                            dim_head=attention_head_dim,
         | 
| 241 | 
            +
                            dropout=dropout,
         | 
| 242 | 
            +
                            bias=attention_bias,
         | 
| 243 | 
            +
                            upcast_attention=upcast_attention,
         | 
| 244 | 
            +
                        )
         | 
| 245 | 
            +
                        nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
         | 
| 246 | 
            +
                        self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
         | 
| 247 | 
            +
             | 
| 248 | 
            +
                def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool, *args, **kwargs):
         | 
| 249 | 
            +
                    if not is_xformers_available():
         | 
| 250 | 
            +
                        print("Here is how to install it")
         | 
| 251 | 
            +
                        raise ModuleNotFoundError(
         | 
| 252 | 
            +
                            "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
         | 
| 253 | 
            +
                            " xformers",
         | 
| 254 | 
            +
                            name="xformers",
         | 
| 255 | 
            +
                        )
         | 
| 256 | 
            +
                    elif not torch.cuda.is_available():
         | 
| 257 | 
            +
                        raise ValueError(
         | 
| 258 | 
            +
                            "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
         | 
| 259 | 
            +
                            " available for GPU "
         | 
| 260 | 
            +
                        )
         | 
| 261 | 
            +
                    else:
         | 
| 262 | 
            +
                        try:
         | 
| 263 | 
            +
                            # Make sure we can run the memory efficient attention
         | 
| 264 | 
            +
                            _ = xformers.ops.memory_efficient_attention(
         | 
| 265 | 
            +
                                torch.randn((1, 2, 40), device="cuda"),
         | 
| 266 | 
            +
                                torch.randn((1, 2, 40), device="cuda"),
         | 
| 267 | 
            +
                                torch.randn((1, 2, 40), device="cuda"),
         | 
| 268 | 
            +
                            )
         | 
| 269 | 
            +
                        except Exception as e:
         | 
| 270 | 
            +
                            raise e
         | 
| 271 | 
            +
                        self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
         | 
| 272 | 
            +
                        if self.attn2 is not None:
         | 
| 273 | 
            +
                            self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
         | 
| 274 | 
            +
                        # self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
         | 
| 275 | 
            +
             | 
| 276 | 
            +
                def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None):
         | 
| 277 | 
            +
                    # SparseCausal-Attention
         | 
| 278 | 
            +
                    norm_hidden_states = (
         | 
| 279 | 
            +
                        self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
         | 
| 280 | 
            +
                    )
         | 
| 281 | 
            +
             | 
| 282 | 
            +
                    # if self.only_cross_attention:
         | 
| 283 | 
            +
                    #     hidden_states = (
         | 
| 284 | 
            +
                    #         self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states
         | 
| 285 | 
            +
                    #     )
         | 
| 286 | 
            +
                    # else:
         | 
| 287 | 
            +
                    #     hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
         | 
| 288 | 
            +
             | 
| 289 | 
            +
                    # pdb.set_trace()
         | 
| 290 | 
            +
                    if self.unet_use_cross_frame_attention:
         | 
| 291 | 
            +
                        hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
         | 
| 292 | 
            +
                    else:
         | 
| 293 | 
            +
                        hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask) + hidden_states
         | 
| 294 | 
            +
             | 
| 295 | 
            +
                    if self.attn2 is not None:
         | 
| 296 | 
            +
                        # Cross-Attention
         | 
| 297 | 
            +
                        norm_hidden_states = (
         | 
| 298 | 
            +
                            self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
         | 
| 299 | 
            +
                        )
         | 
| 300 | 
            +
                        hidden_states = (
         | 
| 301 | 
            +
                            self.attn2(
         | 
| 302 | 
            +
                                norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
         | 
| 303 | 
            +
                            )
         | 
| 304 | 
            +
                            + hidden_states
         | 
| 305 | 
            +
                        )
         | 
| 306 | 
            +
             | 
| 307 | 
            +
                    # Feed-forward
         | 
| 308 | 
            +
                    hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
         | 
| 309 | 
            +
             | 
| 310 | 
            +
                    # Temporal-Attention
         | 
| 311 | 
            +
                    if self.unet_use_temporal_attention:
         | 
| 312 | 
            +
                        d = hidden_states.shape[1]
         | 
| 313 | 
            +
                        hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
         | 
| 314 | 
            +
                        norm_hidden_states = (
         | 
| 315 | 
            +
                            self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states)
         | 
| 316 | 
            +
                        )
         | 
| 317 | 
            +
                        hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
         | 
| 318 | 
            +
                        hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
         | 
| 319 | 
            +
             | 
| 320 | 
            +
                    return hidden_states
         | 
    	
        magicanimate/models/controlnet.py
    ADDED
    
    | @@ -0,0 +1,578 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # *************************************************************************
         | 
| 2 | 
            +
            # This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo-
         | 
| 3 | 
            +
            # difications”). All Bytedance Inc.'s Modifications are Copyright (2023) B-
         | 
| 4 | 
            +
            # ytedance Inc..  
         | 
| 5 | 
            +
            # *************************************************************************
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Copyright 2023 The HuggingFace Team. All rights reserved.
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            from dataclasses import dataclass
         | 
| 21 | 
            +
            from typing import Any, Dict, List, Optional, Tuple, Union
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            import torch
         | 
| 24 | 
            +
            from torch import nn
         | 
| 25 | 
            +
            from torch.nn import functional as F
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            from diffusers.configuration_utils import ConfigMixin, register_to_config
         | 
| 28 | 
            +
            from diffusers.utils import BaseOutput, logging
         | 
| 29 | 
            +
            from .embeddings import TimestepEmbedding, Timesteps
         | 
| 30 | 
            +
            from diffusers.models.modeling_utils import ModelMixin
         | 
| 31 | 
            +
            from diffusers.models.unet_2d_blocks import (
         | 
| 32 | 
            +
                CrossAttnDownBlock2D,
         | 
| 33 | 
            +
                DownBlock2D,
         | 
| 34 | 
            +
                UNetMidBlock2DCrossAttn,
         | 
| 35 | 
            +
                get_down_block,
         | 
| 36 | 
            +
            )
         | 
| 37 | 
            +
            from diffusers.models.unet_2d_condition import UNet2DConditionModel
         | 
| 38 | 
            +
             | 
| 39 | 
            +
             | 
| 40 | 
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 41 | 
            +
             | 
| 42 | 
            +
             | 
| 43 | 
            +
            @dataclass
         | 
| 44 | 
            +
            class ControlNetOutput(BaseOutput):
         | 
| 45 | 
            +
                down_block_res_samples: Tuple[torch.Tensor]
         | 
| 46 | 
            +
                mid_block_res_sample: torch.Tensor
         | 
| 47 | 
            +
             | 
| 48 | 
            +
             | 
| 49 | 
            +
            class ControlNetConditioningEmbedding(nn.Module):
         | 
| 50 | 
            +
                """
         | 
| 51 | 
            +
                Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
         | 
| 52 | 
            +
                [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
         | 
| 53 | 
            +
                training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
         | 
| 54 | 
            +
                convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
         | 
| 55 | 
            +
                (activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
         | 
| 56 | 
            +
                model) to encode image-space conditions ... into feature maps ..."
         | 
| 57 | 
            +
                """
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                def __init__(
         | 
| 60 | 
            +
                    self,
         | 
| 61 | 
            +
                    conditioning_embedding_channels: int,
         | 
| 62 | 
            +
                    conditioning_channels: int = 3,
         | 
| 63 | 
            +
                    block_out_channels: Tuple[int] = (16, 32, 96, 256),
         | 
| 64 | 
            +
                ):
         | 
| 65 | 
            +
                    super().__init__()
         | 
| 66 | 
            +
             | 
| 67 | 
            +
                    self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                    self.blocks = nn.ModuleList([])
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                    for i in range(len(block_out_channels) - 1):
         | 
| 72 | 
            +
                        channel_in = block_out_channels[i]
         | 
| 73 | 
            +
                        channel_out = block_out_channels[i + 1]
         | 
| 74 | 
            +
                        self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
         | 
| 75 | 
            +
                        self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                    self.conv_out = zero_module(
         | 
| 78 | 
            +
                        nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
         | 
| 79 | 
            +
                    )
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                def forward(self, conditioning):
         | 
| 82 | 
            +
                    embedding = self.conv_in(conditioning)
         | 
| 83 | 
            +
                    embedding = F.silu(embedding)
         | 
| 84 | 
            +
             | 
| 85 | 
            +
                    for block in self.blocks:
         | 
| 86 | 
            +
                        embedding = block(embedding)
         | 
| 87 | 
            +
                        embedding = F.silu(embedding)
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                    embedding = self.conv_out(embedding)
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                    return embedding
         | 
| 92 | 
            +
             | 
| 93 | 
            +
             | 
| 94 | 
            +
            class ControlNetModel(ModelMixin, ConfigMixin):
         | 
| 95 | 
            +
                _supports_gradient_checkpointing = True
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                @register_to_config
         | 
| 98 | 
            +
                def __init__(
         | 
| 99 | 
            +
                    self,
         | 
| 100 | 
            +
                    in_channels: int = 4,
         | 
| 101 | 
            +
                    flip_sin_to_cos: bool = True,
         | 
| 102 | 
            +
                    freq_shift: int = 0,
         | 
| 103 | 
            +
                    down_block_types: Tuple[str] = (
         | 
| 104 | 
            +
                        "CrossAttnDownBlock2D",
         | 
| 105 | 
            +
                        "CrossAttnDownBlock2D",
         | 
| 106 | 
            +
                        "CrossAttnDownBlock2D",
         | 
| 107 | 
            +
                        "DownBlock2D",
         | 
| 108 | 
            +
                    ),
         | 
| 109 | 
            +
                    only_cross_attention: Union[bool, Tuple[bool]] = False,
         | 
| 110 | 
            +
                    block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
         | 
| 111 | 
            +
                    layers_per_block: int = 2,
         | 
| 112 | 
            +
                    downsample_padding: int = 1,
         | 
| 113 | 
            +
                    mid_block_scale_factor: float = 1,
         | 
| 114 | 
            +
                    act_fn: str = "silu",
         | 
| 115 | 
            +
                    norm_num_groups: Optional[int] = 32,
         | 
| 116 | 
            +
                    norm_eps: float = 1e-5,
         | 
| 117 | 
            +
                    cross_attention_dim: int = 1280,
         | 
| 118 | 
            +
                    attention_head_dim: Union[int, Tuple[int]] = 8,
         | 
| 119 | 
            +
                    use_linear_projection: bool = False,
         | 
| 120 | 
            +
                    class_embed_type: Optional[str] = None,
         | 
| 121 | 
            +
                    num_class_embeds: Optional[int] = None,
         | 
| 122 | 
            +
                    upcast_attention: bool = False,
         | 
| 123 | 
            +
                    resnet_time_scale_shift: str = "default",
         | 
| 124 | 
            +
                    projection_class_embeddings_input_dim: Optional[int] = None,
         | 
| 125 | 
            +
                    controlnet_conditioning_channel_order: str = "rgb",
         | 
| 126 | 
            +
                    conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256),
         | 
| 127 | 
            +
                ):
         | 
| 128 | 
            +
                    super().__init__()
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                    # Check inputs
         | 
| 131 | 
            +
                    if len(block_out_channels) != len(down_block_types):
         | 
| 132 | 
            +
                        raise ValueError(
         | 
| 133 | 
            +
                            f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
         | 
| 134 | 
            +
                        )
         | 
| 135 | 
            +
             | 
| 136 | 
            +
                    if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
         | 
| 137 | 
            +
                        raise ValueError(
         | 
| 138 | 
            +
                            f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
         | 
| 139 | 
            +
                        )
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                    if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
         | 
| 142 | 
            +
                        raise ValueError(
         | 
| 143 | 
            +
                            f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
         | 
| 144 | 
            +
                        )
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                    # input
         | 
| 147 | 
            +
                    conv_in_kernel = 3
         | 
| 148 | 
            +
                    conv_in_padding = (conv_in_kernel - 1) // 2
         | 
| 149 | 
            +
                    self.conv_in = nn.Conv2d(
         | 
| 150 | 
            +
                        in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
         | 
| 151 | 
            +
                    )
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                    # time
         | 
| 154 | 
            +
                    time_embed_dim = block_out_channels[0] * 4
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                    self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
         | 
| 157 | 
            +
                    timestep_input_dim = block_out_channels[0]
         | 
| 158 | 
            +
             | 
| 159 | 
            +
                    self.time_embedding = TimestepEmbedding(
         | 
| 160 | 
            +
                        timestep_input_dim,
         | 
| 161 | 
            +
                        time_embed_dim,
         | 
| 162 | 
            +
                        act_fn=act_fn,
         | 
| 163 | 
            +
                    )
         | 
| 164 | 
            +
             | 
| 165 | 
            +
                    # class embedding
         | 
| 166 | 
            +
                    if class_embed_type is None and num_class_embeds is not None:
         | 
| 167 | 
            +
                        self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
         | 
| 168 | 
            +
                    elif class_embed_type == "timestep":
         | 
| 169 | 
            +
                        self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
         | 
| 170 | 
            +
                    elif class_embed_type == "identity":
         | 
| 171 | 
            +
                        self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
         | 
| 172 | 
            +
                    elif class_embed_type == "projection":
         | 
| 173 | 
            +
                        if projection_class_embeddings_input_dim is None:
         | 
| 174 | 
            +
                            raise ValueError(
         | 
| 175 | 
            +
                                "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
         | 
| 176 | 
            +
                            )
         | 
| 177 | 
            +
                        # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
         | 
| 178 | 
            +
                        # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
         | 
| 179 | 
            +
                        # 2. it projects from an arbitrary input dimension.
         | 
| 180 | 
            +
                        #
         | 
| 181 | 
            +
                        # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
         | 
| 182 | 
            +
                        # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
         | 
| 183 | 
            +
                        # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
         | 
| 184 | 
            +
                        self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
         | 
| 185 | 
            +
                    else:
         | 
| 186 | 
            +
                        self.class_embedding = None
         | 
| 187 | 
            +
             | 
| 188 | 
            +
                    # control net conditioning embedding
         | 
| 189 | 
            +
                    self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
         | 
| 190 | 
            +
                        conditioning_embedding_channels=block_out_channels[0],
         | 
| 191 | 
            +
                        block_out_channels=conditioning_embedding_out_channels,
         | 
| 192 | 
            +
                    )
         | 
| 193 | 
            +
             | 
| 194 | 
            +
                    self.down_blocks = nn.ModuleList([])
         | 
| 195 | 
            +
                    self.controlnet_down_blocks = nn.ModuleList([])
         | 
| 196 | 
            +
             | 
| 197 | 
            +
                    if isinstance(only_cross_attention, bool):
         | 
| 198 | 
            +
                        only_cross_attention = [only_cross_attention] * len(down_block_types)
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                    if isinstance(attention_head_dim, int):
         | 
| 201 | 
            +
                        attention_head_dim = (attention_head_dim,) * len(down_block_types)
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                    # down
         | 
| 204 | 
            +
                    output_channel = block_out_channels[0]
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                    controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
         | 
| 207 | 
            +
                    controlnet_block = zero_module(controlnet_block)
         | 
| 208 | 
            +
                    self.controlnet_down_blocks.append(controlnet_block)
         | 
| 209 | 
            +
             | 
| 210 | 
            +
                    for i, down_block_type in enumerate(down_block_types):
         | 
| 211 | 
            +
                        input_channel = output_channel
         | 
| 212 | 
            +
                        output_channel = block_out_channels[i]
         | 
| 213 | 
            +
                        is_final_block = i == len(block_out_channels) - 1
         | 
| 214 | 
            +
             | 
| 215 | 
            +
                        down_block = get_down_block(
         | 
| 216 | 
            +
                            down_block_type,
         | 
| 217 | 
            +
                            num_layers=layers_per_block,
         | 
| 218 | 
            +
                            in_channels=input_channel,
         | 
| 219 | 
            +
                            out_channels=output_channel,
         | 
| 220 | 
            +
                            temb_channels=time_embed_dim,
         | 
| 221 | 
            +
                            add_downsample=not is_final_block,
         | 
| 222 | 
            +
                            resnet_eps=norm_eps,
         | 
| 223 | 
            +
                            resnet_act_fn=act_fn,
         | 
| 224 | 
            +
                            resnet_groups=norm_num_groups,
         | 
| 225 | 
            +
                            cross_attention_dim=cross_attention_dim,
         | 
| 226 | 
            +
                            num_attention_heads=attention_head_dim[i],
         | 
| 227 | 
            +
                            downsample_padding=downsample_padding,
         | 
| 228 | 
            +
                            use_linear_projection=use_linear_projection,
         | 
| 229 | 
            +
                            only_cross_attention=only_cross_attention[i],
         | 
| 230 | 
            +
                            upcast_attention=upcast_attention,
         | 
| 231 | 
            +
                            resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 232 | 
            +
                        )
         | 
| 233 | 
            +
                        self.down_blocks.append(down_block)
         | 
| 234 | 
            +
             | 
| 235 | 
            +
                        for _ in range(layers_per_block):
         | 
| 236 | 
            +
                            controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
         | 
| 237 | 
            +
                            controlnet_block = zero_module(controlnet_block)
         | 
| 238 | 
            +
                            self.controlnet_down_blocks.append(controlnet_block)
         | 
| 239 | 
            +
             | 
| 240 | 
            +
                        if not is_final_block:
         | 
| 241 | 
            +
                            controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
         | 
| 242 | 
            +
                            controlnet_block = zero_module(controlnet_block)
         | 
| 243 | 
            +
                            self.controlnet_down_blocks.append(controlnet_block)
         | 
| 244 | 
            +
             | 
| 245 | 
            +
                    # mid
         | 
| 246 | 
            +
                    mid_block_channel = block_out_channels[-1]
         | 
| 247 | 
            +
             | 
| 248 | 
            +
                    controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
         | 
| 249 | 
            +
                    controlnet_block = zero_module(controlnet_block)
         | 
| 250 | 
            +
                    self.controlnet_mid_block = controlnet_block
         | 
| 251 | 
            +
             | 
| 252 | 
            +
                    self.mid_block = UNetMidBlock2DCrossAttn(
         | 
| 253 | 
            +
                        in_channels=mid_block_channel,
         | 
| 254 | 
            +
                        temb_channels=time_embed_dim,
         | 
| 255 | 
            +
                        resnet_eps=norm_eps,
         | 
| 256 | 
            +
                        resnet_act_fn=act_fn,
         | 
| 257 | 
            +
                        output_scale_factor=mid_block_scale_factor,
         | 
| 258 | 
            +
                        resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 259 | 
            +
                        cross_attention_dim=cross_attention_dim,
         | 
| 260 | 
            +
                        num_attention_heads=attention_head_dim[-1],
         | 
| 261 | 
            +
                        resnet_groups=norm_num_groups,
         | 
| 262 | 
            +
                        use_linear_projection=use_linear_projection,
         | 
| 263 | 
            +
                        upcast_attention=upcast_attention,
         | 
| 264 | 
            +
                    )
         | 
| 265 | 
            +
             | 
| 266 | 
            +
                @classmethod
         | 
| 267 | 
            +
                def from_unet(
         | 
| 268 | 
            +
                    cls,
         | 
| 269 | 
            +
                    unet: UNet2DConditionModel,
         | 
| 270 | 
            +
                    controlnet_conditioning_channel_order: str = "rgb",
         | 
| 271 | 
            +
                    conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256),
         | 
| 272 | 
            +
                    load_weights_from_unet: bool = True,
         | 
| 273 | 
            +
                ):
         | 
| 274 | 
            +
                    r"""
         | 
| 275 | 
            +
                    Instantiate Controlnet class from UNet2DConditionModel.
         | 
| 276 | 
            +
             | 
| 277 | 
            +
                    Parameters:
         | 
| 278 | 
            +
                        unet (`UNet2DConditionModel`):
         | 
| 279 | 
            +
                            UNet model which weights are copied to the ControlNet. Note that all configuration options are also
         | 
| 280 | 
            +
                            copied where applicable.
         | 
| 281 | 
            +
                    """
         | 
| 282 | 
            +
                    controlnet = cls(
         | 
| 283 | 
            +
                        in_channels=unet.config.in_channels,
         | 
| 284 | 
            +
                        flip_sin_to_cos=unet.config.flip_sin_to_cos,
         | 
| 285 | 
            +
                        freq_shift=unet.config.freq_shift,
         | 
| 286 | 
            +
                        down_block_types=unet.config.down_block_types,
         | 
| 287 | 
            +
                        only_cross_attention=unet.config.only_cross_attention,
         | 
| 288 | 
            +
                        block_out_channels=unet.config.block_out_channels,
         | 
| 289 | 
            +
                        layers_per_block=unet.config.layers_per_block,
         | 
| 290 | 
            +
                        downsample_padding=unet.config.downsample_padding,
         | 
| 291 | 
            +
                        mid_block_scale_factor=unet.config.mid_block_scale_factor,
         | 
| 292 | 
            +
                        act_fn=unet.config.act_fn,
         | 
| 293 | 
            +
                        norm_num_groups=unet.config.norm_num_groups,
         | 
| 294 | 
            +
                        norm_eps=unet.config.norm_eps,
         | 
| 295 | 
            +
                        cross_attention_dim=unet.config.cross_attention_dim,
         | 
| 296 | 
            +
                        attention_head_dim=unet.config.attention_head_dim,
         | 
| 297 | 
            +
                        use_linear_projection=unet.config.use_linear_projection,
         | 
| 298 | 
            +
                        class_embed_type=unet.config.class_embed_type,
         | 
| 299 | 
            +
                        num_class_embeds=unet.config.num_class_embeds,
         | 
| 300 | 
            +
                        upcast_attention=unet.config.upcast_attention,
         | 
| 301 | 
            +
                        resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
         | 
| 302 | 
            +
                        projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
         | 
| 303 | 
            +
                        controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
         | 
| 304 | 
            +
                        conditioning_embedding_out_channels=conditioning_embedding_out_channels,
         | 
| 305 | 
            +
                    )
         | 
| 306 | 
            +
             | 
| 307 | 
            +
                    if load_weights_from_unet:
         | 
| 308 | 
            +
                        controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
         | 
| 309 | 
            +
                        controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
         | 
| 310 | 
            +
                        controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
         | 
| 311 | 
            +
             | 
| 312 | 
            +
                        if controlnet.class_embedding:
         | 
| 313 | 
            +
                            controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
         | 
| 314 | 
            +
             | 
| 315 | 
            +
                        controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict())
         | 
| 316 | 
            +
                        controlnet.mid_block.load_state_dict(unet.mid_block.state_dict())
         | 
| 317 | 
            +
             | 
| 318 | 
            +
                    return controlnet
         | 
| 319 | 
            +
             | 
| 320 | 
            +
                # @property
         | 
| 321 | 
            +
                # # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
         | 
| 322 | 
            +
                # def attn_processors(self) -> Dict[str, AttentionProcessor]:
         | 
| 323 | 
            +
                #     r"""
         | 
| 324 | 
            +
                #     Returns:
         | 
| 325 | 
            +
                #         `dict` of attention processors: A dictionary containing all attention processors used in the model with
         | 
| 326 | 
            +
                #         indexed by its weight name.
         | 
| 327 | 
            +
                #     """
         | 
| 328 | 
            +
                #     # set recursively
         | 
| 329 | 
            +
                #     processors = {}
         | 
| 330 | 
            +
             | 
| 331 | 
            +
                #     def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
         | 
| 332 | 
            +
                #         if hasattr(module, "set_processor"):
         | 
| 333 | 
            +
                #             processors[f"{name}.processor"] = module.processor
         | 
| 334 | 
            +
             | 
| 335 | 
            +
                #         for sub_name, child in module.named_children():
         | 
| 336 | 
            +
                #             fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
         | 
| 337 | 
            +
             | 
| 338 | 
            +
                #         return processors
         | 
| 339 | 
            +
             | 
| 340 | 
            +
                #     for name, module in self.named_children():
         | 
| 341 | 
            +
                #         fn_recursive_add_processors(name, module, processors)
         | 
| 342 | 
            +
             | 
| 343 | 
            +
                #     return processors
         | 
| 344 | 
            +
             | 
| 345 | 
            +
                # # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
         | 
| 346 | 
            +
                # def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
         | 
| 347 | 
            +
                #     r"""
         | 
| 348 | 
            +
                #     Parameters:
         | 
| 349 | 
            +
                #         `processor (`dict` of `AttentionProcessor` or `AttentionProcessor`):
         | 
| 350 | 
            +
                #             The instantiated processor class or a dictionary of processor classes that will be set as the processor
         | 
| 351 | 
            +
                #             of **all** `Attention` layers.
         | 
| 352 | 
            +
                #         In case `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors.:
         | 
| 353 | 
            +
             | 
| 354 | 
            +
                #     """
         | 
| 355 | 
            +
                #     count = len(self.attn_processors.keys())
         | 
| 356 | 
            +
             | 
| 357 | 
            +
                #     if isinstance(processor, dict) and len(processor) != count:
         | 
| 358 | 
            +
                #         raise ValueError(
         | 
| 359 | 
            +
                #             f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
         | 
| 360 | 
            +
                #             f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
         | 
| 361 | 
            +
                #         )
         | 
| 362 | 
            +
             | 
| 363 | 
            +
                #     def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
         | 
| 364 | 
            +
                #         if hasattr(module, "set_processor"):
         | 
| 365 | 
            +
                #             if not isinstance(processor, dict):
         | 
| 366 | 
            +
                #                 module.set_processor(processor)
         | 
| 367 | 
            +
                #             else:
         | 
| 368 | 
            +
                #                 module.set_processor(processor.pop(f"{name}.processor"))
         | 
| 369 | 
            +
             | 
| 370 | 
            +
                #         for sub_name, child in module.named_children():
         | 
| 371 | 
            +
                #             fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
         | 
| 372 | 
            +
             | 
| 373 | 
            +
                #     for name, module in self.named_children():
         | 
| 374 | 
            +
                #         fn_recursive_attn_processor(name, module, processor)
         | 
| 375 | 
            +
             | 
| 376 | 
            +
                # # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
         | 
| 377 | 
            +
                # def set_default_attn_processor(self):
         | 
| 378 | 
            +
                #     """
         | 
| 379 | 
            +
                #     Disables custom attention processors and sets the default attention implementation.
         | 
| 380 | 
            +
                #     """
         | 
| 381 | 
            +
                #     self.set_attn_processor(AttnProcessor())
         | 
| 382 | 
            +
             | 
| 383 | 
            +
                # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attention_slice
         | 
| 384 | 
            +
                def set_attention_slice(self, slice_size):
         | 
| 385 | 
            +
                    r"""
         | 
| 386 | 
            +
                    Enable sliced attention computation.
         | 
| 387 | 
            +
             | 
| 388 | 
            +
                    When this option is enabled, the attention module will split the input tensor in slices, to compute attention
         | 
| 389 | 
            +
                    in several steps. This is useful to save some memory in exchange for a small speed decrease.
         | 
| 390 | 
            +
             | 
| 391 | 
            +
                    Args:
         | 
| 392 | 
            +
                        slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
         | 
| 393 | 
            +
                            When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
         | 
| 394 | 
            +
                            `"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is
         | 
| 395 | 
            +
                            provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
         | 
| 396 | 
            +
                            must be a multiple of `slice_size`.
         | 
| 397 | 
            +
                    """
         | 
| 398 | 
            +
                    sliceable_head_dims = []
         | 
| 399 | 
            +
             | 
| 400 | 
            +
                    def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
         | 
| 401 | 
            +
                        if hasattr(module, "set_attention_slice"):
         | 
| 402 | 
            +
                            sliceable_head_dims.append(module.sliceable_head_dim)
         | 
| 403 | 
            +
             | 
| 404 | 
            +
                        for child in module.children():
         | 
| 405 | 
            +
                            fn_recursive_retrieve_sliceable_dims(child)
         | 
| 406 | 
            +
             | 
| 407 | 
            +
                    # retrieve number of attention layers
         | 
| 408 | 
            +
                    for module in self.children():
         | 
| 409 | 
            +
                        fn_recursive_retrieve_sliceable_dims(module)
         | 
| 410 | 
            +
             | 
| 411 | 
            +
                    num_sliceable_layers = len(sliceable_head_dims)
         | 
| 412 | 
            +
             | 
| 413 | 
            +
                    if slice_size == "auto":
         | 
| 414 | 
            +
                        # half the attention head size is usually a good trade-off between
         | 
| 415 | 
            +
                        # speed and memory
         | 
| 416 | 
            +
                        slice_size = [dim // 2 for dim in sliceable_head_dims]
         | 
| 417 | 
            +
                    elif slice_size == "max":
         | 
| 418 | 
            +
                        # make smallest slice possible
         | 
| 419 | 
            +
                        slice_size = num_sliceable_layers * [1]
         | 
| 420 | 
            +
             | 
| 421 | 
            +
                    slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
         | 
| 422 | 
            +
             | 
| 423 | 
            +
                    if len(slice_size) != len(sliceable_head_dims):
         | 
| 424 | 
            +
                        raise ValueError(
         | 
| 425 | 
            +
                            f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
         | 
| 426 | 
            +
                            f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
         | 
| 427 | 
            +
                        )
         | 
| 428 | 
            +
             | 
| 429 | 
            +
                    for i in range(len(slice_size)):
         | 
| 430 | 
            +
                        size = slice_size[i]
         | 
| 431 | 
            +
                        dim = sliceable_head_dims[i]
         | 
| 432 | 
            +
                        if size is not None and size > dim:
         | 
| 433 | 
            +
                            raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
         | 
| 434 | 
            +
             | 
| 435 | 
            +
                    # Recursively walk through all the children.
         | 
| 436 | 
            +
                    # Any children which exposes the set_attention_slice method
         | 
| 437 | 
            +
                    # gets the message
         | 
| 438 | 
            +
                    def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
         | 
| 439 | 
            +
                        if hasattr(module, "set_attention_slice"):
         | 
| 440 | 
            +
                            module.set_attention_slice(slice_size.pop())
         | 
| 441 | 
            +
             | 
| 442 | 
            +
                        for child in module.children():
         | 
| 443 | 
            +
                            fn_recursive_set_attention_slice(child, slice_size)
         | 
| 444 | 
            +
             | 
| 445 | 
            +
                    reversed_slice_size = list(reversed(slice_size))
         | 
| 446 | 
            +
                    for module in self.children():
         | 
| 447 | 
            +
                        fn_recursive_set_attention_slice(module, reversed_slice_size)
         | 
| 448 | 
            +
             | 
| 449 | 
            +
                def _set_gradient_checkpointing(self, module, value=False):
         | 
| 450 | 
            +
                    if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
         | 
| 451 | 
            +
                        module.gradient_checkpointing = value
         | 
| 452 | 
            +
             | 
| 453 | 
            +
                def forward(
         | 
| 454 | 
            +
                    self,
         | 
| 455 | 
            +
                    sample: torch.FloatTensor,
         | 
| 456 | 
            +
                    timestep: Union[torch.Tensor, float, int],
         | 
| 457 | 
            +
                    encoder_hidden_states: torch.Tensor,
         | 
| 458 | 
            +
                    controlnet_cond: torch.FloatTensor,
         | 
| 459 | 
            +
                    conditioning_scale: float = 1.0,
         | 
| 460 | 
            +
                    class_labels: Optional[torch.Tensor] = None,
         | 
| 461 | 
            +
                    timestep_cond: Optional[torch.Tensor] = None,
         | 
| 462 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 463 | 
            +
                    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 464 | 
            +
                    return_dict: bool = True,
         | 
| 465 | 
            +
                ) -> Union[ControlNetOutput, Tuple]:
         | 
| 466 | 
            +
                    # check channel order
         | 
| 467 | 
            +
                    channel_order = self.config.controlnet_conditioning_channel_order
         | 
| 468 | 
            +
             | 
| 469 | 
            +
                    if channel_order == "rgb":
         | 
| 470 | 
            +
                        # in rgb order by default
         | 
| 471 | 
            +
                        ...
         | 
| 472 | 
            +
                    elif channel_order == "bgr":
         | 
| 473 | 
            +
                        controlnet_cond = torch.flip(controlnet_cond, dims=[1])
         | 
| 474 | 
            +
                    else:
         | 
| 475 | 
            +
                        raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
         | 
| 476 | 
            +
             | 
| 477 | 
            +
                    # prepare attention_mask
         | 
| 478 | 
            +
                    if attention_mask is not None:
         | 
| 479 | 
            +
                        attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
         | 
| 480 | 
            +
                        attention_mask = attention_mask.unsqueeze(1)
         | 
| 481 | 
            +
             | 
| 482 | 
            +
                    # 1. time
         | 
| 483 | 
            +
                    timesteps = timestep
         | 
| 484 | 
            +
                    if not torch.is_tensor(timesteps):
         | 
| 485 | 
            +
                        # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
         | 
| 486 | 
            +
                        # This would be a good case for the `match` statement (Python 3.10+)
         | 
| 487 | 
            +
                        is_mps = sample.device.type == "mps"
         | 
| 488 | 
            +
                        if isinstance(timestep, float):
         | 
| 489 | 
            +
                            dtype = torch.float32 if is_mps else torch.float64
         | 
| 490 | 
            +
                        else:
         | 
| 491 | 
            +
                            dtype = torch.int32 if is_mps else torch.int64
         | 
| 492 | 
            +
                        timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
         | 
| 493 | 
            +
                    elif len(timesteps.shape) == 0:
         | 
| 494 | 
            +
                        timesteps = timesteps[None].to(sample.device)
         | 
| 495 | 
            +
             | 
| 496 | 
            +
                    # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
         | 
| 497 | 
            +
                    timesteps = timesteps.expand(sample.shape[0])
         | 
| 498 | 
            +
             | 
| 499 | 
            +
                    t_emb = self.time_proj(timesteps)
         | 
| 500 | 
            +
             | 
| 501 | 
            +
                    # timesteps does not contain any weights and will always return f32 tensors
         | 
| 502 | 
            +
                    # but time_embedding might actually be running in fp16. so we need to cast here.
         | 
| 503 | 
            +
                    # there might be better ways to encapsulate this.
         | 
| 504 | 
            +
                    t_emb = t_emb.to(dtype=self.dtype)
         | 
| 505 | 
            +
             | 
| 506 | 
            +
                    emb = self.time_embedding(t_emb, timestep_cond)
         | 
| 507 | 
            +
             | 
| 508 | 
            +
                    if self.class_embedding is not None:
         | 
| 509 | 
            +
                        if class_labels is None:
         | 
| 510 | 
            +
                            raise ValueError("class_labels should be provided when num_class_embeds > 0")
         | 
| 511 | 
            +
             | 
| 512 | 
            +
                        if self.config.class_embed_type == "timestep":
         | 
| 513 | 
            +
                            class_labels = self.time_proj(class_labels)
         | 
| 514 | 
            +
             | 
| 515 | 
            +
                        class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
         | 
| 516 | 
            +
                        emb = emb + class_emb
         | 
| 517 | 
            +
             | 
| 518 | 
            +
                    # 2. pre-process
         | 
| 519 | 
            +
                    sample = self.conv_in(sample)
         | 
| 520 | 
            +
             | 
| 521 | 
            +
                    controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
         | 
| 522 | 
            +
             | 
| 523 | 
            +
                    sample += controlnet_cond
         | 
| 524 | 
            +
             | 
| 525 | 
            +
                    # 3. down
         | 
| 526 | 
            +
                    down_block_res_samples = (sample,)
         | 
| 527 | 
            +
                    for downsample_block in self.down_blocks:
         | 
| 528 | 
            +
                        if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
         | 
| 529 | 
            +
                            sample, res_samples = downsample_block(
         | 
| 530 | 
            +
                                hidden_states=sample,
         | 
| 531 | 
            +
                                temb=emb,
         | 
| 532 | 
            +
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 533 | 
            +
                                attention_mask=attention_mask,
         | 
| 534 | 
            +
                                # cross_attention_kwargs=cross_attention_kwargs,
         | 
| 535 | 
            +
                            )
         | 
| 536 | 
            +
                        else:
         | 
| 537 | 
            +
                            sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
         | 
| 538 | 
            +
             | 
| 539 | 
            +
                        down_block_res_samples += res_samples
         | 
| 540 | 
            +
             | 
| 541 | 
            +
                    # 4. mid
         | 
| 542 | 
            +
                    if self.mid_block is not None:
         | 
| 543 | 
            +
                        sample = self.mid_block(
         | 
| 544 | 
            +
                            sample,
         | 
| 545 | 
            +
                            emb,
         | 
| 546 | 
            +
                            encoder_hidden_states=encoder_hidden_states,
         | 
| 547 | 
            +
                            attention_mask=attention_mask,
         | 
| 548 | 
            +
                            # cross_attention_kwargs=cross_attention_kwargs,
         | 
| 549 | 
            +
                        )
         | 
| 550 | 
            +
             | 
| 551 | 
            +
                    # 5. Control net blocks
         | 
| 552 | 
            +
             | 
| 553 | 
            +
                    controlnet_down_block_res_samples = ()
         | 
| 554 | 
            +
             | 
| 555 | 
            +
                    for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
         | 
| 556 | 
            +
                        down_block_res_sample = controlnet_block(down_block_res_sample)
         | 
| 557 | 
            +
                        controlnet_down_block_res_samples += (down_block_res_sample,)
         | 
| 558 | 
            +
             | 
| 559 | 
            +
                    down_block_res_samples = controlnet_down_block_res_samples
         | 
| 560 | 
            +
             | 
| 561 | 
            +
                    mid_block_res_sample = self.controlnet_mid_block(sample)
         | 
| 562 | 
            +
             | 
| 563 | 
            +
                    # 6. scaling
         | 
| 564 | 
            +
                    down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
         | 
| 565 | 
            +
                    mid_block_res_sample *= conditioning_scale
         | 
| 566 | 
            +
             | 
| 567 | 
            +
                    if not return_dict:
         | 
| 568 | 
            +
                        return (down_block_res_samples, mid_block_res_sample)
         | 
| 569 | 
            +
             | 
| 570 | 
            +
                    return ControlNetOutput(
         | 
| 571 | 
            +
                        down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
         | 
| 572 | 
            +
                    )
         | 
| 573 | 
            +
             | 
| 574 | 
            +
             | 
| 575 | 
            +
            def zero_module(module):
         | 
| 576 | 
            +
                for p in module.parameters():
         | 
| 577 | 
            +
                    nn.init.zeros_(p)
         | 
| 578 | 
            +
                return module
         | 
    	
        magicanimate/models/embeddings.py
    ADDED
    
    | @@ -0,0 +1,385 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # *************************************************************************
         | 
| 2 | 
            +
            # This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo-
         | 
| 3 | 
            +
            # difications”). All Bytedance Inc.'s Modifications are Copyright (2023) B-
         | 
| 4 | 
            +
            # ytedance Inc..  
         | 
| 5 | 
            +
            # *************************************************************************
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Copyright 2023 The HuggingFace Team. All rights reserved.
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            import math
         | 
| 21 | 
            +
            from typing import Optional
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            import numpy as np
         | 
| 24 | 
            +
            import torch
         | 
| 25 | 
            +
            from torch import nn
         | 
| 26 | 
            +
             | 
| 27 | 
            +
             | 
| 28 | 
            +
            def get_timestep_embedding(
         | 
| 29 | 
            +
                timesteps: torch.Tensor,
         | 
| 30 | 
            +
                embedding_dim: int,
         | 
| 31 | 
            +
                flip_sin_to_cos: bool = False,
         | 
| 32 | 
            +
                downscale_freq_shift: float = 1,
         | 
| 33 | 
            +
                scale: float = 1,
         | 
| 34 | 
            +
                max_period: int = 10000,
         | 
| 35 | 
            +
            ):
         | 
| 36 | 
            +
                """
         | 
| 37 | 
            +
                This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                :param timesteps: a 1-D Tensor of N indices, one per batch element.
         | 
| 40 | 
            +
                                  These may be fractional.
         | 
| 41 | 
            +
                :param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
         | 
| 42 | 
            +
                embeddings. :return: an [N x dim] Tensor of positional embeddings.
         | 
| 43 | 
            +
                """
         | 
| 44 | 
            +
                assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                half_dim = embedding_dim // 2
         | 
| 47 | 
            +
                exponent = -math.log(max_period) * torch.arange(
         | 
| 48 | 
            +
                    start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
         | 
| 49 | 
            +
                )
         | 
| 50 | 
            +
                exponent = exponent / (half_dim - downscale_freq_shift)
         | 
| 51 | 
            +
             | 
| 52 | 
            +
                emb = torch.exp(exponent)
         | 
| 53 | 
            +
                emb = timesteps[:, None].float() * emb[None, :]
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                # scale embeddings
         | 
| 56 | 
            +
                emb = scale * emb
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                # concat sine and cosine embeddings
         | 
| 59 | 
            +
                emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                # flip sine and cosine embeddings
         | 
| 62 | 
            +
                if flip_sin_to_cos:
         | 
| 63 | 
            +
                    emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                # zero pad
         | 
| 66 | 
            +
                if embedding_dim % 2 == 1:
         | 
| 67 | 
            +
                    emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
         | 
| 68 | 
            +
                return emb
         | 
| 69 | 
            +
             | 
| 70 | 
            +
             | 
| 71 | 
            +
            def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0):
         | 
| 72 | 
            +
                """
         | 
| 73 | 
            +
                grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or
         | 
| 74 | 
            +
                [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
         | 
| 75 | 
            +
                """
         | 
| 76 | 
            +
                grid_h = np.arange(grid_size, dtype=np.float32)
         | 
| 77 | 
            +
                grid_w = np.arange(grid_size, dtype=np.float32)
         | 
| 78 | 
            +
                grid = np.meshgrid(grid_w, grid_h)  # here w goes first
         | 
| 79 | 
            +
                grid = np.stack(grid, axis=0)
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                grid = grid.reshape([2, 1, grid_size, grid_size])
         | 
| 82 | 
            +
                pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
         | 
| 83 | 
            +
                if cls_token and extra_tokens > 0:
         | 
| 84 | 
            +
                    pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
         | 
| 85 | 
            +
                return pos_embed
         | 
| 86 | 
            +
             | 
| 87 | 
            +
             | 
| 88 | 
            +
            def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
         | 
| 89 | 
            +
                if embed_dim % 2 != 0:
         | 
| 90 | 
            +
                    raise ValueError("embed_dim must be divisible by 2")
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                # use half of dimensions to encode grid_h
         | 
| 93 | 
            +
                emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])  # (H*W, D/2)
         | 
| 94 | 
            +
                emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])  # (H*W, D/2)
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                emb = np.concatenate([emb_h, emb_w], axis=1)  # (H*W, D)
         | 
| 97 | 
            +
                return emb
         | 
| 98 | 
            +
             | 
| 99 | 
            +
             | 
| 100 | 
            +
            def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
         | 
| 101 | 
            +
                """
         | 
| 102 | 
            +
                embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D)
         | 
| 103 | 
            +
                """
         | 
| 104 | 
            +
                if embed_dim % 2 != 0:
         | 
| 105 | 
            +
                    raise ValueError("embed_dim must be divisible by 2")
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                omega = np.arange(embed_dim // 2, dtype=np.float64)
         | 
| 108 | 
            +
                omega /= embed_dim / 2.0
         | 
| 109 | 
            +
                omega = 1.0 / 10000**omega  # (D/2,)
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                pos = pos.reshape(-1)  # (M,)
         | 
| 112 | 
            +
                out = np.einsum("m,d->md", pos, omega)  # (M, D/2), outer product
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                emb_sin = np.sin(out)  # (M, D/2)
         | 
| 115 | 
            +
                emb_cos = np.cos(out)  # (M, D/2)
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
         | 
| 118 | 
            +
                return emb
         | 
| 119 | 
            +
             | 
| 120 | 
            +
             | 
| 121 | 
            +
            class PatchEmbed(nn.Module):
         | 
| 122 | 
            +
                """2D Image to Patch Embedding"""
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                def __init__(
         | 
| 125 | 
            +
                    self,
         | 
| 126 | 
            +
                    height=224,
         | 
| 127 | 
            +
                    width=224,
         | 
| 128 | 
            +
                    patch_size=16,
         | 
| 129 | 
            +
                    in_channels=3,
         | 
| 130 | 
            +
                    embed_dim=768,
         | 
| 131 | 
            +
                    layer_norm=False,
         | 
| 132 | 
            +
                    flatten=True,
         | 
| 133 | 
            +
                    bias=True,
         | 
| 134 | 
            +
                ):
         | 
| 135 | 
            +
                    super().__init__()
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                    num_patches = (height // patch_size) * (width // patch_size)
         | 
| 138 | 
            +
                    self.flatten = flatten
         | 
| 139 | 
            +
                    self.layer_norm = layer_norm
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                    self.proj = nn.Conv2d(
         | 
| 142 | 
            +
                        in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
         | 
| 143 | 
            +
                    )
         | 
| 144 | 
            +
                    if layer_norm:
         | 
| 145 | 
            +
                        self.norm = nn.LayerNorm(embed_dim, elementwise_affine=False, eps=1e-6)
         | 
| 146 | 
            +
                    else:
         | 
| 147 | 
            +
                        self.norm = None
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                    pos_embed = get_2d_sincos_pos_embed(embed_dim, int(num_patches**0.5))
         | 
| 150 | 
            +
                    self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=False)
         | 
| 151 | 
            +
             | 
| 152 | 
            +
                def forward(self, latent):
         | 
| 153 | 
            +
                    latent = self.proj(latent)
         | 
| 154 | 
            +
                    if self.flatten:
         | 
| 155 | 
            +
                        latent = latent.flatten(2).transpose(1, 2)  # BCHW -> BNC
         | 
| 156 | 
            +
                    if self.layer_norm:
         | 
| 157 | 
            +
                        latent = self.norm(latent)
         | 
| 158 | 
            +
                    return latent + self.pos_embed
         | 
| 159 | 
            +
             | 
| 160 | 
            +
             | 
| 161 | 
            +
            class TimestepEmbedding(nn.Module):
         | 
| 162 | 
            +
                def __init__(
         | 
| 163 | 
            +
                    self,
         | 
| 164 | 
            +
                    in_channels: int,
         | 
| 165 | 
            +
                    time_embed_dim: int,
         | 
| 166 | 
            +
                    act_fn: str = "silu",
         | 
| 167 | 
            +
                    out_dim: int = None,
         | 
| 168 | 
            +
                    post_act_fn: Optional[str] = None,
         | 
| 169 | 
            +
                    cond_proj_dim=None,
         | 
| 170 | 
            +
                ):
         | 
| 171 | 
            +
                    super().__init__()
         | 
| 172 | 
            +
             | 
| 173 | 
            +
                    self.linear_1 = nn.Linear(in_channels, time_embed_dim)
         | 
| 174 | 
            +
             | 
| 175 | 
            +
                    if cond_proj_dim is not None:
         | 
| 176 | 
            +
                        self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False)
         | 
| 177 | 
            +
                    else:
         | 
| 178 | 
            +
                        self.cond_proj = None
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                    if act_fn == "silu":
         | 
| 181 | 
            +
                        self.act = nn.SiLU()
         | 
| 182 | 
            +
                    elif act_fn == "mish":
         | 
| 183 | 
            +
                        self.act = nn.Mish()
         | 
| 184 | 
            +
                    elif act_fn == "gelu":
         | 
| 185 | 
            +
                        self.act = nn.GELU()
         | 
| 186 | 
            +
                    else:
         | 
| 187 | 
            +
                        raise ValueError(f"{act_fn} does not exist. Make sure to define one of 'silu', 'mish', or 'gelu'")
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                    if out_dim is not None:
         | 
| 190 | 
            +
                        time_embed_dim_out = out_dim
         | 
| 191 | 
            +
                    else:
         | 
| 192 | 
            +
                        time_embed_dim_out = time_embed_dim
         | 
| 193 | 
            +
                    self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out)
         | 
| 194 | 
            +
             | 
| 195 | 
            +
                    if post_act_fn is None:
         | 
| 196 | 
            +
                        self.post_act = None
         | 
| 197 | 
            +
                    elif post_act_fn == "silu":
         | 
| 198 | 
            +
                        self.post_act = nn.SiLU()
         | 
| 199 | 
            +
                    elif post_act_fn == "mish":
         | 
| 200 | 
            +
                        self.post_act = nn.Mish()
         | 
| 201 | 
            +
                    elif post_act_fn == "gelu":
         | 
| 202 | 
            +
                        self.post_act = nn.GELU()
         | 
| 203 | 
            +
                    else:
         | 
| 204 | 
            +
                        raise ValueError(f"{post_act_fn} does not exist. Make sure to define one of 'silu', 'mish', or 'gelu'")
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                def forward(self, sample, condition=None):
         | 
| 207 | 
            +
                    if condition is not None:
         | 
| 208 | 
            +
                        sample = sample + self.cond_proj(condition)
         | 
| 209 | 
            +
                    sample = self.linear_1(sample)
         | 
| 210 | 
            +
             | 
| 211 | 
            +
                    if self.act is not None:
         | 
| 212 | 
            +
                        sample = self.act(sample)
         | 
| 213 | 
            +
             | 
| 214 | 
            +
                    sample = self.linear_2(sample)
         | 
| 215 | 
            +
             | 
| 216 | 
            +
                    if self.post_act is not None:
         | 
| 217 | 
            +
                        sample = self.post_act(sample)
         | 
| 218 | 
            +
                    return sample
         | 
| 219 | 
            +
             | 
| 220 | 
            +
             | 
| 221 | 
            +
            class Timesteps(nn.Module):
         | 
| 222 | 
            +
                def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float):
         | 
| 223 | 
            +
                    super().__init__()
         | 
| 224 | 
            +
                    self.num_channels = num_channels
         | 
| 225 | 
            +
                    self.flip_sin_to_cos = flip_sin_to_cos
         | 
| 226 | 
            +
                    self.downscale_freq_shift = downscale_freq_shift
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                def forward(self, timesteps):
         | 
| 229 | 
            +
                    t_emb = get_timestep_embedding(
         | 
| 230 | 
            +
                        timesteps,
         | 
| 231 | 
            +
                        self.num_channels,
         | 
| 232 | 
            +
                        flip_sin_to_cos=self.flip_sin_to_cos,
         | 
| 233 | 
            +
                        downscale_freq_shift=self.downscale_freq_shift,
         | 
| 234 | 
            +
                    )
         | 
| 235 | 
            +
                    return t_emb
         | 
| 236 | 
            +
             | 
| 237 | 
            +
             | 
| 238 | 
            +
            class GaussianFourierProjection(nn.Module):
         | 
| 239 | 
            +
                """Gaussian Fourier embeddings for noise levels."""
         | 
| 240 | 
            +
             | 
| 241 | 
            +
                def __init__(
         | 
| 242 | 
            +
                    self, embedding_size: int = 256, scale: float = 1.0, set_W_to_weight=True, log=True, flip_sin_to_cos=False
         | 
| 243 | 
            +
                ):
         | 
| 244 | 
            +
                    super().__init__()
         | 
| 245 | 
            +
                    self.weight = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
         | 
| 246 | 
            +
                    self.log = log
         | 
| 247 | 
            +
                    self.flip_sin_to_cos = flip_sin_to_cos
         | 
| 248 | 
            +
             | 
| 249 | 
            +
                    if set_W_to_weight:
         | 
| 250 | 
            +
                        # to delete later
         | 
| 251 | 
            +
                        self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
         | 
| 252 | 
            +
             | 
| 253 | 
            +
                        self.weight = self.W
         | 
| 254 | 
            +
             | 
| 255 | 
            +
                def forward(self, x):
         | 
| 256 | 
            +
                    if self.log:
         | 
| 257 | 
            +
                        x = torch.log(x)
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                    x_proj = x[:, None] * self.weight[None, :] * 2 * np.pi
         | 
| 260 | 
            +
             | 
| 261 | 
            +
                    if self.flip_sin_to_cos:
         | 
| 262 | 
            +
                        out = torch.cat([torch.cos(x_proj), torch.sin(x_proj)], dim=-1)
         | 
| 263 | 
            +
                    else:
         | 
| 264 | 
            +
                        out = torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1)
         | 
| 265 | 
            +
                    return out
         | 
| 266 | 
            +
             | 
| 267 | 
            +
             | 
| 268 | 
            +
            class ImagePositionalEmbeddings(nn.Module):
         | 
| 269 | 
            +
                """
         | 
| 270 | 
            +
                Converts latent image classes into vector embeddings. Sums the vector embeddings with positional embeddings for the
         | 
| 271 | 
            +
                height and width of the latent space.
         | 
| 272 | 
            +
             | 
| 273 | 
            +
                For more details, see figure 10 of the dall-e paper: https://arxiv.org/abs/2102.12092
         | 
| 274 | 
            +
             | 
| 275 | 
            +
                For VQ-diffusion:
         | 
| 276 | 
            +
             | 
| 277 | 
            +
                Output vector embeddings are used as input for the transformer.
         | 
| 278 | 
            +
             | 
| 279 | 
            +
                Note that the vector embeddings for the transformer are different than the vector embeddings from the VQVAE.
         | 
| 280 | 
            +
             | 
| 281 | 
            +
                Args:
         | 
| 282 | 
            +
                    num_embed (`int`):
         | 
| 283 | 
            +
                        Number of embeddings for the latent pixels embeddings.
         | 
| 284 | 
            +
                    height (`int`):
         | 
| 285 | 
            +
                        Height of the latent image i.e. the number of height embeddings.
         | 
| 286 | 
            +
                    width (`int`):
         | 
| 287 | 
            +
                        Width of the latent image i.e. the number of width embeddings.
         | 
| 288 | 
            +
                    embed_dim (`int`):
         | 
| 289 | 
            +
                        Dimension of the produced vector embeddings. Used for the latent pixel, height, and width embeddings.
         | 
| 290 | 
            +
                """
         | 
| 291 | 
            +
             | 
| 292 | 
            +
                def __init__(
         | 
| 293 | 
            +
                    self,
         | 
| 294 | 
            +
                    num_embed: int,
         | 
| 295 | 
            +
                    height: int,
         | 
| 296 | 
            +
                    width: int,
         | 
| 297 | 
            +
                    embed_dim: int,
         | 
| 298 | 
            +
                ):
         | 
| 299 | 
            +
                    super().__init__()
         | 
| 300 | 
            +
             | 
| 301 | 
            +
                    self.height = height
         | 
| 302 | 
            +
                    self.width = width
         | 
| 303 | 
            +
                    self.num_embed = num_embed
         | 
| 304 | 
            +
                    self.embed_dim = embed_dim
         | 
| 305 | 
            +
             | 
| 306 | 
            +
                    self.emb = nn.Embedding(self.num_embed, embed_dim)
         | 
| 307 | 
            +
                    self.height_emb = nn.Embedding(self.height, embed_dim)
         | 
| 308 | 
            +
                    self.width_emb = nn.Embedding(self.width, embed_dim)
         | 
| 309 | 
            +
             | 
| 310 | 
            +
                def forward(self, index):
         | 
| 311 | 
            +
                    emb = self.emb(index)
         | 
| 312 | 
            +
             | 
| 313 | 
            +
                    height_emb = self.height_emb(torch.arange(self.height, device=index.device).view(1, self.height))
         | 
| 314 | 
            +
             | 
| 315 | 
            +
                    # 1 x H x D -> 1 x H x 1 x D
         | 
| 316 | 
            +
                    height_emb = height_emb.unsqueeze(2)
         | 
| 317 | 
            +
             | 
| 318 | 
            +
                    width_emb = self.width_emb(torch.arange(self.width, device=index.device).view(1, self.width))
         | 
| 319 | 
            +
             | 
| 320 | 
            +
                    # 1 x W x D -> 1 x 1 x W x D
         | 
| 321 | 
            +
                    width_emb = width_emb.unsqueeze(1)
         | 
| 322 | 
            +
             | 
| 323 | 
            +
                    pos_emb = height_emb + width_emb
         | 
| 324 | 
            +
             | 
| 325 | 
            +
                    # 1 x H x W x D -> 1 x L xD
         | 
| 326 | 
            +
                    pos_emb = pos_emb.view(1, self.height * self.width, -1)
         | 
| 327 | 
            +
             | 
| 328 | 
            +
                    emb = emb + pos_emb[:, : emb.shape[1], :]
         | 
| 329 | 
            +
             | 
| 330 | 
            +
                    return emb
         | 
| 331 | 
            +
             | 
| 332 | 
            +
             | 
| 333 | 
            +
            class LabelEmbedding(nn.Module):
         | 
| 334 | 
            +
                """
         | 
| 335 | 
            +
                Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
         | 
| 336 | 
            +
             | 
| 337 | 
            +
                Args:
         | 
| 338 | 
            +
                    num_classes (`int`): The number of classes.
         | 
| 339 | 
            +
                    hidden_size (`int`): The size of the vector embeddings.
         | 
| 340 | 
            +
                    dropout_prob (`float`): The probability of dropping a label.
         | 
| 341 | 
            +
                """
         | 
| 342 | 
            +
             | 
| 343 | 
            +
                def __init__(self, num_classes, hidden_size, dropout_prob):
         | 
| 344 | 
            +
                    super().__init__()
         | 
| 345 | 
            +
                    use_cfg_embedding = dropout_prob > 0
         | 
| 346 | 
            +
                    self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
         | 
| 347 | 
            +
                    self.num_classes = num_classes
         | 
| 348 | 
            +
                    self.dropout_prob = dropout_prob
         | 
| 349 | 
            +
             | 
| 350 | 
            +
                def token_drop(self, labels, force_drop_ids=None):
         | 
| 351 | 
            +
                    """
         | 
| 352 | 
            +
                    Drops labels to enable classifier-free guidance.
         | 
| 353 | 
            +
                    """
         | 
| 354 | 
            +
                    if force_drop_ids is None:
         | 
| 355 | 
            +
                        drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
         | 
| 356 | 
            +
                    else:
         | 
| 357 | 
            +
                        drop_ids = torch.tensor(force_drop_ids == 1)
         | 
| 358 | 
            +
                    labels = torch.where(drop_ids, self.num_classes, labels)
         | 
| 359 | 
            +
                    return labels
         | 
| 360 | 
            +
             | 
| 361 | 
            +
                def forward(self, labels, force_drop_ids=None):
         | 
| 362 | 
            +
                    use_dropout = self.dropout_prob > 0
         | 
| 363 | 
            +
                    if (self.training and use_dropout) or (force_drop_ids is not None):
         | 
| 364 | 
            +
                        labels = self.token_drop(labels, force_drop_ids)
         | 
| 365 | 
            +
                    embeddings = self.embedding_table(labels)
         | 
| 366 | 
            +
                    return embeddings
         | 
| 367 | 
            +
             | 
| 368 | 
            +
             | 
| 369 | 
            +
            class CombinedTimestepLabelEmbeddings(nn.Module):
         | 
| 370 | 
            +
                def __init__(self, num_classes, embedding_dim, class_dropout_prob=0.1):
         | 
| 371 | 
            +
                    super().__init__()
         | 
| 372 | 
            +
             | 
| 373 | 
            +
                    self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=1)
         | 
| 374 | 
            +
                    self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
         | 
| 375 | 
            +
                    self.class_embedder = LabelEmbedding(num_classes, embedding_dim, class_dropout_prob)
         | 
| 376 | 
            +
             | 
| 377 | 
            +
                def forward(self, timestep, class_labels, hidden_dtype=None):
         | 
| 378 | 
            +
                    timesteps_proj = self.time_proj(timestep)
         | 
| 379 | 
            +
                    timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype))  # (N, D)
         | 
| 380 | 
            +
             | 
| 381 | 
            +
                    class_labels = self.class_embedder(class_labels)  # (N, D)
         | 
| 382 | 
            +
             | 
| 383 | 
            +
                    conditioning = timesteps_emb + class_labels  # (N, D)
         | 
| 384 | 
            +
             | 
| 385 | 
            +
                    return conditioning
         | 
    	
        magicanimate/models/motion_module.py
    ADDED
    
    | @@ -0,0 +1,334 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # *************************************************************************
         | 
| 2 | 
            +
            # This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo-
         | 
| 3 | 
            +
            # difications”). All Bytedance Inc.'s Modifications are Copyright (2023) B-
         | 
| 4 | 
            +
            # ytedance Inc..  
         | 
| 5 | 
            +
            # *************************************************************************
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Adapted from https://github.com/guoyww/AnimateDiff
         | 
| 8 | 
            +
            from dataclasses import dataclass
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            import torch
         | 
| 11 | 
            +
            import torch.nn.functional as F
         | 
| 12 | 
            +
            from torch import nn
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            from diffusers.utils import BaseOutput
         | 
| 15 | 
            +
            from diffusers.utils.import_utils import is_xformers_available
         | 
| 16 | 
            +
            from diffusers.models.attention import FeedForward
         | 
| 17 | 
            +
            from magicanimate.models.orig_attention import CrossAttention
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            from einops import rearrange, repeat
         | 
| 20 | 
            +
            import math
         | 
| 21 | 
            +
             | 
| 22 | 
            +
             | 
| 23 | 
            +
            def zero_module(module):
         | 
| 24 | 
            +
                # Zero out the parameters of a module and return it.
         | 
| 25 | 
            +
                for p in module.parameters():
         | 
| 26 | 
            +
                    p.detach().zero_()
         | 
| 27 | 
            +
                return module
         | 
| 28 | 
            +
             | 
| 29 | 
            +
             | 
| 30 | 
            +
            @dataclass
         | 
| 31 | 
            +
            class TemporalTransformer3DModelOutput(BaseOutput):
         | 
| 32 | 
            +
                sample: torch.FloatTensor
         | 
| 33 | 
            +
             | 
| 34 | 
            +
             | 
| 35 | 
            +
            if is_xformers_available():
         | 
| 36 | 
            +
                import xformers
         | 
| 37 | 
            +
                import xformers.ops
         | 
| 38 | 
            +
            else:
         | 
| 39 | 
            +
                xformers = None
         | 
| 40 | 
            +
             | 
| 41 | 
            +
             | 
| 42 | 
            +
            def get_motion_module(
         | 
| 43 | 
            +
                in_channels,
         | 
| 44 | 
            +
                motion_module_type: str, 
         | 
| 45 | 
            +
                motion_module_kwargs: dict
         | 
| 46 | 
            +
            ):
         | 
| 47 | 
            +
                if motion_module_type == "Vanilla":
         | 
| 48 | 
            +
                    return VanillaTemporalModule(in_channels=in_channels, **motion_module_kwargs,)    
         | 
| 49 | 
            +
                else:
         | 
| 50 | 
            +
                    raise ValueError
         | 
| 51 | 
            +
             | 
| 52 | 
            +
             | 
| 53 | 
            +
            class VanillaTemporalModule(nn.Module):
         | 
| 54 | 
            +
                def __init__(
         | 
| 55 | 
            +
                    self,
         | 
| 56 | 
            +
                    in_channels,
         | 
| 57 | 
            +
                    num_attention_heads                = 8,
         | 
| 58 | 
            +
                    num_transformer_block              = 2,
         | 
| 59 | 
            +
                    attention_block_types              =( "Temporal_Self", "Temporal_Self" ),
         | 
| 60 | 
            +
                    cross_frame_attention_mode         = None,
         | 
| 61 | 
            +
                    temporal_position_encoding         = False,
         | 
| 62 | 
            +
                    temporal_position_encoding_max_len = 24,
         | 
| 63 | 
            +
                    temporal_attention_dim_div         = 1,
         | 
| 64 | 
            +
                    zero_initialize                    = True,
         | 
| 65 | 
            +
                ):
         | 
| 66 | 
            +
                    super().__init__()
         | 
| 67 | 
            +
                    
         | 
| 68 | 
            +
                    self.temporal_transformer = TemporalTransformer3DModel(
         | 
| 69 | 
            +
                        in_channels=in_channels,
         | 
| 70 | 
            +
                        num_attention_heads=num_attention_heads,
         | 
| 71 | 
            +
                        attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div,
         | 
| 72 | 
            +
                        num_layers=num_transformer_block,
         | 
| 73 | 
            +
                        attention_block_types=attention_block_types,
         | 
| 74 | 
            +
                        cross_frame_attention_mode=cross_frame_attention_mode,
         | 
| 75 | 
            +
                        temporal_position_encoding=temporal_position_encoding,
         | 
| 76 | 
            +
                        temporal_position_encoding_max_len=temporal_position_encoding_max_len,
         | 
| 77 | 
            +
                    )
         | 
| 78 | 
            +
                    
         | 
| 79 | 
            +
                    if zero_initialize:
         | 
| 80 | 
            +
                        self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out)
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                def forward(self, input_tensor, temb, encoder_hidden_states, attention_mask=None, anchor_frame_idx=None):
         | 
| 83 | 
            +
                    hidden_states = input_tensor
         | 
| 84 | 
            +
                    hidden_states = self.temporal_transformer(hidden_states, encoder_hidden_states, attention_mask)
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                    output = hidden_states
         | 
| 87 | 
            +
                    return output
         | 
| 88 | 
            +
             | 
| 89 | 
            +
             | 
| 90 | 
            +
            class TemporalTransformer3DModel(nn.Module):
         | 
| 91 | 
            +
                def __init__(
         | 
| 92 | 
            +
                    self,
         | 
| 93 | 
            +
                    in_channels,
         | 
| 94 | 
            +
                    num_attention_heads,
         | 
| 95 | 
            +
                    attention_head_dim,
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                    num_layers,
         | 
| 98 | 
            +
                    attention_block_types              = ( "Temporal_Self", "Temporal_Self", ),        
         | 
| 99 | 
            +
                    dropout                            = 0.0,
         | 
| 100 | 
            +
                    norm_num_groups                    = 32,
         | 
| 101 | 
            +
                    cross_attention_dim                = 768,
         | 
| 102 | 
            +
                    activation_fn                      = "geglu",
         | 
| 103 | 
            +
                    attention_bias                     = False,
         | 
| 104 | 
            +
                    upcast_attention                   = False,
         | 
| 105 | 
            +
                    
         | 
| 106 | 
            +
                    cross_frame_attention_mode         = None,
         | 
| 107 | 
            +
                    temporal_position_encoding         = False,
         | 
| 108 | 
            +
                    temporal_position_encoding_max_len = 24,
         | 
| 109 | 
            +
                ):
         | 
| 110 | 
            +
                    super().__init__()
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                    inner_dim = num_attention_heads * attention_head_dim
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                    self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
         | 
| 115 | 
            +
                    self.proj_in = nn.Linear(in_channels, inner_dim)
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                    self.transformer_blocks = nn.ModuleList(
         | 
| 118 | 
            +
                        [
         | 
| 119 | 
            +
                            TemporalTransformerBlock(
         | 
| 120 | 
            +
                                dim=inner_dim,
         | 
| 121 | 
            +
                                num_attention_heads=num_attention_heads,
         | 
| 122 | 
            +
                                attention_head_dim=attention_head_dim,
         | 
| 123 | 
            +
                                attention_block_types=attention_block_types,
         | 
| 124 | 
            +
                                dropout=dropout,
         | 
| 125 | 
            +
                                norm_num_groups=norm_num_groups,
         | 
| 126 | 
            +
                                cross_attention_dim=cross_attention_dim,
         | 
| 127 | 
            +
                                activation_fn=activation_fn,
         | 
| 128 | 
            +
                                attention_bias=attention_bias,
         | 
| 129 | 
            +
                                upcast_attention=upcast_attention,
         | 
| 130 | 
            +
                                cross_frame_attention_mode=cross_frame_attention_mode,
         | 
| 131 | 
            +
                                temporal_position_encoding=temporal_position_encoding,
         | 
| 132 | 
            +
                                temporal_position_encoding_max_len=temporal_position_encoding_max_len,
         | 
| 133 | 
            +
                            )
         | 
| 134 | 
            +
                            for d in range(num_layers)
         | 
| 135 | 
            +
                        ]
         | 
| 136 | 
            +
                    )
         | 
| 137 | 
            +
                    self.proj_out = nn.Linear(inner_dim, in_channels)    
         | 
| 138 | 
            +
                
         | 
| 139 | 
            +
                def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
         | 
| 140 | 
            +
                    assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
         | 
| 141 | 
            +
                    video_length = hidden_states.shape[2]
         | 
| 142 | 
            +
                    hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                    batch, channel, height, weight = hidden_states.shape
         | 
| 145 | 
            +
                    residual = hidden_states
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                    hidden_states = self.norm(hidden_states)
         | 
| 148 | 
            +
                    inner_dim = hidden_states.shape[1]
         | 
| 149 | 
            +
                    hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
         | 
| 150 | 
            +
                    hidden_states = self.proj_in(hidden_states)
         | 
| 151 | 
            +
             | 
| 152 | 
            +
                    # Transformer Blocks
         | 
| 153 | 
            +
                    for block in self.transformer_blocks:
         | 
| 154 | 
            +
                        hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states, video_length=video_length)
         | 
| 155 | 
            +
                    
         | 
| 156 | 
            +
                    # output
         | 
| 157 | 
            +
                    hidden_states = self.proj_out(hidden_states)
         | 
| 158 | 
            +
                    hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
         | 
| 159 | 
            +
             | 
| 160 | 
            +
                    output = hidden_states + residual
         | 
| 161 | 
            +
                    output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
         | 
| 162 | 
            +
                    
         | 
| 163 | 
            +
                    return output
         | 
| 164 | 
            +
             | 
| 165 | 
            +
             | 
| 166 | 
            +
            class TemporalTransformerBlock(nn.Module):
         | 
| 167 | 
            +
                def __init__(
         | 
| 168 | 
            +
                    self,
         | 
| 169 | 
            +
                    dim,
         | 
| 170 | 
            +
                    num_attention_heads,
         | 
| 171 | 
            +
                    attention_head_dim,
         | 
| 172 | 
            +
                    attention_block_types              = ( "Temporal_Self", "Temporal_Self", ),
         | 
| 173 | 
            +
                    dropout                            = 0.0,
         | 
| 174 | 
            +
                    norm_num_groups                    = 32,
         | 
| 175 | 
            +
                    cross_attention_dim                = 768,
         | 
| 176 | 
            +
                    activation_fn                      = "geglu",
         | 
| 177 | 
            +
                    attention_bias                     = False,
         | 
| 178 | 
            +
                    upcast_attention                   = False,
         | 
| 179 | 
            +
                    cross_frame_attention_mode         = None,
         | 
| 180 | 
            +
                    temporal_position_encoding         = False,
         | 
| 181 | 
            +
                    temporal_position_encoding_max_len = 24,
         | 
| 182 | 
            +
                ):
         | 
| 183 | 
            +
                    super().__init__()
         | 
| 184 | 
            +
             | 
| 185 | 
            +
                    attention_blocks = []
         | 
| 186 | 
            +
                    norms = []
         | 
| 187 | 
            +
                    
         | 
| 188 | 
            +
                    for block_name in attention_block_types:
         | 
| 189 | 
            +
                        attention_blocks.append(
         | 
| 190 | 
            +
                            VersatileAttention(
         | 
| 191 | 
            +
                                attention_mode=block_name.split("_")[0],
         | 
| 192 | 
            +
                                cross_attention_dim=cross_attention_dim if block_name.endswith("_Cross") else None,
         | 
| 193 | 
            +
                                
         | 
| 194 | 
            +
                                query_dim=dim,
         | 
| 195 | 
            +
                                heads=num_attention_heads,
         | 
| 196 | 
            +
                                dim_head=attention_head_dim,
         | 
| 197 | 
            +
                                dropout=dropout,
         | 
| 198 | 
            +
                                bias=attention_bias,
         | 
| 199 | 
            +
                                upcast_attention=upcast_attention,
         | 
| 200 | 
            +
                    
         | 
| 201 | 
            +
                                cross_frame_attention_mode=cross_frame_attention_mode,
         | 
| 202 | 
            +
                                temporal_position_encoding=temporal_position_encoding,
         | 
| 203 | 
            +
                                temporal_position_encoding_max_len=temporal_position_encoding_max_len,
         | 
| 204 | 
            +
                            )
         | 
| 205 | 
            +
                        )
         | 
| 206 | 
            +
                        norms.append(nn.LayerNorm(dim))
         | 
| 207 | 
            +
                        
         | 
| 208 | 
            +
                    self.attention_blocks = nn.ModuleList(attention_blocks)
         | 
| 209 | 
            +
                    self.norms = nn.ModuleList(norms)
         | 
| 210 | 
            +
             | 
| 211 | 
            +
                    self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
         | 
| 212 | 
            +
                    self.ff_norm = nn.LayerNorm(dim)
         | 
| 213 | 
            +
             | 
| 214 | 
            +
             | 
| 215 | 
            +
                def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
         | 
| 216 | 
            +
                    for attention_block, norm in zip(self.attention_blocks, self.norms):
         | 
| 217 | 
            +
                        norm_hidden_states = norm(hidden_states)
         | 
| 218 | 
            +
                        hidden_states = attention_block(
         | 
| 219 | 
            +
                            norm_hidden_states,
         | 
| 220 | 
            +
                            encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None,
         | 
| 221 | 
            +
                            video_length=video_length,
         | 
| 222 | 
            +
                        ) + hidden_states
         | 
| 223 | 
            +
                        
         | 
| 224 | 
            +
                    hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states
         | 
| 225 | 
            +
                    
         | 
| 226 | 
            +
                    output = hidden_states  
         | 
| 227 | 
            +
                    return output
         | 
| 228 | 
            +
             | 
| 229 | 
            +
             | 
| 230 | 
            +
            class PositionalEncoding(nn.Module):
         | 
| 231 | 
            +
                def __init__(
         | 
| 232 | 
            +
                    self, 
         | 
| 233 | 
            +
                    d_model, 
         | 
| 234 | 
            +
                    dropout = 0., 
         | 
| 235 | 
            +
                    max_len = 24
         | 
| 236 | 
            +
                ):
         | 
| 237 | 
            +
                    super().__init__()
         | 
| 238 | 
            +
                    self.dropout = nn.Dropout(p=dropout)
         | 
| 239 | 
            +
                    position = torch.arange(max_len).unsqueeze(1)
         | 
| 240 | 
            +
                    div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
         | 
| 241 | 
            +
                    pe = torch.zeros(1, max_len, d_model)
         | 
| 242 | 
            +
                    pe[0, :, 0::2] = torch.sin(position * div_term)
         | 
| 243 | 
            +
                    pe[0, :, 1::2] = torch.cos(position * div_term)
         | 
| 244 | 
            +
                    self.register_buffer('pe', pe)
         | 
| 245 | 
            +
             | 
| 246 | 
            +
                def forward(self, x):
         | 
| 247 | 
            +
                    x = x + self.pe[:, :x.size(1)]
         | 
| 248 | 
            +
                    return self.dropout(x)
         | 
| 249 | 
            +
             | 
| 250 | 
            +
             | 
| 251 | 
            +
            class VersatileAttention(CrossAttention):
         | 
| 252 | 
            +
                def __init__(
         | 
| 253 | 
            +
                        self,
         | 
| 254 | 
            +
                        attention_mode                     = None,
         | 
| 255 | 
            +
                        cross_frame_attention_mode         = None,
         | 
| 256 | 
            +
                        temporal_position_encoding         = False,
         | 
| 257 | 
            +
                        temporal_position_encoding_max_len = 24,            
         | 
| 258 | 
            +
                        *args, **kwargs
         | 
| 259 | 
            +
                    ):
         | 
| 260 | 
            +
                    super().__init__(*args, **kwargs)
         | 
| 261 | 
            +
                    assert attention_mode == "Temporal"
         | 
| 262 | 
            +
             | 
| 263 | 
            +
                    self.attention_mode = attention_mode
         | 
| 264 | 
            +
                    self.is_cross_attention = kwargs["cross_attention_dim"] is not None
         | 
| 265 | 
            +
                    
         | 
| 266 | 
            +
                    self.pos_encoder = PositionalEncoding(
         | 
| 267 | 
            +
                        kwargs["query_dim"],
         | 
| 268 | 
            +
                        dropout=0., 
         | 
| 269 | 
            +
                        max_len=temporal_position_encoding_max_len
         | 
| 270 | 
            +
                    ) if (temporal_position_encoding and attention_mode == "Temporal") else None
         | 
| 271 | 
            +
             | 
| 272 | 
            +
                def extra_repr(self):
         | 
| 273 | 
            +
                    return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"
         | 
| 274 | 
            +
             | 
| 275 | 
            +
                def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
         | 
| 276 | 
            +
                    batch_size, sequence_length, _ = hidden_states.shape
         | 
| 277 | 
            +
             | 
| 278 | 
            +
                    if self.attention_mode == "Temporal":
         | 
| 279 | 
            +
                        d = hidden_states.shape[1]
         | 
| 280 | 
            +
                        hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
         | 
| 281 | 
            +
                        
         | 
| 282 | 
            +
                        if self.pos_encoder is not None:
         | 
| 283 | 
            +
                            hidden_states = self.pos_encoder(hidden_states)
         | 
| 284 | 
            +
                        
         | 
| 285 | 
            +
                        encoder_hidden_states = repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d) if encoder_hidden_states is not None else encoder_hidden_states
         | 
| 286 | 
            +
                    else:
         | 
| 287 | 
            +
                        raise NotImplementedError
         | 
| 288 | 
            +
             | 
| 289 | 
            +
                    encoder_hidden_states = encoder_hidden_states
         | 
| 290 | 
            +
             | 
| 291 | 
            +
                    if self.group_norm is not None:
         | 
| 292 | 
            +
                        hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
         | 
| 293 | 
            +
             | 
| 294 | 
            +
                    query = self.to_q(hidden_states)
         | 
| 295 | 
            +
                    dim = query.shape[-1]
         | 
| 296 | 
            +
                    query = self.reshape_heads_to_batch_dim(query)
         | 
| 297 | 
            +
             | 
| 298 | 
            +
                    if self.added_kv_proj_dim is not None:
         | 
| 299 | 
            +
                        raise NotImplementedError
         | 
| 300 | 
            +
             | 
| 301 | 
            +
                    encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
         | 
| 302 | 
            +
                    key = self.to_k(encoder_hidden_states)
         | 
| 303 | 
            +
                    value = self.to_v(encoder_hidden_states)
         | 
| 304 | 
            +
             | 
| 305 | 
            +
                    key = self.reshape_heads_to_batch_dim(key)
         | 
| 306 | 
            +
                    value = self.reshape_heads_to_batch_dim(value)
         | 
| 307 | 
            +
             | 
| 308 | 
            +
                    if attention_mask is not None:
         | 
| 309 | 
            +
                        if attention_mask.shape[-1] != query.shape[1]:
         | 
| 310 | 
            +
                            target_length = query.shape[1]
         | 
| 311 | 
            +
                            attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
         | 
| 312 | 
            +
                            attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
         | 
| 313 | 
            +
             | 
| 314 | 
            +
                    # attention, what we cannot get enough of
         | 
| 315 | 
            +
                    if self._use_memory_efficient_attention_xformers:
         | 
| 316 | 
            +
                        hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
         | 
| 317 | 
            +
                        # Some versions of xformers return output in fp32, cast it back to the dtype of the input
         | 
| 318 | 
            +
                        hidden_states = hidden_states.to(query.dtype)
         | 
| 319 | 
            +
                    else:
         | 
| 320 | 
            +
                        if self._slice_size is None or query.shape[0] // self._slice_size == 1:
         | 
| 321 | 
            +
                            hidden_states = self._attention(query, key, value, attention_mask)
         | 
| 322 | 
            +
                        else:
         | 
| 323 | 
            +
                            hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
         | 
| 324 | 
            +
             | 
| 325 | 
            +
                    # linear proj
         | 
| 326 | 
            +
                    hidden_states = self.to_out[0](hidden_states)
         | 
| 327 | 
            +
             | 
| 328 | 
            +
                    # dropout
         | 
| 329 | 
            +
                    hidden_states = self.to_out[1](hidden_states)
         | 
| 330 | 
            +
             | 
| 331 | 
            +
                    if self.attention_mode == "Temporal":
         | 
| 332 | 
            +
                        hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
         | 
| 333 | 
            +
             | 
| 334 | 
            +
                    return hidden_states
         | 
    	
        magicanimate/models/mutual_self_attention.py
    ADDED
    
    | @@ -0,0 +1,642 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2023 ByteDance and/or its affiliates.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Copyright (2023) MagicAnimate Authors
         | 
| 4 | 
            +
            #
         | 
| 5 | 
            +
            # ByteDance, its affiliates and licensors retain all intellectual
         | 
| 6 | 
            +
            # property and proprietary rights in and to this material, related
         | 
| 7 | 
            +
            # documentation and any modifications thereto. Any use, reproduction,
         | 
| 8 | 
            +
            # disclosure or distribution of this material and related documentation
         | 
| 9 | 
            +
            # without an express license agreement from ByteDance or
         | 
| 10 | 
            +
            # its affiliates is strictly prohibited.
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            import torch
         | 
| 13 | 
            +
            import torch.nn.functional as F
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            from einops import rearrange
         | 
| 16 | 
            +
            from typing import Any, Callable, Dict, List, Optional, Tuple, Union
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            from diffusers.models.attention import BasicTransformerBlock
         | 
| 19 | 
            +
            from magicanimate.models.attention import BasicTransformerBlock as _BasicTransformerBlock
         | 
| 20 | 
            +
            from diffusers.models.unet_2d_blocks import CrossAttnDownBlock2D, CrossAttnUpBlock2D, DownBlock2D, UpBlock2D
         | 
| 21 | 
            +
            from .stable_diffusion_controlnet_reference import torch_dfs
         | 
| 22 | 
            +
             | 
| 23 | 
            +
             | 
| 24 | 
            +
            class AttentionBase:
         | 
| 25 | 
            +
                def __init__(self):
         | 
| 26 | 
            +
                    self.cur_step = 0
         | 
| 27 | 
            +
                    self.num_att_layers = -1
         | 
| 28 | 
            +
                    self.cur_att_layer = 0
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                def after_step(self):
         | 
| 31 | 
            +
                    pass
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                def __call__(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
         | 
| 34 | 
            +
                    out = self.forward(q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs)
         | 
| 35 | 
            +
                    self.cur_att_layer += 1
         | 
| 36 | 
            +
                    if self.cur_att_layer == self.num_att_layers:
         | 
| 37 | 
            +
                        self.cur_att_layer = 0
         | 
| 38 | 
            +
                        self.cur_step += 1
         | 
| 39 | 
            +
                        # after step
         | 
| 40 | 
            +
                        self.after_step()
         | 
| 41 | 
            +
                    return out
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                def forward(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
         | 
| 44 | 
            +
                    out = torch.einsum('b i j, b j d -> b i d', attn, v)
         | 
| 45 | 
            +
                    out = rearrange(out, '(b h) n d -> b n (h d)', h=num_heads)
         | 
| 46 | 
            +
                    return out
         | 
| 47 | 
            +
             | 
| 48 | 
            +
                def reset(self):
         | 
| 49 | 
            +
                    self.cur_step = 0
         | 
| 50 | 
            +
                    self.cur_att_layer = 0
         | 
| 51 | 
            +
             | 
| 52 | 
            +
             | 
| 53 | 
            +
            class MutualSelfAttentionControl(AttentionBase):
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                def __init__(self, total_steps=50, hijack_init_state=True, with_negative_guidance=False, appearance_control_alpha=0.5, mode='enqueue'):
         | 
| 56 | 
            +
                    """
         | 
| 57 | 
            +
                    Mutual self-attention control for Stable-Diffusion MODEl
         | 
| 58 | 
            +
                    Args:
         | 
| 59 | 
            +
                        total_steps: the total number of steps
         | 
| 60 | 
            +
                    """
         | 
| 61 | 
            +
                    super().__init__()
         | 
| 62 | 
            +
                    self.total_steps = total_steps
         | 
| 63 | 
            +
                    self.hijack = hijack_init_state
         | 
| 64 | 
            +
                    self.with_negative_guidance = with_negative_guidance
         | 
| 65 | 
            +
                    
         | 
| 66 | 
            +
                    # alpha: mutual self attention intensity
         | 
| 67 | 
            +
                    # TODO: make alpha learnable
         | 
| 68 | 
            +
                    self.alpha = appearance_control_alpha
         | 
| 69 | 
            +
                    self.GLOBAL_ATTN_QUEUE = []
         | 
| 70 | 
            +
                    assert mode in ['enqueue', 'dequeue']
         | 
| 71 | 
            +
                    MODE = mode
         | 
| 72 | 
            +
                
         | 
| 73 | 
            +
                def attn_batch(self, q, k, v, num_heads, **kwargs):
         | 
| 74 | 
            +
                    """
         | 
| 75 | 
            +
                    Performing attention for a batch of queries, keys, and values
         | 
| 76 | 
            +
                    """
         | 
| 77 | 
            +
                    b = q.shape[0] // num_heads
         | 
| 78 | 
            +
                    q = rearrange(q, "(b h) n d -> h (b n) d", h=num_heads)
         | 
| 79 | 
            +
                    k = rearrange(k, "(b h) n d -> h (b n) d", h=num_heads)
         | 
| 80 | 
            +
                    v = rearrange(v, "(b h) n d -> h (b n) d", h=num_heads)
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                    sim = torch.einsum("h i d, h j d -> h i j", q, k) * kwargs.get("scale")
         | 
| 83 | 
            +
                    attn = sim.softmax(-1)
         | 
| 84 | 
            +
                    out = torch.einsum("h i j, h j d -> h i d", attn, v)
         | 
| 85 | 
            +
                    out = rearrange(out, "h (b n) d -> b n (h d)", b=b)
         | 
| 86 | 
            +
                    return out
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                def mutual_self_attn(self, q, k, v, num_heads, **kwargs):
         | 
| 89 | 
            +
                    q_tgt, q_src = q.chunk(2)
         | 
| 90 | 
            +
                    k_tgt, k_src = k.chunk(2)
         | 
| 91 | 
            +
                    v_tgt, v_src = v.chunk(2)
         | 
| 92 | 
            +
                    
         | 
| 93 | 
            +
                    # out_tgt = self.attn_batch(q_tgt, k_src, v_src, num_heads, **kwargs) * self.alpha + \
         | 
| 94 | 
            +
                    #           self.attn_batch(q_tgt, k_tgt, v_tgt, num_heads, **kwargs) * (1 - self.alpha)
         | 
| 95 | 
            +
                    out_tgt = self.attn_batch(q_tgt, torch.cat([k_tgt, k_src], dim=1), torch.cat([v_tgt, v_src], dim=1), num_heads, **kwargs)
         | 
| 96 | 
            +
                    out_src = self.attn_batch(q_src, k_src, v_src, num_heads, **kwargs)
         | 
| 97 | 
            +
                    out = torch.cat([out_tgt, out_src], dim=0)
         | 
| 98 | 
            +
                    return out
         | 
| 99 | 
            +
                
         | 
| 100 | 
            +
                def mutual_self_attn_wq(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
         | 
| 101 | 
            +
                    if self.MODE == 'dequeue' and len(self.kv_queue) > 0:
         | 
| 102 | 
            +
                        k_src, v_src = self.kv_queue.pop(0)
         | 
| 103 | 
            +
                        out = self.attn_batch(q, torch.cat([k, k_src], dim=1), torch.cat([v, v_src], dim=1), num_heads, **kwargs)
         | 
| 104 | 
            +
                        return out
         | 
| 105 | 
            +
                    else:
         | 
| 106 | 
            +
                        self.kv_queue.append([k.clone(), v.clone()])
         | 
| 107 | 
            +
                        return super().forward(q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs)
         | 
| 108 | 
            +
                
         | 
| 109 | 
            +
                def get_queue(self):
         | 
| 110 | 
            +
                    return self.GLOBAL_ATTN_QUEUE
         | 
| 111 | 
            +
                
         | 
| 112 | 
            +
                def set_queue(self, attn_queue):
         | 
| 113 | 
            +
                    self.GLOBAL_ATTN_QUEUE = attn_queue
         | 
| 114 | 
            +
                
         | 
| 115 | 
            +
                def clear_queue(self):
         | 
| 116 | 
            +
                    self.GLOBAL_ATTN_QUEUE = []
         | 
| 117 | 
            +
                
         | 
| 118 | 
            +
                def to(self, dtype):
         | 
| 119 | 
            +
                    self.GLOBAL_ATTN_QUEUE = [p.to(dtype) for p in self.GLOBAL_ATTN_QUEUE]
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                def forward(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
         | 
| 122 | 
            +
                    """
         | 
| 123 | 
            +
                    Attention forward function
         | 
| 124 | 
            +
                    """
         | 
| 125 | 
            +
                    return super().forward(q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs)
         | 
| 126 | 
            +
             | 
| 127 | 
            +
             | 
| 128 | 
            +
            class ReferenceAttentionControl():
         | 
| 129 | 
            +
                
         | 
| 130 | 
            +
                def __init__(self, 
         | 
| 131 | 
            +
                             unet,
         | 
| 132 | 
            +
                             mode="write",
         | 
| 133 | 
            +
                             do_classifier_free_guidance=False,
         | 
| 134 | 
            +
                             attention_auto_machine_weight = float('inf'),
         | 
| 135 | 
            +
                             gn_auto_machine_weight = 1.0,
         | 
| 136 | 
            +
                             style_fidelity = 1.0,
         | 
| 137 | 
            +
                             reference_attn=True,
         | 
| 138 | 
            +
                             reference_adain=False,
         | 
| 139 | 
            +
                             fusion_blocks="midup",
         | 
| 140 | 
            +
                             batch_size=1, 
         | 
| 141 | 
            +
                             ) -> None:
         | 
| 142 | 
            +
                    # 10. Modify self attention and group norm
         | 
| 143 | 
            +
                    self.unet = unet
         | 
| 144 | 
            +
                    assert mode in ["read", "write"]
         | 
| 145 | 
            +
                    assert fusion_blocks in ["midup", "full"]
         | 
| 146 | 
            +
                    self.reference_attn = reference_attn
         | 
| 147 | 
            +
                    self.reference_adain = reference_adain
         | 
| 148 | 
            +
                    self.fusion_blocks = fusion_blocks
         | 
| 149 | 
            +
                    self.register_reference_hooks(
         | 
| 150 | 
            +
                        mode, 
         | 
| 151 | 
            +
                        do_classifier_free_guidance,
         | 
| 152 | 
            +
                        attention_auto_machine_weight,
         | 
| 153 | 
            +
                        gn_auto_machine_weight,
         | 
| 154 | 
            +
                        style_fidelity,
         | 
| 155 | 
            +
                        reference_attn,
         | 
| 156 | 
            +
                        reference_adain,
         | 
| 157 | 
            +
                        fusion_blocks,
         | 
| 158 | 
            +
                        batch_size=batch_size, 
         | 
| 159 | 
            +
                    )
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                def register_reference_hooks(
         | 
| 162 | 
            +
                        self, 
         | 
| 163 | 
            +
                        mode, 
         | 
| 164 | 
            +
                        do_classifier_free_guidance,
         | 
| 165 | 
            +
                        attention_auto_machine_weight,
         | 
| 166 | 
            +
                        gn_auto_machine_weight,
         | 
| 167 | 
            +
                        style_fidelity,
         | 
| 168 | 
            +
                        reference_attn,
         | 
| 169 | 
            +
                        reference_adain,
         | 
| 170 | 
            +
                        dtype=torch.float16,
         | 
| 171 | 
            +
                        batch_size=1, 
         | 
| 172 | 
            +
                        num_images_per_prompt=1, 
         | 
| 173 | 
            +
                        device=torch.device("cpu"), 
         | 
| 174 | 
            +
                        fusion_blocks='midup',
         | 
| 175 | 
            +
                    ):
         | 
| 176 | 
            +
                    MODE = mode
         | 
| 177 | 
            +
                    do_classifier_free_guidance = do_classifier_free_guidance
         | 
| 178 | 
            +
                    attention_auto_machine_weight = attention_auto_machine_weight
         | 
| 179 | 
            +
                    gn_auto_machine_weight = gn_auto_machine_weight
         | 
| 180 | 
            +
                    style_fidelity = style_fidelity
         | 
| 181 | 
            +
                    reference_attn = reference_attn
         | 
| 182 | 
            +
                    reference_adain = reference_adain
         | 
| 183 | 
            +
                    fusion_blocks = fusion_blocks
         | 
| 184 | 
            +
                    num_images_per_prompt = num_images_per_prompt
         | 
| 185 | 
            +
                    dtype=dtype
         | 
| 186 | 
            +
                    if do_classifier_free_guidance:
         | 
| 187 | 
            +
                        uc_mask = (
         | 
| 188 | 
            +
                            torch.Tensor([1] * batch_size * num_images_per_prompt * 16 + [0] * batch_size * num_images_per_prompt * 16)
         | 
| 189 | 
            +
                            .to(device)
         | 
| 190 | 
            +
                            .bool()
         | 
| 191 | 
            +
                        )
         | 
| 192 | 
            +
                    else:
         | 
| 193 | 
            +
                        uc_mask = (
         | 
| 194 | 
            +
                            torch.Tensor([0] * batch_size * num_images_per_prompt * 2)
         | 
| 195 | 
            +
                            .to(device)
         | 
| 196 | 
            +
                            .bool()
         | 
| 197 | 
            +
                        )
         | 
| 198 | 
            +
                    
         | 
| 199 | 
            +
                    def hacked_basic_transformer_inner_forward(
         | 
| 200 | 
            +
                        self,
         | 
| 201 | 
            +
                        hidden_states: torch.FloatTensor,
         | 
| 202 | 
            +
                        attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 203 | 
            +
                        encoder_hidden_states: Optional[torch.FloatTensor] = None,
         | 
| 204 | 
            +
                        encoder_attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 205 | 
            +
                        timestep: Optional[torch.LongTensor] = None,
         | 
| 206 | 
            +
                        cross_attention_kwargs: Dict[str, Any] = None,
         | 
| 207 | 
            +
                        class_labels: Optional[torch.LongTensor] = None,
         | 
| 208 | 
            +
                        video_length=None,
         | 
| 209 | 
            +
                    ):
         | 
| 210 | 
            +
                        if self.use_ada_layer_norm:
         | 
| 211 | 
            +
                            norm_hidden_states = self.norm1(hidden_states, timestep)
         | 
| 212 | 
            +
                        elif self.use_ada_layer_norm_zero:
         | 
| 213 | 
            +
                            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
         | 
| 214 | 
            +
                                hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
         | 
| 215 | 
            +
                            )
         | 
| 216 | 
            +
                        else:
         | 
| 217 | 
            +
                            norm_hidden_states = self.norm1(hidden_states)
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                        # 1. Self-Attention
         | 
| 220 | 
            +
                        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
         | 
| 221 | 
            +
                        if self.only_cross_attention:
         | 
| 222 | 
            +
                            attn_output = self.attn1(
         | 
| 223 | 
            +
                                norm_hidden_states,
         | 
| 224 | 
            +
                                encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
         | 
| 225 | 
            +
                                attention_mask=attention_mask,
         | 
| 226 | 
            +
                                **cross_attention_kwargs,
         | 
| 227 | 
            +
                            )
         | 
| 228 | 
            +
                        else:
         | 
| 229 | 
            +
                            if MODE == "write":
         | 
| 230 | 
            +
                                self.bank.append(norm_hidden_states.clone())
         | 
| 231 | 
            +
                                attn_output = self.attn1(
         | 
| 232 | 
            +
                                    norm_hidden_states,
         | 
| 233 | 
            +
                                    encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
         | 
| 234 | 
            +
                                    attention_mask=attention_mask,
         | 
| 235 | 
            +
                                    **cross_attention_kwargs,
         | 
| 236 | 
            +
                                )
         | 
| 237 | 
            +
                            if MODE == "read":
         | 
| 238 | 
            +
                                self.bank = [rearrange(d.unsqueeze(1).repeat(1, video_length, 1, 1), "b t l c -> (b t) l c")[:hidden_states.shape[0]] for d in self.bank]
         | 
| 239 | 
            +
                                hidden_states_uc = self.attn1(norm_hidden_states, 
         | 
| 240 | 
            +
                                                            encoder_hidden_states=torch.cat([norm_hidden_states] + self.bank, dim=1),
         | 
| 241 | 
            +
                                                            attention_mask=attention_mask) + hidden_states
         | 
| 242 | 
            +
                                hidden_states_c = hidden_states_uc.clone()
         | 
| 243 | 
            +
                                _uc_mask = uc_mask.clone()
         | 
| 244 | 
            +
                                if do_classifier_free_guidance:
         | 
| 245 | 
            +
                                    if hidden_states.shape[0] != _uc_mask.shape[0]:
         | 
| 246 | 
            +
                                        _uc_mask = (
         | 
| 247 | 
            +
                                            torch.Tensor([1] * (hidden_states.shape[0]//2) + [0] * (hidden_states.shape[0]//2))
         | 
| 248 | 
            +
                                            .to(device)
         | 
| 249 | 
            +
                                            .bool()
         | 
| 250 | 
            +
                                        )
         | 
| 251 | 
            +
                                    hidden_states_c[_uc_mask] = self.attn1(
         | 
| 252 | 
            +
                                        norm_hidden_states[_uc_mask],
         | 
| 253 | 
            +
                                        encoder_hidden_states=norm_hidden_states[_uc_mask],
         | 
| 254 | 
            +
                                        attention_mask=attention_mask,
         | 
| 255 | 
            +
                                    ) + hidden_states[_uc_mask]
         | 
| 256 | 
            +
                                hidden_states = hidden_states_c.clone()
         | 
| 257 | 
            +
                                    
         | 
| 258 | 
            +
                                self.bank.clear()
         | 
| 259 | 
            +
                                if self.attn2 is not None:
         | 
| 260 | 
            +
                                    # Cross-Attention
         | 
| 261 | 
            +
                                    norm_hidden_states = (
         | 
| 262 | 
            +
                                        self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
         | 
| 263 | 
            +
                                    )
         | 
| 264 | 
            +
                                    hidden_states = (
         | 
| 265 | 
            +
                                        self.attn2(
         | 
| 266 | 
            +
                                            norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
         | 
| 267 | 
            +
                                        )
         | 
| 268 | 
            +
                                        + hidden_states
         | 
| 269 | 
            +
                                    )
         | 
| 270 | 
            +
             | 
| 271 | 
            +
                                # Feed-forward
         | 
| 272 | 
            +
                                hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
         | 
| 273 | 
            +
             | 
| 274 | 
            +
                                # Temporal-Attention
         | 
| 275 | 
            +
                                if self.unet_use_temporal_attention:
         | 
| 276 | 
            +
                                    d = hidden_states.shape[1]
         | 
| 277 | 
            +
                                    hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
         | 
| 278 | 
            +
                                    norm_hidden_states = (
         | 
| 279 | 
            +
                                        self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states)
         | 
| 280 | 
            +
                                    )
         | 
| 281 | 
            +
                                    hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
         | 
| 282 | 
            +
                                    hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
         | 
| 283 | 
            +
             | 
| 284 | 
            +
                                return hidden_states
         | 
| 285 | 
            +
                            
         | 
| 286 | 
            +
                        if self.use_ada_layer_norm_zero:
         | 
| 287 | 
            +
                            attn_output = gate_msa.unsqueeze(1) * attn_output
         | 
| 288 | 
            +
                        hidden_states = attn_output + hidden_states
         | 
| 289 | 
            +
             | 
| 290 | 
            +
                        if self.attn2 is not None:
         | 
| 291 | 
            +
                            norm_hidden_states = (
         | 
| 292 | 
            +
                                self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
         | 
| 293 | 
            +
                            )
         | 
| 294 | 
            +
             | 
| 295 | 
            +
                            # 2. Cross-Attention
         | 
| 296 | 
            +
                            attn_output = self.attn2(
         | 
| 297 | 
            +
                                norm_hidden_states,
         | 
| 298 | 
            +
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 299 | 
            +
                                attention_mask=encoder_attention_mask,
         | 
| 300 | 
            +
                                **cross_attention_kwargs,
         | 
| 301 | 
            +
                            )
         | 
| 302 | 
            +
                            hidden_states = attn_output + hidden_states
         | 
| 303 | 
            +
             | 
| 304 | 
            +
                        # 3. Feed-forward
         | 
| 305 | 
            +
                        norm_hidden_states = self.norm3(hidden_states)
         | 
| 306 | 
            +
             | 
| 307 | 
            +
                        if self.use_ada_layer_norm_zero:
         | 
| 308 | 
            +
                            norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
         | 
| 309 | 
            +
             | 
| 310 | 
            +
                        ff_output = self.ff(norm_hidden_states)
         | 
| 311 | 
            +
             | 
| 312 | 
            +
                        if self.use_ada_layer_norm_zero:
         | 
| 313 | 
            +
                            ff_output = gate_mlp.unsqueeze(1) * ff_output
         | 
| 314 | 
            +
             | 
| 315 | 
            +
                        hidden_states = ff_output + hidden_states
         | 
| 316 | 
            +
             | 
| 317 | 
            +
                        return hidden_states
         | 
| 318 | 
            +
             | 
| 319 | 
            +
                    def hacked_mid_forward(self, *args, **kwargs):
         | 
| 320 | 
            +
                        eps = 1e-6
         | 
| 321 | 
            +
                        x = self.original_forward(*args, **kwargs)
         | 
| 322 | 
            +
                        if MODE == "write":
         | 
| 323 | 
            +
                            if gn_auto_machine_weight >= self.gn_weight:
         | 
| 324 | 
            +
                                var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
         | 
| 325 | 
            +
                                self.mean_bank.append(mean)
         | 
| 326 | 
            +
                                self.var_bank.append(var)
         | 
| 327 | 
            +
                        if MODE == "read":
         | 
| 328 | 
            +
                            if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
         | 
| 329 | 
            +
                                var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
         | 
| 330 | 
            +
                                std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
         | 
| 331 | 
            +
                                mean_acc = sum(self.mean_bank) / float(len(self.mean_bank))
         | 
| 332 | 
            +
                                var_acc = sum(self.var_bank) / float(len(self.var_bank))
         | 
| 333 | 
            +
                                std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
         | 
| 334 | 
            +
                                x_uc = (((x - mean) / std) * std_acc) + mean_acc
         | 
| 335 | 
            +
                                x_c = x_uc.clone()
         | 
| 336 | 
            +
                                if do_classifier_free_guidance and style_fidelity > 0:
         | 
| 337 | 
            +
                                    x_c[uc_mask] = x[uc_mask]
         | 
| 338 | 
            +
                                x = style_fidelity * x_c + (1.0 - style_fidelity) * x_uc
         | 
| 339 | 
            +
                            self.mean_bank = []
         | 
| 340 | 
            +
                            self.var_bank = []
         | 
| 341 | 
            +
                        return x
         | 
| 342 | 
            +
             | 
| 343 | 
            +
                    def hack_CrossAttnDownBlock2D_forward(
         | 
| 344 | 
            +
                        self,
         | 
| 345 | 
            +
                        hidden_states: torch.FloatTensor,
         | 
| 346 | 
            +
                        temb: Optional[torch.FloatTensor] = None,
         | 
| 347 | 
            +
                        encoder_hidden_states: Optional[torch.FloatTensor] = None,
         | 
| 348 | 
            +
                        attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 349 | 
            +
                        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 350 | 
            +
                        encoder_attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 351 | 
            +
                    ):
         | 
| 352 | 
            +
                        eps = 1e-6
         | 
| 353 | 
            +
             | 
| 354 | 
            +
                        # TODO(Patrick, William) - attention mask is not used
         | 
| 355 | 
            +
                        output_states = ()
         | 
| 356 | 
            +
             | 
| 357 | 
            +
                        for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
         | 
| 358 | 
            +
                            hidden_states = resnet(hidden_states, temb)
         | 
| 359 | 
            +
                            hidden_states = attn(
         | 
| 360 | 
            +
                                hidden_states,
         | 
| 361 | 
            +
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 362 | 
            +
                                cross_attention_kwargs=cross_attention_kwargs,
         | 
| 363 | 
            +
                                attention_mask=attention_mask,
         | 
| 364 | 
            +
                                encoder_attention_mask=encoder_attention_mask,
         | 
| 365 | 
            +
                                return_dict=False,
         | 
| 366 | 
            +
                            )[0]
         | 
| 367 | 
            +
                            if MODE == "write":
         | 
| 368 | 
            +
                                if gn_auto_machine_weight >= self.gn_weight:
         | 
| 369 | 
            +
                                    var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
         | 
| 370 | 
            +
                                    self.mean_bank.append([mean])
         | 
| 371 | 
            +
                                    self.var_bank.append([var])
         | 
| 372 | 
            +
                            if MODE == "read":
         | 
| 373 | 
            +
                                if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
         | 
| 374 | 
            +
                                    var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
         | 
| 375 | 
            +
                                    std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
         | 
| 376 | 
            +
                                    mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
         | 
| 377 | 
            +
                                    var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
         | 
| 378 | 
            +
                                    std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
         | 
| 379 | 
            +
                                    hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
         | 
| 380 | 
            +
                                    hidden_states_c = hidden_states_uc.clone()
         | 
| 381 | 
            +
                                    if do_classifier_free_guidance and style_fidelity > 0:
         | 
| 382 | 
            +
                                        hidden_states_c[uc_mask] = hidden_states[uc_mask].to(hidden_states_c.dtype)
         | 
| 383 | 
            +
                                    hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
         | 
| 384 | 
            +
             | 
| 385 | 
            +
                            output_states = output_states + (hidden_states,)
         | 
| 386 | 
            +
             | 
| 387 | 
            +
                        if MODE == "read":
         | 
| 388 | 
            +
                            self.mean_bank = []
         | 
| 389 | 
            +
                            self.var_bank = []
         | 
| 390 | 
            +
             | 
| 391 | 
            +
                        if self.downsamplers is not None:
         | 
| 392 | 
            +
                            for downsampler in self.downsamplers:
         | 
| 393 | 
            +
                                hidden_states = downsampler(hidden_states)
         | 
| 394 | 
            +
             | 
| 395 | 
            +
                            output_states = output_states + (hidden_states,)
         | 
| 396 | 
            +
             | 
| 397 | 
            +
                        return hidden_states, output_states
         | 
| 398 | 
            +
             | 
| 399 | 
            +
                    def hacked_DownBlock2D_forward(self, hidden_states, temb=None):
         | 
| 400 | 
            +
                        eps = 1e-6
         | 
| 401 | 
            +
             | 
| 402 | 
            +
                        output_states = ()
         | 
| 403 | 
            +
             | 
| 404 | 
            +
                        for i, resnet in enumerate(self.resnets):
         | 
| 405 | 
            +
                            hidden_states = resnet(hidden_states, temb)
         | 
| 406 | 
            +
             | 
| 407 | 
            +
                            if MODE == "write":
         | 
| 408 | 
            +
                                if gn_auto_machine_weight >= self.gn_weight:
         | 
| 409 | 
            +
                                    var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
         | 
| 410 | 
            +
                                    self.mean_bank.append([mean])
         | 
| 411 | 
            +
                                    self.var_bank.append([var])
         | 
| 412 | 
            +
                            if MODE == "read":
         | 
| 413 | 
            +
                                if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
         | 
| 414 | 
            +
                                    var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
         | 
| 415 | 
            +
                                    std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
         | 
| 416 | 
            +
                                    mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
         | 
| 417 | 
            +
                                    var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
         | 
| 418 | 
            +
                                    std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
         | 
| 419 | 
            +
                                    hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
         | 
| 420 | 
            +
                                    hidden_states_c = hidden_states_uc.clone()
         | 
| 421 | 
            +
                                    if do_classifier_free_guidance and style_fidelity > 0:
         | 
| 422 | 
            +
                                        hidden_states_c[uc_mask] = hidden_states[uc_mask].to(hidden_states_c.dtype)
         | 
| 423 | 
            +
                                    hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
         | 
| 424 | 
            +
             | 
| 425 | 
            +
                            output_states = output_states + (hidden_states,)
         | 
| 426 | 
            +
             | 
| 427 | 
            +
                        if MODE == "read":
         | 
| 428 | 
            +
                            self.mean_bank = []
         | 
| 429 | 
            +
                            self.var_bank = []
         | 
| 430 | 
            +
             | 
| 431 | 
            +
                        if self.downsamplers is not None:
         | 
| 432 | 
            +
                            for downsampler in self.downsamplers:
         | 
| 433 | 
            +
                                hidden_states = downsampler(hidden_states)
         | 
| 434 | 
            +
             | 
| 435 | 
            +
                            output_states = output_states + (hidden_states,)
         | 
| 436 | 
            +
             | 
| 437 | 
            +
                        return hidden_states, output_states
         | 
| 438 | 
            +
             | 
| 439 | 
            +
                    def hacked_CrossAttnUpBlock2D_forward(
         | 
| 440 | 
            +
                        self,
         | 
| 441 | 
            +
                        hidden_states: torch.FloatTensor,
         | 
| 442 | 
            +
                        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
         | 
| 443 | 
            +
                        temb: Optional[torch.FloatTensor] = None,
         | 
| 444 | 
            +
                        encoder_hidden_states: Optional[torch.FloatTensor] = None,
         | 
| 445 | 
            +
                        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 446 | 
            +
                        upsample_size: Optional[int] = None,
         | 
| 447 | 
            +
                        attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 448 | 
            +
                        encoder_attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 449 | 
            +
                    ):
         | 
| 450 | 
            +
                        eps = 1e-6
         | 
| 451 | 
            +
                        # TODO(Patrick, William) - attention mask is not used
         | 
| 452 | 
            +
                        for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
         | 
| 453 | 
            +
                            # pop res hidden states
         | 
| 454 | 
            +
                            res_hidden_states = res_hidden_states_tuple[-1]
         | 
| 455 | 
            +
                            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
         | 
| 456 | 
            +
                            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
         | 
| 457 | 
            +
                            hidden_states = resnet(hidden_states, temb)
         | 
| 458 | 
            +
                            hidden_states = attn(
         | 
| 459 | 
            +
                                hidden_states,
         | 
| 460 | 
            +
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 461 | 
            +
                                cross_attention_kwargs=cross_attention_kwargs,
         | 
| 462 | 
            +
                                attention_mask=attention_mask,
         | 
| 463 | 
            +
                                encoder_attention_mask=encoder_attention_mask,
         | 
| 464 | 
            +
                                return_dict=False,
         | 
| 465 | 
            +
                            )[0]
         | 
| 466 | 
            +
             | 
| 467 | 
            +
                            if MODE == "write":
         | 
| 468 | 
            +
                                if gn_auto_machine_weight >= self.gn_weight:
         | 
| 469 | 
            +
                                    var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
         | 
| 470 | 
            +
                                    self.mean_bank.append([mean])
         | 
| 471 | 
            +
                                    self.var_bank.append([var])
         | 
| 472 | 
            +
                            if MODE == "read":
         | 
| 473 | 
            +
                                if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
         | 
| 474 | 
            +
                                    var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
         | 
| 475 | 
            +
                                    std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
         | 
| 476 | 
            +
                                    mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
         | 
| 477 | 
            +
                                    var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
         | 
| 478 | 
            +
                                    std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
         | 
| 479 | 
            +
                                    hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
         | 
| 480 | 
            +
                                    hidden_states_c = hidden_states_uc.clone()
         | 
| 481 | 
            +
                                    if do_classifier_free_guidance and style_fidelity > 0:
         | 
| 482 | 
            +
                                        hidden_states_c[uc_mask] = hidden_states[uc_mask].to(hidden_states_c.dtype)
         | 
| 483 | 
            +
                                    hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
         | 
| 484 | 
            +
             | 
| 485 | 
            +
                        if MODE == "read":
         | 
| 486 | 
            +
                            self.mean_bank = []
         | 
| 487 | 
            +
                            self.var_bank = []
         | 
| 488 | 
            +
             | 
| 489 | 
            +
                        if self.upsamplers is not None:
         | 
| 490 | 
            +
                            for upsampler in self.upsamplers:
         | 
| 491 | 
            +
                                hidden_states = upsampler(hidden_states, upsample_size)
         | 
| 492 | 
            +
             | 
| 493 | 
            +
                        return hidden_states
         | 
| 494 | 
            +
             | 
| 495 | 
            +
                    def hacked_UpBlock2D_forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
         | 
| 496 | 
            +
                        eps = 1e-6
         | 
| 497 | 
            +
                        for i, resnet in enumerate(self.resnets):
         | 
| 498 | 
            +
                            # pop res hidden states
         | 
| 499 | 
            +
                            res_hidden_states = res_hidden_states_tuple[-1]
         | 
| 500 | 
            +
                            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
         | 
| 501 | 
            +
                            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
         | 
| 502 | 
            +
                            hidden_states = resnet(hidden_states, temb)
         | 
| 503 | 
            +
             | 
| 504 | 
            +
                            if MODE == "write":
         | 
| 505 | 
            +
                                if gn_auto_machine_weight >= self.gn_weight:
         | 
| 506 | 
            +
                                    var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
         | 
| 507 | 
            +
                                    self.mean_bank.append([mean])
         | 
| 508 | 
            +
                                    self.var_bank.append([var])
         | 
| 509 | 
            +
                            if MODE == "read":
         | 
| 510 | 
            +
                                if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
         | 
| 511 | 
            +
                                    var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
         | 
| 512 | 
            +
                                    std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
         | 
| 513 | 
            +
                                    mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
         | 
| 514 | 
            +
                                    var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
         | 
| 515 | 
            +
                                    std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
         | 
| 516 | 
            +
                                    hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
         | 
| 517 | 
            +
                                    hidden_states_c = hidden_states_uc.clone()
         | 
| 518 | 
            +
                                    if do_classifier_free_guidance and style_fidelity > 0:
         | 
| 519 | 
            +
                                        hidden_states_c[uc_mask] = hidden_states[uc_mask].to(hidden_states_c.dtype)
         | 
| 520 | 
            +
                                    hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
         | 
| 521 | 
            +
             | 
| 522 | 
            +
                        if MODE == "read":
         | 
| 523 | 
            +
                            self.mean_bank = []
         | 
| 524 | 
            +
                            self.var_bank = []
         | 
| 525 | 
            +
             | 
| 526 | 
            +
                        if self.upsamplers is not None:
         | 
| 527 | 
            +
                            for upsampler in self.upsamplers:
         | 
| 528 | 
            +
                                hidden_states = upsampler(hidden_states, upsample_size)
         | 
| 529 | 
            +
             | 
| 530 | 
            +
                        return hidden_states
         | 
| 531 | 
            +
             | 
| 532 | 
            +
                    if self.reference_attn:
         | 
| 533 | 
            +
                        if self.fusion_blocks == "midup":
         | 
| 534 | 
            +
                            attn_modules = [module for module in (torch_dfs(self.unet.mid_block)+torch_dfs(self.unet.up_blocks)) if isinstance(module, BasicTransformerBlock) or isinstance(module, _BasicTransformerBlock)]
         | 
| 535 | 
            +
                        elif self.fusion_blocks == "full":
         | 
| 536 | 
            +
                            attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock) or isinstance(module, _BasicTransformerBlock)]            
         | 
| 537 | 
            +
                        attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0])
         | 
| 538 | 
            +
             | 
| 539 | 
            +
                        for i, module in enumerate(attn_modules):
         | 
| 540 | 
            +
                            module._original_inner_forward = module.forward
         | 
| 541 | 
            +
                            module.forward = hacked_basic_transformer_inner_forward.__get__(module, BasicTransformerBlock)
         | 
| 542 | 
            +
                            module.bank = []
         | 
| 543 | 
            +
                            module.attn_weight = float(i) / float(len(attn_modules))
         | 
| 544 | 
            +
             | 
| 545 | 
            +
                    if self.reference_adain:
         | 
| 546 | 
            +
                        gn_modules = [self.unet.mid_block]
         | 
| 547 | 
            +
                        self.unet.mid_block.gn_weight = 0
         | 
| 548 | 
            +
             | 
| 549 | 
            +
                        down_blocks = self.unet.down_blocks
         | 
| 550 | 
            +
                        for w, module in enumerate(down_blocks):
         | 
| 551 | 
            +
                            module.gn_weight = 1.0 - float(w) / float(len(down_blocks))
         | 
| 552 | 
            +
                            gn_modules.append(module)
         | 
| 553 | 
            +
             | 
| 554 | 
            +
                        up_blocks = self.unet.up_blocks
         | 
| 555 | 
            +
                        for w, module in enumerate(up_blocks):
         | 
| 556 | 
            +
                            module.gn_weight = float(w) / float(len(up_blocks))
         | 
| 557 | 
            +
                            gn_modules.append(module)
         | 
| 558 | 
            +
             | 
| 559 | 
            +
                        for i, module in enumerate(gn_modules):
         | 
| 560 | 
            +
                            if getattr(module, "original_forward", None) is None:
         | 
| 561 | 
            +
                                module.original_forward = module.forward
         | 
| 562 | 
            +
                            if i == 0:
         | 
| 563 | 
            +
                                # mid_block
         | 
| 564 | 
            +
                                module.forward = hacked_mid_forward.__get__(module, torch.nn.Module)
         | 
| 565 | 
            +
                            elif isinstance(module, CrossAttnDownBlock2D):
         | 
| 566 | 
            +
                                module.forward = hack_CrossAttnDownBlock2D_forward.__get__(module, CrossAttnDownBlock2D)
         | 
| 567 | 
            +
                            elif isinstance(module, DownBlock2D):
         | 
| 568 | 
            +
                                module.forward = hacked_DownBlock2D_forward.__get__(module, DownBlock2D)
         | 
| 569 | 
            +
                            elif isinstance(module, CrossAttnUpBlock2D):
         | 
| 570 | 
            +
                                module.forward = hacked_CrossAttnUpBlock2D_forward.__get__(module, CrossAttnUpBlock2D)
         | 
| 571 | 
            +
                            elif isinstance(module, UpBlock2D):
         | 
| 572 | 
            +
                                module.forward = hacked_UpBlock2D_forward.__get__(module, UpBlock2D)
         | 
| 573 | 
            +
                            module.mean_bank = []
         | 
| 574 | 
            +
                            module.var_bank = []
         | 
| 575 | 
            +
                            module.gn_weight *= 2
         | 
| 576 | 
            +
                
         | 
| 577 | 
            +
                def update(self, writer, dtype=torch.float16):
         | 
| 578 | 
            +
                    if self.reference_attn:
         | 
| 579 | 
            +
                        if self.fusion_blocks == "midup":
         | 
| 580 | 
            +
                            reader_attn_modules = [module for module in (torch_dfs(self.unet.mid_block)+torch_dfs(self.unet.up_blocks)) if isinstance(module, _BasicTransformerBlock)]
         | 
| 581 | 
            +
                            writer_attn_modules = [module for module in (torch_dfs(writer.unet.mid_block)+torch_dfs(writer.unet.up_blocks)) if isinstance(module, BasicTransformerBlock)]
         | 
| 582 | 
            +
                        elif self.fusion_blocks == "full":
         | 
| 583 | 
            +
                            reader_attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, _BasicTransformerBlock)]
         | 
| 584 | 
            +
                            writer_attn_modules = [module for module in torch_dfs(writer.unet) if isinstance(module, BasicTransformerBlock)]
         | 
| 585 | 
            +
                        reader_attn_modules = sorted(reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0])    
         | 
| 586 | 
            +
                        writer_attn_modules = sorted(writer_attn_modules, key=lambda x: -x.norm1.normalized_shape[0])
         | 
| 587 | 
            +
                        for r, w in zip(reader_attn_modules, writer_attn_modules):
         | 
| 588 | 
            +
                            r.bank = [v.clone().to(dtype) for v in w.bank]
         | 
| 589 | 
            +
                            # w.bank.clear()
         | 
| 590 | 
            +
                    if self.reference_adain:
         | 
| 591 | 
            +
                        reader_gn_modules = [self.unet.mid_block]
         | 
| 592 | 
            +
                        
         | 
| 593 | 
            +
                        down_blocks = self.unet.down_blocks
         | 
| 594 | 
            +
                        for w, module in enumerate(down_blocks):
         | 
| 595 | 
            +
                            reader_gn_modules.append(module)
         | 
| 596 | 
            +
             | 
| 597 | 
            +
                        up_blocks = self.unet.up_blocks
         | 
| 598 | 
            +
                        for w, module in enumerate(up_blocks):
         | 
| 599 | 
            +
                            reader_gn_modules.append(module)
         | 
| 600 | 
            +
                            
         | 
| 601 | 
            +
                        writer_gn_modules = [writer.unet.mid_block]
         | 
| 602 | 
            +
                        
         | 
| 603 | 
            +
                        down_blocks = writer.unet.down_blocks
         | 
| 604 | 
            +
                        for w, module in enumerate(down_blocks):
         | 
| 605 | 
            +
                            writer_gn_modules.append(module)
         | 
| 606 | 
            +
             | 
| 607 | 
            +
                        up_blocks = writer.unet.up_blocks
         | 
| 608 | 
            +
                        for w, module in enumerate(up_blocks):
         | 
| 609 | 
            +
                            writer_gn_modules.append(module)
         | 
| 610 | 
            +
                        
         | 
| 611 | 
            +
                        for r, w in zip(reader_gn_modules, writer_gn_modules):
         | 
| 612 | 
            +
                            if len(w.mean_bank) > 0 and isinstance(w.mean_bank[0], list):
         | 
| 613 | 
            +
                                r.mean_bank = [[v.clone().to(dtype) for v in vl] for vl in w.mean_bank]
         | 
| 614 | 
            +
                                r.var_bank = [[v.clone().to(dtype) for v in vl] for vl in w.var_bank]
         | 
| 615 | 
            +
                            else:
         | 
| 616 | 
            +
                                r.mean_bank = [v.clone().to(dtype) for v in w.mean_bank]
         | 
| 617 | 
            +
                                r.var_bank = [v.clone().to(dtype) for v in w.var_bank]
         | 
| 618 | 
            +
                
         | 
| 619 | 
            +
                def clear(self):
         | 
| 620 | 
            +
                    if self.reference_attn:
         | 
| 621 | 
            +
                        if self.fusion_blocks == "midup":
         | 
| 622 | 
            +
                            reader_attn_modules = [module for module in (torch_dfs(self.unet.mid_block)+torch_dfs(self.unet.up_blocks)) if isinstance(module, BasicTransformerBlock) or isinstance(module, _BasicTransformerBlock)]
         | 
| 623 | 
            +
                        elif self.fusion_blocks == "full":
         | 
| 624 | 
            +
                            reader_attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock) or isinstance(module, _BasicTransformerBlock)]
         | 
| 625 | 
            +
                        reader_attn_modules = sorted(reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0])
         | 
| 626 | 
            +
                        for r in reader_attn_modules:
         | 
| 627 | 
            +
                            r.bank.clear()
         | 
| 628 | 
            +
                    if self.reference_adain:
         | 
| 629 | 
            +
                        reader_gn_modules = [self.unet.mid_block]
         | 
| 630 | 
            +
                        
         | 
| 631 | 
            +
                        down_blocks = self.unet.down_blocks
         | 
| 632 | 
            +
                        for w, module in enumerate(down_blocks):
         | 
| 633 | 
            +
                            reader_gn_modules.append(module)
         | 
| 634 | 
            +
             | 
| 635 | 
            +
                        up_blocks = self.unet.up_blocks
         | 
| 636 | 
            +
                        for w, module in enumerate(up_blocks):
         | 
| 637 | 
            +
                            reader_gn_modules.append(module)
         | 
| 638 | 
            +
                        
         | 
| 639 | 
            +
                        for r in reader_gn_modules:
         | 
| 640 | 
            +
                            r.mean_bank.clear()
         | 
| 641 | 
            +
                            r.var_bank.clear()
         | 
| 642 | 
            +
                        
         | 
    	
        magicanimate/models/orig_attention.py
    ADDED
    
    | @@ -0,0 +1,988 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # *************************************************************************
         | 
| 2 | 
            +
            # This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo-
         | 
| 3 | 
            +
            # difications”). All Bytedance Inc.'s Modifications are Copyright (2023) B-
         | 
| 4 | 
            +
            # ytedance Inc..  
         | 
| 5 | 
            +
            # *************************************************************************
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Copyright 2022 The HuggingFace Team. All rights reserved.
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            import math
         | 
| 21 | 
            +
            from dataclasses import dataclass
         | 
| 22 | 
            +
            from typing import Optional
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            import torch
         | 
| 25 | 
            +
            import torch.nn.functional as F
         | 
| 26 | 
            +
            from torch import nn
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            from diffusers.configuration_utils import ConfigMixin, register_to_config
         | 
| 29 | 
            +
            from diffusers.models.modeling_utils import ModelMixin
         | 
| 30 | 
            +
            from diffusers.models.embeddings import ImagePositionalEmbeddings
         | 
| 31 | 
            +
            from diffusers.utils import BaseOutput
         | 
| 32 | 
            +
            from diffusers.utils.import_utils import is_xformers_available
         | 
| 33 | 
            +
             | 
| 34 | 
            +
             | 
| 35 | 
            +
            @dataclass
         | 
| 36 | 
            +
            class Transformer2DModelOutput(BaseOutput):
         | 
| 37 | 
            +
                """
         | 
| 38 | 
            +
                Args:
         | 
| 39 | 
            +
                    sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
         | 
| 40 | 
            +
                        Hidden states conditioned on `encoder_hidden_states` input. If discrete, returns probability distributions
         | 
| 41 | 
            +
                        for the unnoised latent pixels.
         | 
| 42 | 
            +
                """
         | 
| 43 | 
            +
             | 
| 44 | 
            +
                sample: torch.FloatTensor
         | 
| 45 | 
            +
             | 
| 46 | 
            +
             | 
| 47 | 
            +
            if is_xformers_available():
         | 
| 48 | 
            +
                import xformers
         | 
| 49 | 
            +
                import xformers.ops
         | 
| 50 | 
            +
            else:
         | 
| 51 | 
            +
                xformers = None
         | 
| 52 | 
            +
             | 
| 53 | 
            +
             | 
| 54 | 
            +
            class Transformer2DModel(ModelMixin, ConfigMixin):
         | 
| 55 | 
            +
                """
         | 
| 56 | 
            +
                Transformer model for image-like data. Takes either discrete (classes of vector embeddings) or continuous (actual
         | 
| 57 | 
            +
                embeddings) inputs.
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                When input is continuous: First, project the input (aka embedding) and reshape to b, t, d. Then apply standard
         | 
| 60 | 
            +
                transformer action. Finally, reshape to image.
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                When input is discrete: First, input (classes of latent pixels) is converted to embeddings and has positional
         | 
| 63 | 
            +
                embeddings applied, see `ImagePositionalEmbeddings`. Then apply standard transformer action. Finally, predict
         | 
| 64 | 
            +
                classes of unnoised image.
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                Note that it is assumed one of the input classes is the masked latent pixel. The predicted classes of the unnoised
         | 
| 67 | 
            +
                image do not contain a prediction for the masked pixel as the unnoised image cannot be masked.
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                Parameters:
         | 
| 70 | 
            +
                    num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
         | 
| 71 | 
            +
                    attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
         | 
| 72 | 
            +
                    in_channels (`int`, *optional*):
         | 
| 73 | 
            +
                        Pass if the input is continuous. The number of channels in the input and output.
         | 
| 74 | 
            +
                    num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
         | 
| 75 | 
            +
                    dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
         | 
| 76 | 
            +
                    cross_attention_dim (`int`, *optional*): The number of encoder_hidden_states dimensions to use.
         | 
| 77 | 
            +
                    sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
         | 
| 78 | 
            +
                        Note that this is fixed at training time as it is used for learning a number of position embeddings. See
         | 
| 79 | 
            +
                        `ImagePositionalEmbeddings`.
         | 
| 80 | 
            +
                    num_vector_embeds (`int`, *optional*):
         | 
| 81 | 
            +
                        Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
         | 
| 82 | 
            +
                        Includes the class for the masked latent pixel.
         | 
| 83 | 
            +
                    activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
         | 
| 84 | 
            +
                    num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
         | 
| 85 | 
            +
                        The number of diffusion steps used during training. Note that this is fixed at training time as it is used
         | 
| 86 | 
            +
                        to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
         | 
| 87 | 
            +
                        up to but not more than steps than `num_embeds_ada_norm`.
         | 
| 88 | 
            +
                    attention_bias (`bool`, *optional*):
         | 
| 89 | 
            +
                        Configure if the TransformerBlocks' attention should contain a bias parameter.
         | 
| 90 | 
            +
                """
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                @register_to_config
         | 
| 93 | 
            +
                def __init__(
         | 
| 94 | 
            +
                    self,
         | 
| 95 | 
            +
                    num_attention_heads: int = 16,
         | 
| 96 | 
            +
                    attention_head_dim: int = 88,
         | 
| 97 | 
            +
                    in_channels: Optional[int] = None,
         | 
| 98 | 
            +
                    num_layers: int = 1,
         | 
| 99 | 
            +
                    dropout: float = 0.0,
         | 
| 100 | 
            +
                    norm_num_groups: int = 32,
         | 
| 101 | 
            +
                    cross_attention_dim: Optional[int] = None,
         | 
| 102 | 
            +
                    attention_bias: bool = False,
         | 
| 103 | 
            +
                    sample_size: Optional[int] = None,
         | 
| 104 | 
            +
                    num_vector_embeds: Optional[int] = None,
         | 
| 105 | 
            +
                    activation_fn: str = "geglu",
         | 
| 106 | 
            +
                    num_embeds_ada_norm: Optional[int] = None,
         | 
| 107 | 
            +
                    use_linear_projection: bool = False,
         | 
| 108 | 
            +
                    only_cross_attention: bool = False,
         | 
| 109 | 
            +
                    upcast_attention: bool = False,
         | 
| 110 | 
            +
                ):
         | 
| 111 | 
            +
                    super().__init__()
         | 
| 112 | 
            +
                    self.use_linear_projection = use_linear_projection
         | 
| 113 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 114 | 
            +
                    self.attention_head_dim = attention_head_dim
         | 
| 115 | 
            +
                    inner_dim = num_attention_heads * attention_head_dim
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                    # 1. Transformer2DModel can process both standard continous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
         | 
| 118 | 
            +
                    # Define whether input is continuous or discrete depending on configuration
         | 
| 119 | 
            +
                    self.is_input_continuous = in_channels is not None
         | 
| 120 | 
            +
                    self.is_input_vectorized = num_vector_embeds is not None
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                    if self.is_input_continuous and self.is_input_vectorized:
         | 
| 123 | 
            +
                        raise ValueError(
         | 
| 124 | 
            +
                            f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
         | 
| 125 | 
            +
                            " sure that either `in_channels` or `num_vector_embeds` is None."
         | 
| 126 | 
            +
                        )
         | 
| 127 | 
            +
                    elif not self.is_input_continuous and not self.is_input_vectorized:
         | 
| 128 | 
            +
                        raise ValueError(
         | 
| 129 | 
            +
                            f"Has to define either `in_channels`: {in_channels} or `num_vector_embeds`: {num_vector_embeds}. Make"
         | 
| 130 | 
            +
                            " sure that either `in_channels` or `num_vector_embeds` is not None."
         | 
| 131 | 
            +
                        )
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                    # 2. Define input layers
         | 
| 134 | 
            +
                    if self.is_input_continuous:
         | 
| 135 | 
            +
                        self.in_channels = in_channels
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                        self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
         | 
| 138 | 
            +
                        if use_linear_projection:
         | 
| 139 | 
            +
                            self.proj_in = nn.Linear(in_channels, inner_dim)
         | 
| 140 | 
            +
                        else:
         | 
| 141 | 
            +
                            self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
         | 
| 142 | 
            +
                    elif self.is_input_vectorized:
         | 
| 143 | 
            +
                        assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
         | 
| 144 | 
            +
                        assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                        self.height = sample_size
         | 
| 147 | 
            +
                        self.width = sample_size
         | 
| 148 | 
            +
                        self.num_vector_embeds = num_vector_embeds
         | 
| 149 | 
            +
                        self.num_latent_pixels = self.height * self.width
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                        self.latent_image_embedding = ImagePositionalEmbeddings(
         | 
| 152 | 
            +
                            num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
         | 
| 153 | 
            +
                        )
         | 
| 154 | 
            +
             | 
| 155 | 
            +
                    # 3. Define transformers blocks
         | 
| 156 | 
            +
                    self.transformer_blocks = nn.ModuleList(
         | 
| 157 | 
            +
                        [
         | 
| 158 | 
            +
                            BasicTransformerBlock(
         | 
| 159 | 
            +
                                inner_dim,
         | 
| 160 | 
            +
                                num_attention_heads,
         | 
| 161 | 
            +
                                attention_head_dim,
         | 
| 162 | 
            +
                                dropout=dropout,
         | 
| 163 | 
            +
                                cross_attention_dim=cross_attention_dim,
         | 
| 164 | 
            +
                                activation_fn=activation_fn,
         | 
| 165 | 
            +
                                num_embeds_ada_norm=num_embeds_ada_norm,
         | 
| 166 | 
            +
                                attention_bias=attention_bias,
         | 
| 167 | 
            +
                                only_cross_attention=only_cross_attention,
         | 
| 168 | 
            +
                                upcast_attention=upcast_attention,
         | 
| 169 | 
            +
                            )
         | 
| 170 | 
            +
                            for d in range(num_layers)
         | 
| 171 | 
            +
                        ]
         | 
| 172 | 
            +
                    )
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                    # 4. Define output layers
         | 
| 175 | 
            +
                    if self.is_input_continuous:
         | 
| 176 | 
            +
                        if use_linear_projection:
         | 
| 177 | 
            +
                            self.proj_out = nn.Linear(in_channels, inner_dim)
         | 
| 178 | 
            +
                        else:
         | 
| 179 | 
            +
                            self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
         | 
| 180 | 
            +
                    elif self.is_input_vectorized:
         | 
| 181 | 
            +
                        self.norm_out = nn.LayerNorm(inner_dim)
         | 
| 182 | 
            +
                        self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
         | 
| 183 | 
            +
             | 
| 184 | 
            +
                def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
         | 
| 185 | 
            +
                    """
         | 
| 186 | 
            +
                    Args:
         | 
| 187 | 
            +
                        hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
         | 
| 188 | 
            +
                            When continous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
         | 
| 189 | 
            +
                            hidden_states
         | 
| 190 | 
            +
                        encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
         | 
| 191 | 
            +
                            Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
         | 
| 192 | 
            +
                            self-attention.
         | 
| 193 | 
            +
                        timestep ( `torch.long`, *optional*):
         | 
| 194 | 
            +
                            Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
         | 
| 195 | 
            +
                        return_dict (`bool`, *optional*, defaults to `True`):
         | 
| 196 | 
            +
                            Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
         | 
| 197 | 
            +
             | 
| 198 | 
            +
                    Returns:
         | 
| 199 | 
            +
                        [`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
         | 
| 200 | 
            +
                        if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
         | 
| 201 | 
            +
                        tensor.
         | 
| 202 | 
            +
                    """
         | 
| 203 | 
            +
                    # 1. Input
         | 
| 204 | 
            +
                    if self.is_input_continuous:
         | 
| 205 | 
            +
                        batch, channel, height, weight = hidden_states.shape
         | 
| 206 | 
            +
                        residual = hidden_states
         | 
| 207 | 
            +
             | 
| 208 | 
            +
                        hidden_states = self.norm(hidden_states)
         | 
| 209 | 
            +
                        if not self.use_linear_projection:
         | 
| 210 | 
            +
                            hidden_states = self.proj_in(hidden_states)
         | 
| 211 | 
            +
                            inner_dim = hidden_states.shape[1]
         | 
| 212 | 
            +
                            hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
         | 
| 213 | 
            +
                        else:
         | 
| 214 | 
            +
                            inner_dim = hidden_states.shape[1]
         | 
| 215 | 
            +
                            hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
         | 
| 216 | 
            +
                            hidden_states = self.proj_in(hidden_states)
         | 
| 217 | 
            +
                    elif self.is_input_vectorized:
         | 
| 218 | 
            +
                        hidden_states = self.latent_image_embedding(hidden_states)
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                    # 2. Blocks
         | 
| 221 | 
            +
                    for block in self.transformer_blocks:
         | 
| 222 | 
            +
                        hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timestep)
         | 
| 223 | 
            +
             | 
| 224 | 
            +
                    # 3. Output
         | 
| 225 | 
            +
                    if self.is_input_continuous:
         | 
| 226 | 
            +
                        if not self.use_linear_projection:
         | 
| 227 | 
            +
                            hidden_states = (
         | 
| 228 | 
            +
                                hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
         | 
| 229 | 
            +
                            )
         | 
| 230 | 
            +
                            hidden_states = self.proj_out(hidden_states)
         | 
| 231 | 
            +
                        else:
         | 
| 232 | 
            +
                            hidden_states = self.proj_out(hidden_states)
         | 
| 233 | 
            +
                            hidden_states = (
         | 
| 234 | 
            +
                                hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
         | 
| 235 | 
            +
                            )
         | 
| 236 | 
            +
             | 
| 237 | 
            +
                        output = hidden_states + residual
         | 
| 238 | 
            +
                    elif self.is_input_vectorized:
         | 
| 239 | 
            +
                        hidden_states = self.norm_out(hidden_states)
         | 
| 240 | 
            +
                        logits = self.out(hidden_states)
         | 
| 241 | 
            +
                        # (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
         | 
| 242 | 
            +
                        logits = logits.permute(0, 2, 1)
         | 
| 243 | 
            +
             | 
| 244 | 
            +
                        # log(p(x_0))
         | 
| 245 | 
            +
                        output = F.log_softmax(logits.double(), dim=1).float()
         | 
| 246 | 
            +
             | 
| 247 | 
            +
                    if not return_dict:
         | 
| 248 | 
            +
                        return (output,)
         | 
| 249 | 
            +
             | 
| 250 | 
            +
                    return Transformer2DModelOutput(sample=output)
         | 
| 251 | 
            +
             | 
| 252 | 
            +
             | 
| 253 | 
            +
            class AttentionBlock(nn.Module):
         | 
| 254 | 
            +
                """
         | 
| 255 | 
            +
                An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted
         | 
| 256 | 
            +
                to the N-d case.
         | 
| 257 | 
            +
                https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
         | 
| 258 | 
            +
                Uses three q, k, v linear layers to compute attention.
         | 
| 259 | 
            +
             | 
| 260 | 
            +
                Parameters:
         | 
| 261 | 
            +
                    channels (`int`): The number of channels in the input and output.
         | 
| 262 | 
            +
                    num_head_channels (`int`, *optional*):
         | 
| 263 | 
            +
                        The number of channels in each head. If None, then `num_heads` = 1.
         | 
| 264 | 
            +
                    norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for group norm.
         | 
| 265 | 
            +
                    rescale_output_factor (`float`, *optional*, defaults to 1.0): The factor to rescale the output by.
         | 
| 266 | 
            +
                    eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm.
         | 
| 267 | 
            +
                """
         | 
| 268 | 
            +
             | 
| 269 | 
            +
                # IMPORTANT;TODO(Patrick, William) - this class will be deprecated soon. Do not use it anymore
         | 
| 270 | 
            +
             | 
| 271 | 
            +
                def __init__(
         | 
| 272 | 
            +
                    self,
         | 
| 273 | 
            +
                    channels: int,
         | 
| 274 | 
            +
                    num_head_channels: Optional[int] = None,
         | 
| 275 | 
            +
                    norm_num_groups: int = 32,
         | 
| 276 | 
            +
                    rescale_output_factor: float = 1.0,
         | 
| 277 | 
            +
                    eps: float = 1e-5,
         | 
| 278 | 
            +
                ):
         | 
| 279 | 
            +
                    super().__init__()
         | 
| 280 | 
            +
                    self.channels = channels
         | 
| 281 | 
            +
             | 
| 282 | 
            +
                    self.num_heads = channels // num_head_channels if num_head_channels is not None else 1
         | 
| 283 | 
            +
                    self.num_head_size = num_head_channels
         | 
| 284 | 
            +
                    self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=norm_num_groups, eps=eps, affine=True)
         | 
| 285 | 
            +
             | 
| 286 | 
            +
                    # define q,k,v as linear layers
         | 
| 287 | 
            +
                    self.query = nn.Linear(channels, channels)
         | 
| 288 | 
            +
                    self.key = nn.Linear(channels, channels)
         | 
| 289 | 
            +
                    self.value = nn.Linear(channels, channels)
         | 
| 290 | 
            +
             | 
| 291 | 
            +
                    self.rescale_output_factor = rescale_output_factor
         | 
| 292 | 
            +
                    self.proj_attn = nn.Linear(channels, channels, 1)
         | 
| 293 | 
            +
             | 
| 294 | 
            +
                    self._use_memory_efficient_attention_xformers = False
         | 
| 295 | 
            +
             | 
| 296 | 
            +
                def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool, *args, **kwargs):
         | 
| 297 | 
            +
                    if not is_xformers_available():
         | 
| 298 | 
            +
                        raise ModuleNotFoundError(
         | 
| 299 | 
            +
                            "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
         | 
| 300 | 
            +
                            " xformers",
         | 
| 301 | 
            +
                            name="xformers",
         | 
| 302 | 
            +
                        )
         | 
| 303 | 
            +
                    elif not torch.cuda.is_available():
         | 
| 304 | 
            +
                        raise ValueError(
         | 
| 305 | 
            +
                            "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
         | 
| 306 | 
            +
                            " available for GPU "
         | 
| 307 | 
            +
                        )
         | 
| 308 | 
            +
                    else:
         | 
| 309 | 
            +
                        try:
         | 
| 310 | 
            +
                            # Make sure we can run the memory efficient attention
         | 
| 311 | 
            +
                            _ = xformers.ops.memory_efficient_attention(
         | 
| 312 | 
            +
                                torch.randn((1, 2, 40), device="cuda"),
         | 
| 313 | 
            +
                                torch.randn((1, 2, 40), device="cuda"),
         | 
| 314 | 
            +
                                torch.randn((1, 2, 40), device="cuda"),
         | 
| 315 | 
            +
                            )
         | 
| 316 | 
            +
                        except Exception as e:
         | 
| 317 | 
            +
                            raise e
         | 
| 318 | 
            +
                        self._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
         | 
| 319 | 
            +
             | 
| 320 | 
            +
                def reshape_heads_to_batch_dim(self, tensor):
         | 
| 321 | 
            +
                    batch_size, seq_len, dim = tensor.shape
         | 
| 322 | 
            +
                    head_size = self.num_heads
         | 
| 323 | 
            +
                    tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
         | 
| 324 | 
            +
                    tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
         | 
| 325 | 
            +
                    return tensor
         | 
| 326 | 
            +
             | 
| 327 | 
            +
                def reshape_batch_dim_to_heads(self, tensor):
         | 
| 328 | 
            +
                    batch_size, seq_len, dim = tensor.shape
         | 
| 329 | 
            +
                    head_size = self.num_heads
         | 
| 330 | 
            +
                    tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
         | 
| 331 | 
            +
                    tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
         | 
| 332 | 
            +
                    return tensor
         | 
| 333 | 
            +
             | 
| 334 | 
            +
                def forward(self, hidden_states):
         | 
| 335 | 
            +
                    residual = hidden_states
         | 
| 336 | 
            +
                    batch, channel, height, width = hidden_states.shape
         | 
| 337 | 
            +
             | 
| 338 | 
            +
                    # norm
         | 
| 339 | 
            +
                    hidden_states = self.group_norm(hidden_states)
         | 
| 340 | 
            +
             | 
| 341 | 
            +
                    hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)
         | 
| 342 | 
            +
             | 
| 343 | 
            +
                    # proj to q, k, v
         | 
| 344 | 
            +
                    query_proj = self.query(hidden_states)
         | 
| 345 | 
            +
                    key_proj = self.key(hidden_states)
         | 
| 346 | 
            +
                    value_proj = self.value(hidden_states)
         | 
| 347 | 
            +
             | 
| 348 | 
            +
                    scale = 1 / math.sqrt(self.channels / self.num_heads)
         | 
| 349 | 
            +
             | 
| 350 | 
            +
                    query_proj = self.reshape_heads_to_batch_dim(query_proj)
         | 
| 351 | 
            +
                    key_proj = self.reshape_heads_to_batch_dim(key_proj)
         | 
| 352 | 
            +
                    value_proj = self.reshape_heads_to_batch_dim(value_proj)
         | 
| 353 | 
            +
             | 
| 354 | 
            +
                    if self._use_memory_efficient_attention_xformers:
         | 
| 355 | 
            +
                        # Memory efficient attention
         | 
| 356 | 
            +
                        hidden_states = xformers.ops.memory_efficient_attention(query_proj, key_proj, value_proj, attn_bias=None)
         | 
| 357 | 
            +
                        hidden_states = hidden_states.to(query_proj.dtype)
         | 
| 358 | 
            +
                    else:
         | 
| 359 | 
            +
                        attention_scores = torch.baddbmm(
         | 
| 360 | 
            +
                            torch.empty(
         | 
| 361 | 
            +
                                query_proj.shape[0],
         | 
| 362 | 
            +
                                query_proj.shape[1],
         | 
| 363 | 
            +
                                key_proj.shape[1],
         | 
| 364 | 
            +
                                dtype=query_proj.dtype,
         | 
| 365 | 
            +
                                device=query_proj.device,
         | 
| 366 | 
            +
                            ),
         | 
| 367 | 
            +
                            query_proj,
         | 
| 368 | 
            +
                            key_proj.transpose(-1, -2),
         | 
| 369 | 
            +
                            beta=0,
         | 
| 370 | 
            +
                            alpha=scale,
         | 
| 371 | 
            +
                        )
         | 
| 372 | 
            +
                        attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype)
         | 
| 373 | 
            +
                        hidden_states = torch.bmm(attention_probs, value_proj)
         | 
| 374 | 
            +
             | 
| 375 | 
            +
                    # reshape hidden_states
         | 
| 376 | 
            +
                    hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
         | 
| 377 | 
            +
             | 
| 378 | 
            +
                    # compute next hidden_states
         | 
| 379 | 
            +
                    hidden_states = self.proj_attn(hidden_states)
         | 
| 380 | 
            +
             | 
| 381 | 
            +
                    hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)
         | 
| 382 | 
            +
             | 
| 383 | 
            +
                    # res connect and rescale
         | 
| 384 | 
            +
                    hidden_states = (hidden_states + residual) / self.rescale_output_factor
         | 
| 385 | 
            +
                    return hidden_states
         | 
| 386 | 
            +
             | 
| 387 | 
            +
             | 
| 388 | 
            +
            class BasicTransformerBlock(nn.Module):
         | 
| 389 | 
            +
                r"""
         | 
| 390 | 
            +
                A basic Transformer block.
         | 
| 391 | 
            +
             | 
| 392 | 
            +
                Parameters:
         | 
| 393 | 
            +
                    dim (`int`): The number of channels in the input and output.
         | 
| 394 | 
            +
                    num_attention_heads (`int`): The number of heads to use for multi-head attention.
         | 
| 395 | 
            +
                    attention_head_dim (`int`): The number of channels in each head.
         | 
| 396 | 
            +
                    dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
         | 
| 397 | 
            +
                    cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
         | 
| 398 | 
            +
                    activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
         | 
| 399 | 
            +
                    num_embeds_ada_norm (:
         | 
| 400 | 
            +
                        obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
         | 
| 401 | 
            +
                    attention_bias (:
         | 
| 402 | 
            +
                        obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
         | 
| 403 | 
            +
                """
         | 
| 404 | 
            +
             | 
| 405 | 
            +
                def __init__(
         | 
| 406 | 
            +
                    self,
         | 
| 407 | 
            +
                    dim: int,
         | 
| 408 | 
            +
                    num_attention_heads: int,
         | 
| 409 | 
            +
                    attention_head_dim: int,
         | 
| 410 | 
            +
                    dropout=0.0,
         | 
| 411 | 
            +
                    cross_attention_dim: Optional[int] = None,
         | 
| 412 | 
            +
                    activation_fn: str = "geglu",
         | 
| 413 | 
            +
                    num_embeds_ada_norm: Optional[int] = None,
         | 
| 414 | 
            +
                    attention_bias: bool = False,
         | 
| 415 | 
            +
                    only_cross_attention: bool = False,
         | 
| 416 | 
            +
                    upcast_attention: bool = False,
         | 
| 417 | 
            +
                ):
         | 
| 418 | 
            +
                    super().__init__()
         | 
| 419 | 
            +
                    self.only_cross_attention = only_cross_attention
         | 
| 420 | 
            +
                    self.use_ada_layer_norm = num_embeds_ada_norm is not None
         | 
| 421 | 
            +
             | 
| 422 | 
            +
                    # 1. Self-Attn
         | 
| 423 | 
            +
                    self.attn1 = CrossAttention(
         | 
| 424 | 
            +
                        query_dim=dim,
         | 
| 425 | 
            +
                        heads=num_attention_heads,
         | 
| 426 | 
            +
                        dim_head=attention_head_dim,
         | 
| 427 | 
            +
                        dropout=dropout,
         | 
| 428 | 
            +
                        bias=attention_bias,
         | 
| 429 | 
            +
                        cross_attention_dim=cross_attention_dim if only_cross_attention else None,
         | 
| 430 | 
            +
                        upcast_attention=upcast_attention,
         | 
| 431 | 
            +
                    )  # is a self-attention
         | 
| 432 | 
            +
                    self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
         | 
| 433 | 
            +
             | 
| 434 | 
            +
                    # 2. Cross-Attn
         | 
| 435 | 
            +
                    if cross_attention_dim is not None:
         | 
| 436 | 
            +
                        self.attn2 = CrossAttention(
         | 
| 437 | 
            +
                            query_dim=dim,
         | 
| 438 | 
            +
                            cross_attention_dim=cross_attention_dim,
         | 
| 439 | 
            +
                            heads=num_attention_heads,
         | 
| 440 | 
            +
                            dim_head=attention_head_dim,
         | 
| 441 | 
            +
                            dropout=dropout,
         | 
| 442 | 
            +
                            bias=attention_bias,
         | 
| 443 | 
            +
                            upcast_attention=upcast_attention,
         | 
| 444 | 
            +
                        )  # is self-attn if encoder_hidden_states is none
         | 
| 445 | 
            +
                    else:
         | 
| 446 | 
            +
                        self.attn2 = None
         | 
| 447 | 
            +
             | 
| 448 | 
            +
                    self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
         | 
| 449 | 
            +
             | 
| 450 | 
            +
                    if cross_attention_dim is not None:
         | 
| 451 | 
            +
                        self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
         | 
| 452 | 
            +
                    else:
         | 
| 453 | 
            +
                        self.norm2 = None
         | 
| 454 | 
            +
             | 
| 455 | 
            +
                    # 3. Feed-forward
         | 
| 456 | 
            +
                    self.norm3 = nn.LayerNorm(dim)
         | 
| 457 | 
            +
             | 
| 458 | 
            +
                def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool, *args, **kwargs):
         | 
| 459 | 
            +
                    if not is_xformers_available():
         | 
| 460 | 
            +
                        print("Here is how to install it")
         | 
| 461 | 
            +
                        raise ModuleNotFoundError(
         | 
| 462 | 
            +
                            "Refer to https://github.com/facebookresearch/xformers for more information on how to install"
         | 
| 463 | 
            +
                            " xformers",
         | 
| 464 | 
            +
                            name="xformers",
         | 
| 465 | 
            +
                        )
         | 
| 466 | 
            +
                    elif not torch.cuda.is_available():
         | 
| 467 | 
            +
                        raise ValueError(
         | 
| 468 | 
            +
                            "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
         | 
| 469 | 
            +
                            " available for GPU "
         | 
| 470 | 
            +
                        )
         | 
| 471 | 
            +
                    else:
         | 
| 472 | 
            +
                        try:
         | 
| 473 | 
            +
                            # Make sure we can run the memory efficient attention
         | 
| 474 | 
            +
                            _ = xformers.ops.memory_efficient_attention(
         | 
| 475 | 
            +
                                torch.randn((1, 2, 40), device="cuda"),
         | 
| 476 | 
            +
                                torch.randn((1, 2, 40), device="cuda"),
         | 
| 477 | 
            +
                                torch.randn((1, 2, 40), device="cuda"),
         | 
| 478 | 
            +
                            )
         | 
| 479 | 
            +
                        except Exception as e:
         | 
| 480 | 
            +
                            raise e
         | 
| 481 | 
            +
                        self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
         | 
| 482 | 
            +
                        if self.attn2 is not None:
         | 
| 483 | 
            +
                            self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
         | 
| 484 | 
            +
             | 
| 485 | 
            +
                def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None):
         | 
| 486 | 
            +
                    # 1. Self-Attention
         | 
| 487 | 
            +
                    norm_hidden_states = (
         | 
| 488 | 
            +
                        self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
         | 
| 489 | 
            +
                    )
         | 
| 490 | 
            +
             | 
| 491 | 
            +
                    if self.only_cross_attention:
         | 
| 492 | 
            +
                        hidden_states = (
         | 
| 493 | 
            +
                            self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states
         | 
| 494 | 
            +
                        )
         | 
| 495 | 
            +
                    else:
         | 
| 496 | 
            +
                        hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask) + hidden_states
         | 
| 497 | 
            +
             | 
| 498 | 
            +
                    if self.attn2 is not None:
         | 
| 499 | 
            +
                        # 2. Cross-Attention
         | 
| 500 | 
            +
                        norm_hidden_states = (
         | 
| 501 | 
            +
                            self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
         | 
| 502 | 
            +
                        )
         | 
| 503 | 
            +
                        hidden_states = (
         | 
| 504 | 
            +
                            self.attn2(
         | 
| 505 | 
            +
                                norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
         | 
| 506 | 
            +
                            )
         | 
| 507 | 
            +
                            + hidden_states
         | 
| 508 | 
            +
                        )
         | 
| 509 | 
            +
             | 
| 510 | 
            +
                    # 3. Feed-forward
         | 
| 511 | 
            +
                    hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
         | 
| 512 | 
            +
             | 
| 513 | 
            +
                    return hidden_states
         | 
| 514 | 
            +
             | 
| 515 | 
            +
             | 
| 516 | 
            +
            class CrossAttention(nn.Module):
         | 
| 517 | 
            +
                r"""
         | 
| 518 | 
            +
                A cross attention layer.
         | 
| 519 | 
            +
             | 
| 520 | 
            +
                Parameters:
         | 
| 521 | 
            +
                    query_dim (`int`): The number of channels in the query.
         | 
| 522 | 
            +
                    cross_attention_dim (`int`, *optional*):
         | 
| 523 | 
            +
                        The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
         | 
| 524 | 
            +
                    heads (`int`,  *optional*, defaults to 8): The number of heads to use for multi-head attention.
         | 
| 525 | 
            +
                    dim_head (`int`,  *optional*, defaults to 64): The number of channels in each head.
         | 
| 526 | 
            +
                    dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
         | 
| 527 | 
            +
                    bias (`bool`, *optional*, defaults to False):
         | 
| 528 | 
            +
                        Set to `True` for the query, key, and value linear layers to contain a bias parameter.
         | 
| 529 | 
            +
                """
         | 
| 530 | 
            +
             | 
| 531 | 
            +
                def __init__(
         | 
| 532 | 
            +
                    self,
         | 
| 533 | 
            +
                    query_dim: int,
         | 
| 534 | 
            +
                    cross_attention_dim: Optional[int] = None,
         | 
| 535 | 
            +
                    heads: int = 8,
         | 
| 536 | 
            +
                    dim_head: int = 64,
         | 
| 537 | 
            +
                    dropout: float = 0.0,
         | 
| 538 | 
            +
                    bias=False,
         | 
| 539 | 
            +
                    upcast_attention: bool = False,
         | 
| 540 | 
            +
                    upcast_softmax: bool = False,
         | 
| 541 | 
            +
                    added_kv_proj_dim: Optional[int] = None,
         | 
| 542 | 
            +
                    norm_num_groups: Optional[int] = None,
         | 
| 543 | 
            +
                ):
         | 
| 544 | 
            +
                    super().__init__()
         | 
| 545 | 
            +
                    inner_dim = dim_head * heads
         | 
| 546 | 
            +
                    cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
         | 
| 547 | 
            +
                    self.upcast_attention = upcast_attention
         | 
| 548 | 
            +
                    self.upcast_softmax = upcast_softmax
         | 
| 549 | 
            +
             | 
| 550 | 
            +
                    self.scale = dim_head**-0.5
         | 
| 551 | 
            +
             | 
| 552 | 
            +
                    self.heads = heads
         | 
| 553 | 
            +
                    # for slice_size > 0 the attention score computation
         | 
| 554 | 
            +
                    # is split across the batch axis to save memory
         | 
| 555 | 
            +
                    # You can set slice_size with `set_attention_slice`
         | 
| 556 | 
            +
                    self.sliceable_head_dim = heads
         | 
| 557 | 
            +
                    self._slice_size = None
         | 
| 558 | 
            +
                    self._use_memory_efficient_attention_xformers = False
         | 
| 559 | 
            +
                    self.added_kv_proj_dim = added_kv_proj_dim
         | 
| 560 | 
            +
             | 
| 561 | 
            +
                    if norm_num_groups is not None:
         | 
| 562 | 
            +
                        self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True)
         | 
| 563 | 
            +
                    else:
         | 
| 564 | 
            +
                        self.group_norm = None
         | 
| 565 | 
            +
             | 
| 566 | 
            +
                    self.to_q = nn.Linear(query_dim, inner_dim, bias=bias)
         | 
| 567 | 
            +
                    self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
         | 
| 568 | 
            +
                    self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
         | 
| 569 | 
            +
             | 
| 570 | 
            +
                    if self.added_kv_proj_dim is not None:
         | 
| 571 | 
            +
                        self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)
         | 
| 572 | 
            +
                        self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim)
         | 
| 573 | 
            +
             | 
| 574 | 
            +
                    self.to_out = nn.ModuleList([])
         | 
| 575 | 
            +
                    self.to_out.append(nn.Linear(inner_dim, query_dim))
         | 
| 576 | 
            +
                    self.to_out.append(nn.Dropout(dropout))
         | 
| 577 | 
            +
             | 
| 578 | 
            +
                def reshape_heads_to_batch_dim(self, tensor):
         | 
| 579 | 
            +
                    batch_size, seq_len, dim = tensor.shape
         | 
| 580 | 
            +
                    head_size = self.heads
         | 
| 581 | 
            +
                    tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
         | 
| 582 | 
            +
                    tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
         | 
| 583 | 
            +
                    return tensor
         | 
| 584 | 
            +
             | 
| 585 | 
            +
                def reshape_batch_dim_to_heads(self, tensor):
         | 
| 586 | 
            +
                    batch_size, seq_len, dim = tensor.shape
         | 
| 587 | 
            +
                    head_size = self.heads
         | 
| 588 | 
            +
                    tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
         | 
| 589 | 
            +
                    tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
         | 
| 590 | 
            +
                    return tensor
         | 
| 591 | 
            +
             | 
| 592 | 
            +
                def set_attention_slice(self, slice_size):
         | 
| 593 | 
            +
                    if slice_size is not None and slice_size > self.sliceable_head_dim:
         | 
| 594 | 
            +
                        raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")
         | 
| 595 | 
            +
             | 
| 596 | 
            +
                    self._slice_size = slice_size
         | 
| 597 | 
            +
             | 
| 598 | 
            +
                def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
         | 
| 599 | 
            +
                    batch_size, sequence_length, _ = hidden_states.shape
         | 
| 600 | 
            +
             | 
| 601 | 
            +
                    encoder_hidden_states = encoder_hidden_states
         | 
| 602 | 
            +
             | 
| 603 | 
            +
                    if self.group_norm is not None:
         | 
| 604 | 
            +
                        hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
         | 
| 605 | 
            +
             | 
| 606 | 
            +
                    query = self.to_q(hidden_states)
         | 
| 607 | 
            +
                    dim = query.shape[-1]
         | 
| 608 | 
            +
                    query = self.reshape_heads_to_batch_dim(query)
         | 
| 609 | 
            +
             | 
| 610 | 
            +
                    if self.added_kv_proj_dim is not None:
         | 
| 611 | 
            +
                        key = self.to_k(hidden_states)
         | 
| 612 | 
            +
                        value = self.to_v(hidden_states)
         | 
| 613 | 
            +
                        encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states)
         | 
| 614 | 
            +
                        encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states)
         | 
| 615 | 
            +
             | 
| 616 | 
            +
                        key = self.reshape_heads_to_batch_dim(key)
         | 
| 617 | 
            +
                        value = self.reshape_heads_to_batch_dim(value)
         | 
| 618 | 
            +
                        encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj)
         | 
| 619 | 
            +
                        encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj)
         | 
| 620 | 
            +
             | 
| 621 | 
            +
                        key = torch.concat([encoder_hidden_states_key_proj, key], dim=1)
         | 
| 622 | 
            +
                        value = torch.concat([encoder_hidden_states_value_proj, value], dim=1)
         | 
| 623 | 
            +
                    else:
         | 
| 624 | 
            +
                        encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
         | 
| 625 | 
            +
                        key = self.to_k(encoder_hidden_states)
         | 
| 626 | 
            +
                        value = self.to_v(encoder_hidden_states)
         | 
| 627 | 
            +
             | 
| 628 | 
            +
                        key = self.reshape_heads_to_batch_dim(key)
         | 
| 629 | 
            +
                        value = self.reshape_heads_to_batch_dim(value)
         | 
| 630 | 
            +
             | 
| 631 | 
            +
                    if attention_mask is not None:
         | 
| 632 | 
            +
                        if attention_mask.shape[-1] != query.shape[1]:
         | 
| 633 | 
            +
                            target_length = query.shape[1]
         | 
| 634 | 
            +
                            attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
         | 
| 635 | 
            +
                            attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
         | 
| 636 | 
            +
             | 
| 637 | 
            +
                    # attention, what we cannot get enough of
         | 
| 638 | 
            +
                    if self._use_memory_efficient_attention_xformers:
         | 
| 639 | 
            +
                        hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
         | 
| 640 | 
            +
                        # Some versions of xformers return output in fp32, cast it back to the dtype of the input
         | 
| 641 | 
            +
                        hidden_states = hidden_states.to(query.dtype)
         | 
| 642 | 
            +
                    else:
         | 
| 643 | 
            +
                        if self._slice_size is None or query.shape[0] // self._slice_size == 1:
         | 
| 644 | 
            +
                            hidden_states = self._attention(query, key, value, attention_mask)
         | 
| 645 | 
            +
                        else:
         | 
| 646 | 
            +
                            hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
         | 
| 647 | 
            +
             | 
| 648 | 
            +
                    # linear proj
         | 
| 649 | 
            +
                    hidden_states = self.to_out[0](hidden_states)
         | 
| 650 | 
            +
             | 
| 651 | 
            +
                    # dropout
         | 
| 652 | 
            +
                    hidden_states = self.to_out[1](hidden_states)
         | 
| 653 | 
            +
                    return hidden_states
         | 
| 654 | 
            +
             | 
| 655 | 
            +
                def _attention(self, query, key, value, attention_mask=None):
         | 
| 656 | 
            +
                    if self.upcast_attention:
         | 
| 657 | 
            +
                        query = query.float()
         | 
| 658 | 
            +
                        key = key.float()
         | 
| 659 | 
            +
             | 
| 660 | 
            +
                    attention_scores = torch.baddbmm(
         | 
| 661 | 
            +
                        torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device),
         | 
| 662 | 
            +
                        query,
         | 
| 663 | 
            +
                        key.transpose(-1, -2),
         | 
| 664 | 
            +
                        beta=0,
         | 
| 665 | 
            +
                        alpha=self.scale,
         | 
| 666 | 
            +
                    )
         | 
| 667 | 
            +
             | 
| 668 | 
            +
                    if attention_mask is not None:
         | 
| 669 | 
            +
                        attention_scores = attention_scores + attention_mask
         | 
| 670 | 
            +
             | 
| 671 | 
            +
                    if self.upcast_softmax:
         | 
| 672 | 
            +
                        attention_scores = attention_scores.float()
         | 
| 673 | 
            +
             | 
| 674 | 
            +
                    attention_probs = attention_scores.softmax(dim=-1)
         | 
| 675 | 
            +
             | 
| 676 | 
            +
                    # cast back to the original dtype
         | 
| 677 | 
            +
                    attention_probs = attention_probs.to(value.dtype)
         | 
| 678 | 
            +
             | 
| 679 | 
            +
                    # compute attention output
         | 
| 680 | 
            +
                    hidden_states = torch.bmm(attention_probs, value)
         | 
| 681 | 
            +
             | 
| 682 | 
            +
                    # reshape hidden_states
         | 
| 683 | 
            +
                    hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
         | 
| 684 | 
            +
                    return hidden_states
         | 
| 685 | 
            +
             | 
| 686 | 
            +
                def _sliced_attention(self, query, key, value, sequence_length, dim, attention_mask):
         | 
| 687 | 
            +
                    batch_size_attention = query.shape[0]
         | 
| 688 | 
            +
                    hidden_states = torch.zeros(
         | 
| 689 | 
            +
                        (batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
         | 
| 690 | 
            +
                    )
         | 
| 691 | 
            +
                    slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
         | 
| 692 | 
            +
                    for i in range(hidden_states.shape[0] // slice_size):
         | 
| 693 | 
            +
                        start_idx = i * slice_size
         | 
| 694 | 
            +
                        end_idx = (i + 1) * slice_size
         | 
| 695 | 
            +
             | 
| 696 | 
            +
                        query_slice = query[start_idx:end_idx]
         | 
| 697 | 
            +
                        key_slice = key[start_idx:end_idx]
         | 
| 698 | 
            +
             | 
| 699 | 
            +
                        if self.upcast_attention:
         | 
| 700 | 
            +
                            query_slice = query_slice.float()
         | 
| 701 | 
            +
                            key_slice = key_slice.float()
         | 
| 702 | 
            +
             | 
| 703 | 
            +
                        attn_slice = torch.baddbmm(
         | 
| 704 | 
            +
                            torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query_slice.dtype, device=query.device),
         | 
| 705 | 
            +
                            query_slice,
         | 
| 706 | 
            +
                            key_slice.transpose(-1, -2),
         | 
| 707 | 
            +
                            beta=0,
         | 
| 708 | 
            +
                            alpha=self.scale,
         | 
| 709 | 
            +
                        )
         | 
| 710 | 
            +
             | 
| 711 | 
            +
                        if attention_mask is not None:
         | 
| 712 | 
            +
                            attn_slice = attn_slice + attention_mask[start_idx:end_idx]
         | 
| 713 | 
            +
             | 
| 714 | 
            +
                        if self.upcast_softmax:
         | 
| 715 | 
            +
                            attn_slice = attn_slice.float()
         | 
| 716 | 
            +
             | 
| 717 | 
            +
                        attn_slice = attn_slice.softmax(dim=-1)
         | 
| 718 | 
            +
             | 
| 719 | 
            +
                        # cast back to the original dtype
         | 
| 720 | 
            +
                        attn_slice = attn_slice.to(value.dtype)
         | 
| 721 | 
            +
                        attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])
         | 
| 722 | 
            +
             | 
| 723 | 
            +
                        hidden_states[start_idx:end_idx] = attn_slice
         | 
| 724 | 
            +
             | 
| 725 | 
            +
                    # reshape hidden_states
         | 
| 726 | 
            +
                    hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
         | 
| 727 | 
            +
                    return hidden_states
         | 
| 728 | 
            +
             | 
| 729 | 
            +
                def _memory_efficient_attention_xformers(self, query, key, value, attention_mask):
         | 
| 730 | 
            +
                    # TODO attention_mask
         | 
| 731 | 
            +
                    query = query.contiguous()
         | 
| 732 | 
            +
                    key = key.contiguous()
         | 
| 733 | 
            +
                    value = value.contiguous()
         | 
| 734 | 
            +
                    hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
         | 
| 735 | 
            +
                    hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
         | 
| 736 | 
            +
                    return hidden_states
         | 
| 737 | 
            +
             | 
| 738 | 
            +
             | 
| 739 | 
            +
            class FeedForward(nn.Module):
         | 
| 740 | 
            +
                r"""
         | 
| 741 | 
            +
                A feed-forward layer.
         | 
| 742 | 
            +
             | 
| 743 | 
            +
                Parameters:
         | 
| 744 | 
            +
                    dim (`int`): The number of channels in the input.
         | 
| 745 | 
            +
                    dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
         | 
| 746 | 
            +
                    mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
         | 
| 747 | 
            +
                    dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
         | 
| 748 | 
            +
                    activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
         | 
| 749 | 
            +
                """
         | 
| 750 | 
            +
             | 
| 751 | 
            +
                def __init__(
         | 
| 752 | 
            +
                    self,
         | 
| 753 | 
            +
                    dim: int,
         | 
| 754 | 
            +
                    dim_out: Optional[int] = None,
         | 
| 755 | 
            +
                    mult: int = 4,
         | 
| 756 | 
            +
                    dropout: float = 0.0,
         | 
| 757 | 
            +
                    activation_fn: str = "geglu",
         | 
| 758 | 
            +
                ):
         | 
| 759 | 
            +
                    super().__init__()
         | 
| 760 | 
            +
                    inner_dim = int(dim * mult)
         | 
| 761 | 
            +
                    dim_out = dim_out if dim_out is not None else dim
         | 
| 762 | 
            +
             | 
| 763 | 
            +
                    if activation_fn == "gelu":
         | 
| 764 | 
            +
                        act_fn = GELU(dim, inner_dim)
         | 
| 765 | 
            +
                    elif activation_fn == "geglu":
         | 
| 766 | 
            +
                        act_fn = GEGLU(dim, inner_dim)
         | 
| 767 | 
            +
                    elif activation_fn == "geglu-approximate":
         | 
| 768 | 
            +
                        act_fn = ApproximateGELU(dim, inner_dim)
         | 
| 769 | 
            +
             | 
| 770 | 
            +
                    self.net = nn.ModuleList([])
         | 
| 771 | 
            +
                    # project in
         | 
| 772 | 
            +
                    self.net.append(act_fn)
         | 
| 773 | 
            +
                    # project dropout
         | 
| 774 | 
            +
                    self.net.append(nn.Dropout(dropout))
         | 
| 775 | 
            +
                    # project out
         | 
| 776 | 
            +
                    self.net.append(nn.Linear(inner_dim, dim_out))
         | 
| 777 | 
            +
             | 
| 778 | 
            +
                def forward(self, hidden_states):
         | 
| 779 | 
            +
                    for module in self.net:
         | 
| 780 | 
            +
                        hidden_states = module(hidden_states)
         | 
| 781 | 
            +
                    return hidden_states
         | 
| 782 | 
            +
             | 
| 783 | 
            +
             | 
| 784 | 
            +
            class GELU(nn.Module):
         | 
| 785 | 
            +
                r"""
         | 
| 786 | 
            +
                GELU activation function
         | 
| 787 | 
            +
                """
         | 
| 788 | 
            +
             | 
| 789 | 
            +
                def __init__(self, dim_in: int, dim_out: int):
         | 
| 790 | 
            +
                    super().__init__()
         | 
| 791 | 
            +
                    self.proj = nn.Linear(dim_in, dim_out)
         | 
| 792 | 
            +
             | 
| 793 | 
            +
                def gelu(self, gate):
         | 
| 794 | 
            +
                    if gate.device.type != "mps":
         | 
| 795 | 
            +
                        return F.gelu(gate)
         | 
| 796 | 
            +
                    # mps: gelu is not implemented for float16
         | 
| 797 | 
            +
                    return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)
         | 
| 798 | 
            +
             | 
| 799 | 
            +
                def forward(self, hidden_states):
         | 
| 800 | 
            +
                    hidden_states = self.proj(hidden_states)
         | 
| 801 | 
            +
                    hidden_states = self.gelu(hidden_states)
         | 
| 802 | 
            +
                    return hidden_states
         | 
| 803 | 
            +
             | 
| 804 | 
            +
             | 
| 805 | 
            +
            # feedforward
         | 
| 806 | 
            +
            class GEGLU(nn.Module):
         | 
| 807 | 
            +
                r"""
         | 
| 808 | 
            +
                A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.
         | 
| 809 | 
            +
             | 
| 810 | 
            +
                Parameters:
         | 
| 811 | 
            +
                    dim_in (`int`): The number of channels in the input.
         | 
| 812 | 
            +
                    dim_out (`int`): The number of channels in the output.
         | 
| 813 | 
            +
                """
         | 
| 814 | 
            +
             | 
| 815 | 
            +
                def __init__(self, dim_in: int, dim_out: int):
         | 
| 816 | 
            +
                    super().__init__()
         | 
| 817 | 
            +
                    self.proj = nn.Linear(dim_in, dim_out * 2)
         | 
| 818 | 
            +
             | 
| 819 | 
            +
                def gelu(self, gate):
         | 
| 820 | 
            +
                    if gate.device.type != "mps":
         | 
| 821 | 
            +
                        return F.gelu(gate)
         | 
| 822 | 
            +
                    # mps: gelu is not implemented for float16
         | 
| 823 | 
            +
                    return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)
         | 
| 824 | 
            +
             | 
| 825 | 
            +
                def forward(self, hidden_states):
         | 
| 826 | 
            +
                    hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
         | 
| 827 | 
            +
                    return hidden_states * self.gelu(gate)
         | 
| 828 | 
            +
             | 
| 829 | 
            +
             | 
| 830 | 
            +
            class ApproximateGELU(nn.Module):
         | 
| 831 | 
            +
                """
         | 
| 832 | 
            +
                The approximate form of Gaussian Error Linear Unit (GELU)
         | 
| 833 | 
            +
             | 
| 834 | 
            +
                For more details, see section 2: https://arxiv.org/abs/1606.08415
         | 
| 835 | 
            +
                """
         | 
| 836 | 
            +
             | 
| 837 | 
            +
                def __init__(self, dim_in: int, dim_out: int):
         | 
| 838 | 
            +
                    super().__init__()
         | 
| 839 | 
            +
                    self.proj = nn.Linear(dim_in, dim_out)
         | 
| 840 | 
            +
             | 
| 841 | 
            +
                def forward(self, x):
         | 
| 842 | 
            +
                    x = self.proj(x)
         | 
| 843 | 
            +
                    return x * torch.sigmoid(1.702 * x)
         | 
| 844 | 
            +
             | 
| 845 | 
            +
             | 
| 846 | 
            +
            class AdaLayerNorm(nn.Module):
         | 
| 847 | 
            +
                """
         | 
| 848 | 
            +
                Norm layer modified to incorporate timestep embeddings.
         | 
| 849 | 
            +
                """
         | 
| 850 | 
            +
             | 
| 851 | 
            +
                def __init__(self, embedding_dim, num_embeddings):
         | 
| 852 | 
            +
                    super().__init__()
         | 
| 853 | 
            +
                    self.emb = nn.Embedding(num_embeddings, embedding_dim)
         | 
| 854 | 
            +
                    self.silu = nn.SiLU()
         | 
| 855 | 
            +
                    self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
         | 
| 856 | 
            +
                    self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)
         | 
| 857 | 
            +
             | 
| 858 | 
            +
                def forward(self, x, timestep):
         | 
| 859 | 
            +
                    emb = self.linear(self.silu(self.emb(timestep)))
         | 
| 860 | 
            +
                    scale, shift = torch.chunk(emb, 2)
         | 
| 861 | 
            +
                    x = self.norm(x) * (1 + scale) + shift
         | 
| 862 | 
            +
                    return x
         | 
| 863 | 
            +
             | 
| 864 | 
            +
             | 
| 865 | 
            +
            class DualTransformer2DModel(nn.Module):
         | 
| 866 | 
            +
                """
         | 
| 867 | 
            +
                Dual transformer wrapper that combines two `Transformer2DModel`s for mixed inference.
         | 
| 868 | 
            +
             | 
| 869 | 
            +
                Parameters:
         | 
| 870 | 
            +
                    num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
         | 
| 871 | 
            +
                    attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
         | 
| 872 | 
            +
                    in_channels (`int`, *optional*):
         | 
| 873 | 
            +
                        Pass if the input is continuous. The number of channels in the input and output.
         | 
| 874 | 
            +
                    num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
         | 
| 875 | 
            +
                    dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use.
         | 
| 876 | 
            +
                    cross_attention_dim (`int`, *optional*): The number of encoder_hidden_states dimensions to use.
         | 
| 877 | 
            +
                    sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
         | 
| 878 | 
            +
                        Note that this is fixed at training time as it is used for learning a number of position embeddings. See
         | 
| 879 | 
            +
                        `ImagePositionalEmbeddings`.
         | 
| 880 | 
            +
                    num_vector_embeds (`int`, *optional*):
         | 
| 881 | 
            +
                        Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
         | 
| 882 | 
            +
                        Includes the class for the masked latent pixel.
         | 
| 883 | 
            +
                    activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
         | 
| 884 | 
            +
                    num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
         | 
| 885 | 
            +
                        The number of diffusion steps used during training. Note that this is fixed at training time as it is used
         | 
| 886 | 
            +
                        to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
         | 
| 887 | 
            +
                        up to but not more than steps than `num_embeds_ada_norm`.
         | 
| 888 | 
            +
                    attention_bias (`bool`, *optional*):
         | 
| 889 | 
            +
                        Configure if the TransformerBlocks' attention should contain a bias parameter.
         | 
| 890 | 
            +
                """
         | 
| 891 | 
            +
             | 
| 892 | 
            +
                def __init__(
         | 
| 893 | 
            +
                    self,
         | 
| 894 | 
            +
                    num_attention_heads: int = 16,
         | 
| 895 | 
            +
                    attention_head_dim: int = 88,
         | 
| 896 | 
            +
                    in_channels: Optional[int] = None,
         | 
| 897 | 
            +
                    num_layers: int = 1,
         | 
| 898 | 
            +
                    dropout: float = 0.0,
         | 
| 899 | 
            +
                    norm_num_groups: int = 32,
         | 
| 900 | 
            +
                    cross_attention_dim: Optional[int] = None,
         | 
| 901 | 
            +
                    attention_bias: bool = False,
         | 
| 902 | 
            +
                    sample_size: Optional[int] = None,
         | 
| 903 | 
            +
                    num_vector_embeds: Optional[int] = None,
         | 
| 904 | 
            +
                    activation_fn: str = "geglu",
         | 
| 905 | 
            +
                    num_embeds_ada_norm: Optional[int] = None,
         | 
| 906 | 
            +
                ):
         | 
| 907 | 
            +
                    super().__init__()
         | 
| 908 | 
            +
                    self.transformers = nn.ModuleList(
         | 
| 909 | 
            +
                        [
         | 
| 910 | 
            +
                            Transformer2DModel(
         | 
| 911 | 
            +
                                num_attention_heads=num_attention_heads,
         | 
| 912 | 
            +
                                attention_head_dim=attention_head_dim,
         | 
| 913 | 
            +
                                in_channels=in_channels,
         | 
| 914 | 
            +
                                num_layers=num_layers,
         | 
| 915 | 
            +
                                dropout=dropout,
         | 
| 916 | 
            +
                                norm_num_groups=norm_num_groups,
         | 
| 917 | 
            +
                                cross_attention_dim=cross_attention_dim,
         | 
| 918 | 
            +
                                attention_bias=attention_bias,
         | 
| 919 | 
            +
                                sample_size=sample_size,
         | 
| 920 | 
            +
                                num_vector_embeds=num_vector_embeds,
         | 
| 921 | 
            +
                                activation_fn=activation_fn,
         | 
| 922 | 
            +
                                num_embeds_ada_norm=num_embeds_ada_norm,
         | 
| 923 | 
            +
                            )
         | 
| 924 | 
            +
                            for _ in range(2)
         | 
| 925 | 
            +
                        ]
         | 
| 926 | 
            +
                    )
         | 
| 927 | 
            +
             | 
| 928 | 
            +
                    # Variables that can be set by a pipeline:
         | 
| 929 | 
            +
             | 
| 930 | 
            +
                    # The ratio of transformer1 to transformer2's output states to be combined during inference
         | 
| 931 | 
            +
                    self.mix_ratio = 0.5
         | 
| 932 | 
            +
             | 
| 933 | 
            +
                    # The shape of `encoder_hidden_states` is expected to be
         | 
| 934 | 
            +
                    # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
         | 
| 935 | 
            +
                    self.condition_lengths = [77, 257]
         | 
| 936 | 
            +
             | 
| 937 | 
            +
                    # Which transformer to use to encode which condition.
         | 
| 938 | 
            +
                    # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
         | 
| 939 | 
            +
                    self.transformer_index_for_condition = [1, 0]
         | 
| 940 | 
            +
             | 
| 941 | 
            +
                def forward(
         | 
| 942 | 
            +
                    self, hidden_states, encoder_hidden_states, timestep=None, attention_mask=None, return_dict: bool = True
         | 
| 943 | 
            +
                ):
         | 
| 944 | 
            +
                    """
         | 
| 945 | 
            +
                    Args:
         | 
| 946 | 
            +
                        hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
         | 
| 947 | 
            +
                            When continuous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
         | 
| 948 | 
            +
                            hidden_states
         | 
| 949 | 
            +
                        encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
         | 
| 950 | 
            +
                            Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
         | 
| 951 | 
            +
                            self-attention.
         | 
| 952 | 
            +
                        timestep ( `torch.long`, *optional*):
         | 
| 953 | 
            +
                            Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
         | 
| 954 | 
            +
                        attention_mask (`torch.FloatTensor`, *optional*):
         | 
| 955 | 
            +
                            Optional attention mask to be applied in CrossAttention
         | 
| 956 | 
            +
                        return_dict (`bool`, *optional*, defaults to `True`):
         | 
| 957 | 
            +
                            Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
         | 
| 958 | 
            +
             | 
| 959 | 
            +
                    Returns:
         | 
| 960 | 
            +
                        [`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
         | 
| 961 | 
            +
                        if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
         | 
| 962 | 
            +
                        tensor.
         | 
| 963 | 
            +
                    """
         | 
| 964 | 
            +
                    input_states = hidden_states
         | 
| 965 | 
            +
             | 
| 966 | 
            +
                    encoded_states = []
         | 
| 967 | 
            +
                    tokens_start = 0
         | 
| 968 | 
            +
                    # attention_mask is not used yet
         | 
| 969 | 
            +
                    for i in range(2):
         | 
| 970 | 
            +
                        # for each of the two transformers, pass the corresponding condition tokens
         | 
| 971 | 
            +
                        condition_state = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
         | 
| 972 | 
            +
                        transformer_index = self.transformer_index_for_condition[i]
         | 
| 973 | 
            +
                        encoded_state = self.transformers[transformer_index](
         | 
| 974 | 
            +
                            input_states,
         | 
| 975 | 
            +
                            encoder_hidden_states=condition_state,
         | 
| 976 | 
            +
                            timestep=timestep,
         | 
| 977 | 
            +
                            return_dict=False,
         | 
| 978 | 
            +
                        )[0]
         | 
| 979 | 
            +
                        encoded_states.append(encoded_state - input_states)
         | 
| 980 | 
            +
                        tokens_start += self.condition_lengths[i]
         | 
| 981 | 
            +
             | 
| 982 | 
            +
                    output_states = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
         | 
| 983 | 
            +
                    output_states = output_states + input_states
         | 
| 984 | 
            +
             | 
| 985 | 
            +
                    if not return_dict:
         | 
| 986 | 
            +
                        return (output_states,)
         | 
| 987 | 
            +
             | 
| 988 | 
            +
                    return Transformer2DModelOutput(sample=output_states)
         | 
    	
        magicanimate/models/resnet.py
    ADDED
    
    | @@ -0,0 +1,212 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # *************************************************************************
         | 
| 2 | 
            +
            # This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo-
         | 
| 3 | 
            +
            # difications”). All Bytedance Inc.'s Modifications are Copyright (2023) B-
         | 
| 4 | 
            +
            # ytedance Inc..  
         | 
| 5 | 
            +
            # *************************************************************************
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Adapted from https://github.com/guoyww/AnimateDiff
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            # Copyright 2023 The HuggingFace Team. All rights reserved.
         | 
| 10 | 
            +
            # `TemporalConvLayer` Copyright 2023 Alibaba DAMO-VILAB, The ModelScope Team and The HuggingFace Team. All rights reserved.
         | 
| 11 | 
            +
            #
         | 
| 12 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 13 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 14 | 
            +
            # You may obtain a copy of the License at
         | 
| 15 | 
            +
            #
         | 
| 16 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 17 | 
            +
            #
         | 
| 18 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 19 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 20 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 21 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 22 | 
            +
            # limitations under the License.
         | 
| 23 | 
            +
            import torch
         | 
| 24 | 
            +
            import torch.nn as nn
         | 
| 25 | 
            +
            import torch.nn.functional as F
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            from einops import rearrange
         | 
| 28 | 
            +
             | 
| 29 | 
            +
             | 
| 30 | 
            +
            class InflatedConv3d(nn.Conv2d):
         | 
| 31 | 
            +
                def forward(self, x):
         | 
| 32 | 
            +
                    video_length = x.shape[2]
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                    x = rearrange(x, "b c f h w -> (b f) c h w")
         | 
| 35 | 
            +
                    x = super().forward(x)
         | 
| 36 | 
            +
                    x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
         | 
| 37 | 
            +
             | 
| 38 | 
            +
                    return x
         | 
| 39 | 
            +
             | 
| 40 | 
            +
             | 
| 41 | 
            +
            class Upsample3D(nn.Module):
         | 
| 42 | 
            +
                def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
         | 
| 43 | 
            +
                    super().__init__()
         | 
| 44 | 
            +
                    self.channels = channels
         | 
| 45 | 
            +
                    self.out_channels = out_channels or channels
         | 
| 46 | 
            +
                    self.use_conv = use_conv
         | 
| 47 | 
            +
                    self.use_conv_transpose = use_conv_transpose
         | 
| 48 | 
            +
                    self.name = name
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                    conv = None
         | 
| 51 | 
            +
                    if use_conv_transpose:
         | 
| 52 | 
            +
                        raise NotImplementedError
         | 
| 53 | 
            +
                    elif use_conv:
         | 
| 54 | 
            +
                        self.conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1)
         | 
| 55 | 
            +
             | 
| 56 | 
            +
                def forward(self, hidden_states, output_size=None):
         | 
| 57 | 
            +
                    assert hidden_states.shape[1] == self.channels
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                    if self.use_conv_transpose:
         | 
| 60 | 
            +
                        raise NotImplementedError
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                    # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
         | 
| 63 | 
            +
                    dtype = hidden_states.dtype
         | 
| 64 | 
            +
                    if dtype == torch.bfloat16:
         | 
| 65 | 
            +
                        hidden_states = hidden_states.to(torch.float32)
         | 
| 66 | 
            +
             | 
| 67 | 
            +
                    # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
         | 
| 68 | 
            +
                    if hidden_states.shape[0] >= 64:
         | 
| 69 | 
            +
                        hidden_states = hidden_states.contiguous()
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                    # if `output_size` is passed we force the interpolation output
         | 
| 72 | 
            +
                    # size and do not make use of `scale_factor=2`
         | 
| 73 | 
            +
                    if output_size is None:
         | 
| 74 | 
            +
                        hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest")
         | 
| 75 | 
            +
                    else:
         | 
| 76 | 
            +
                        hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                    # If the input is bfloat16, we cast back to bfloat16
         | 
| 79 | 
            +
                    if dtype == torch.bfloat16:
         | 
| 80 | 
            +
                        hidden_states = hidden_states.to(dtype)
         | 
| 81 | 
            +
             | 
| 82 | 
            +
                    hidden_states = self.conv(hidden_states)
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                    return hidden_states
         | 
| 85 | 
            +
             | 
| 86 | 
            +
             | 
| 87 | 
            +
            class Downsample3D(nn.Module):
         | 
| 88 | 
            +
                def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
         | 
| 89 | 
            +
                    super().__init__()
         | 
| 90 | 
            +
                    self.channels = channels
         | 
| 91 | 
            +
                    self.out_channels = out_channels or channels
         | 
| 92 | 
            +
                    self.use_conv = use_conv
         | 
| 93 | 
            +
                    self.padding = padding
         | 
| 94 | 
            +
                    stride = 2
         | 
| 95 | 
            +
                    self.name = name
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                    if use_conv:
         | 
| 98 | 
            +
                        self.conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
         | 
| 99 | 
            +
                    else:
         | 
| 100 | 
            +
                        raise NotImplementedError
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                def forward(self, hidden_states):
         | 
| 103 | 
            +
                    assert hidden_states.shape[1] == self.channels
         | 
| 104 | 
            +
                    if self.use_conv and self.padding == 0:
         | 
| 105 | 
            +
                        raise NotImplementedError
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                    assert hidden_states.shape[1] == self.channels
         | 
| 108 | 
            +
                    hidden_states = self.conv(hidden_states)
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                    return hidden_states
         | 
| 111 | 
            +
             | 
| 112 | 
            +
             | 
| 113 | 
            +
            class ResnetBlock3D(nn.Module):
         | 
| 114 | 
            +
                def __init__(
         | 
| 115 | 
            +
                    self,
         | 
| 116 | 
            +
                    *,
         | 
| 117 | 
            +
                    in_channels,
         | 
| 118 | 
            +
                    out_channels=None,
         | 
| 119 | 
            +
                    conv_shortcut=False,
         | 
| 120 | 
            +
                    dropout=0.0,
         | 
| 121 | 
            +
                    temb_channels=512,
         | 
| 122 | 
            +
                    groups=32,
         | 
| 123 | 
            +
                    groups_out=None,
         | 
| 124 | 
            +
                    pre_norm=True,
         | 
| 125 | 
            +
                    eps=1e-6,
         | 
| 126 | 
            +
                    non_linearity="swish",
         | 
| 127 | 
            +
                    time_embedding_norm="default",
         | 
| 128 | 
            +
                    output_scale_factor=1.0,
         | 
| 129 | 
            +
                    use_in_shortcut=None,
         | 
| 130 | 
            +
                ):
         | 
| 131 | 
            +
                    super().__init__()
         | 
| 132 | 
            +
                    self.pre_norm = pre_norm
         | 
| 133 | 
            +
                    self.pre_norm = True
         | 
| 134 | 
            +
                    self.in_channels = in_channels
         | 
| 135 | 
            +
                    out_channels = in_channels if out_channels is None else out_channels
         | 
| 136 | 
            +
                    self.out_channels = out_channels
         | 
| 137 | 
            +
                    self.use_conv_shortcut = conv_shortcut
         | 
| 138 | 
            +
                    self.time_embedding_norm = time_embedding_norm
         | 
| 139 | 
            +
                    self.output_scale_factor = output_scale_factor
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                    if groups_out is None:
         | 
| 142 | 
            +
                        groups_out = groups
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                    self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                    self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                    if temb_channels is not None:
         | 
| 149 | 
            +
                        if self.time_embedding_norm == "default":
         | 
| 150 | 
            +
                            time_emb_proj_out_channels = out_channels
         | 
| 151 | 
            +
                        elif self.time_embedding_norm == "scale_shift":
         | 
| 152 | 
            +
                            time_emb_proj_out_channels = out_channels * 2
         | 
| 153 | 
            +
                        else:
         | 
| 154 | 
            +
                            raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                        self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels)
         | 
| 157 | 
            +
                    else:
         | 
| 158 | 
            +
                        self.time_emb_proj = None
         | 
| 159 | 
            +
             | 
| 160 | 
            +
                    self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
         | 
| 161 | 
            +
                    self.dropout = torch.nn.Dropout(dropout)
         | 
| 162 | 
            +
                    self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
         | 
| 163 | 
            +
             | 
| 164 | 
            +
                    if non_linearity == "swish":
         | 
| 165 | 
            +
                        self.nonlinearity = lambda x: F.silu(x)
         | 
| 166 | 
            +
                    elif non_linearity == "mish":
         | 
| 167 | 
            +
                        self.nonlinearity = Mish()
         | 
| 168 | 
            +
                    elif non_linearity == "silu":
         | 
| 169 | 
            +
                        self.nonlinearity = nn.SiLU()
         | 
| 170 | 
            +
             | 
| 171 | 
            +
                    self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
         | 
| 172 | 
            +
             | 
| 173 | 
            +
                    self.conv_shortcut = None
         | 
| 174 | 
            +
                    if self.use_in_shortcut:
         | 
| 175 | 
            +
                        self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                def forward(self, input_tensor, temb):
         | 
| 178 | 
            +
                    hidden_states = input_tensor
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                    hidden_states = self.norm1(hidden_states)
         | 
| 181 | 
            +
                    hidden_states = self.nonlinearity(hidden_states)
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                    hidden_states = self.conv1(hidden_states)
         | 
| 184 | 
            +
             | 
| 185 | 
            +
                    if temb is not None:
         | 
| 186 | 
            +
                        temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None]
         | 
| 187 | 
            +
             | 
| 188 | 
            +
                    if temb is not None and self.time_embedding_norm == "default":
         | 
| 189 | 
            +
                        hidden_states = hidden_states + temb
         | 
| 190 | 
            +
             | 
| 191 | 
            +
                    hidden_states = self.norm2(hidden_states)
         | 
| 192 | 
            +
             | 
| 193 | 
            +
                    if temb is not None and self.time_embedding_norm == "scale_shift":
         | 
| 194 | 
            +
                        scale, shift = torch.chunk(temb, 2, dim=1)
         | 
| 195 | 
            +
                        hidden_states = hidden_states * (1 + scale) + shift
         | 
| 196 | 
            +
             | 
| 197 | 
            +
                    hidden_states = self.nonlinearity(hidden_states)
         | 
| 198 | 
            +
             | 
| 199 | 
            +
                    hidden_states = self.dropout(hidden_states)
         | 
| 200 | 
            +
                    hidden_states = self.conv2(hidden_states)
         | 
| 201 | 
            +
             | 
| 202 | 
            +
                    if self.conv_shortcut is not None:
         | 
| 203 | 
            +
                        input_tensor = self.conv_shortcut(input_tensor)
         | 
| 204 | 
            +
             | 
| 205 | 
            +
                    output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                    return output_tensor
         | 
| 208 | 
            +
             | 
| 209 | 
            +
             | 
| 210 | 
            +
            class Mish(torch.nn.Module):
         | 
| 211 | 
            +
                def forward(self, hidden_states):
         | 
| 212 | 
            +
                    return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
         | 
    	
        magicanimate/models/stable_diffusion_controlnet_reference.py
    ADDED
    
    | @@ -0,0 +1,840 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # *************************************************************************
         | 
| 2 | 
            +
            # This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo-
         | 
| 3 | 
            +
            # difications”). All Bytedance Inc.'s Modifications are Copyright (2023) B-
         | 
| 4 | 
            +
            # ytedance Inc..  
         | 
| 5 | 
            +
            # *************************************************************************
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Inspired by: https://github.com/Mikubill/sd-webui-controlnet/discussions/1236 and https://github.com/Mikubill/sd-webui-controlnet/discussions/1280
         | 
| 8 | 
            +
            from typing import Any, Callable, Dict, List, Optional, Tuple, Union
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            import numpy as np
         | 
| 11 | 
            +
            import PIL.Image
         | 
| 12 | 
            +
            import torch
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            from diffusers import StableDiffusionControlNetPipeline
         | 
| 15 | 
            +
            from diffusers.models import ControlNetModel
         | 
| 16 | 
            +
            from diffusers.models.attention import BasicTransformerBlock
         | 
| 17 | 
            +
            from diffusers.models.unet_2d_blocks import CrossAttnDownBlock2D, CrossAttnUpBlock2D, DownBlock2D, UpBlock2D
         | 
| 18 | 
            +
            from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
         | 
| 19 | 
            +
            from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
         | 
| 20 | 
            +
            from diffusers.utils import logging
         | 
| 21 | 
            +
            from diffusers.utils.torch_utils import is_compiled_module, randn_tensor
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            EXAMPLE_DOC_STRING = """
         | 
| 26 | 
            +
                Examples:
         | 
| 27 | 
            +
                    ```py
         | 
| 28 | 
            +
                    >>> import cv2
         | 
| 29 | 
            +
                    >>> import torch
         | 
| 30 | 
            +
                    >>> import numpy as np
         | 
| 31 | 
            +
                    >>> from PIL import Image
         | 
| 32 | 
            +
                    >>> from diffusers import UniPCMultistepScheduler
         | 
| 33 | 
            +
                    >>> from diffusers.utils import load_image
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                    >>> input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png")
         | 
| 36 | 
            +
             | 
| 37 | 
            +
                    >>> # get canny image
         | 
| 38 | 
            +
                    >>> image = cv2.Canny(np.array(input_image), 100, 200)
         | 
| 39 | 
            +
                    >>> image = image[:, :, None]
         | 
| 40 | 
            +
                    >>> image = np.concatenate([image, image, image], axis=2)
         | 
| 41 | 
            +
                    >>> canny_image = Image.fromarray(image)
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                    >>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
         | 
| 44 | 
            +
                    >>> pipe = StableDiffusionControlNetReferencePipeline.from_pretrained(
         | 
| 45 | 
            +
                            "runwayml/stable-diffusion-v1-5",
         | 
| 46 | 
            +
                            controlnet=controlnet,
         | 
| 47 | 
            +
                            safety_checker=None,
         | 
| 48 | 
            +
                            torch_dtype=torch.float16
         | 
| 49 | 
            +
                            ).to('cuda:0')
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                    >>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe_controlnet.scheduler.config)
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                    >>> result_img = pipe(ref_image=input_image,
         | 
| 54 | 
            +
                                    prompt="1girl",
         | 
| 55 | 
            +
                                    image=canny_image,
         | 
| 56 | 
            +
                                    num_inference_steps=20,
         | 
| 57 | 
            +
                                    reference_attn=True,
         | 
| 58 | 
            +
                                    reference_adain=True).images[0]
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                    >>> result_img.show()
         | 
| 61 | 
            +
                    ```
         | 
| 62 | 
            +
            """
         | 
| 63 | 
            +
             | 
| 64 | 
            +
             | 
| 65 | 
            +
            def torch_dfs(model: torch.nn.Module):
         | 
| 66 | 
            +
                result = [model]
         | 
| 67 | 
            +
                for child in model.children():
         | 
| 68 | 
            +
                    result += torch_dfs(child)
         | 
| 69 | 
            +
                return result
         | 
| 70 | 
            +
             | 
| 71 | 
            +
             | 
| 72 | 
            +
            class StableDiffusionControlNetReferencePipeline(StableDiffusionControlNetPipeline):
         | 
| 73 | 
            +
                def prepare_ref_latents(self, refimage, batch_size, dtype, device, generator, do_classifier_free_guidance):
         | 
| 74 | 
            +
                    refimage = refimage.to(device=device, dtype=dtype)
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                    # encode the mask image into latents space so we can concatenate it to the latents
         | 
| 77 | 
            +
                    if isinstance(generator, list):
         | 
| 78 | 
            +
                        ref_image_latents = [
         | 
| 79 | 
            +
                            self.vae.encode(refimage[i : i + 1]).latent_dist.sample(generator=generator[i])
         | 
| 80 | 
            +
                            for i in range(batch_size)
         | 
| 81 | 
            +
                        ]
         | 
| 82 | 
            +
                        ref_image_latents = torch.cat(ref_image_latents, dim=0)
         | 
| 83 | 
            +
                    else:
         | 
| 84 | 
            +
                        ref_image_latents = self.vae.encode(refimage).latent_dist.sample(generator=generator)
         | 
| 85 | 
            +
                    ref_image_latents = self.vae.config.scaling_factor * ref_image_latents
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                    # duplicate mask and ref_image_latents for each generation per prompt, using mps friendly method
         | 
| 88 | 
            +
                    if ref_image_latents.shape[0] < batch_size:
         | 
| 89 | 
            +
                        if not batch_size % ref_image_latents.shape[0] == 0:
         | 
| 90 | 
            +
                            raise ValueError(
         | 
| 91 | 
            +
                                "The passed images and the required batch size don't match. Images are supposed to be duplicated"
         | 
| 92 | 
            +
                                f" to a total batch size of {batch_size}, but {ref_image_latents.shape[0]} images were passed."
         | 
| 93 | 
            +
                                " Make sure the number of images that you pass is divisible by the total requested batch size."
         | 
| 94 | 
            +
                            )
         | 
| 95 | 
            +
                        ref_image_latents = ref_image_latents.repeat(batch_size // ref_image_latents.shape[0], 1, 1, 1)
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                    ref_image_latents = torch.cat([ref_image_latents] * 2) if do_classifier_free_guidance else ref_image_latents
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                    # aligning device to prevent device errors when concating it with the latent model input
         | 
| 100 | 
            +
                    ref_image_latents = ref_image_latents.to(device=device, dtype=dtype)
         | 
| 101 | 
            +
                    return ref_image_latents
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                @torch.no_grad()
         | 
| 104 | 
            +
                def __call__(
         | 
| 105 | 
            +
                    self,
         | 
| 106 | 
            +
                    prompt: Union[str, List[str]] = None,
         | 
| 107 | 
            +
                    image: Union[
         | 
| 108 | 
            +
                        torch.FloatTensor,
         | 
| 109 | 
            +
                        PIL.Image.Image,
         | 
| 110 | 
            +
                        np.ndarray,
         | 
| 111 | 
            +
                        List[torch.FloatTensor],
         | 
| 112 | 
            +
                        List[PIL.Image.Image],
         | 
| 113 | 
            +
                        List[np.ndarray],
         | 
| 114 | 
            +
                    ] = None,
         | 
| 115 | 
            +
                    ref_image: Union[torch.FloatTensor, PIL.Image.Image] = None,
         | 
| 116 | 
            +
                    height: Optional[int] = None,
         | 
| 117 | 
            +
                    width: Optional[int] = None,
         | 
| 118 | 
            +
                    num_inference_steps: int = 50,
         | 
| 119 | 
            +
                    guidance_scale: float = 7.5,
         | 
| 120 | 
            +
                    negative_prompt: Optional[Union[str, List[str]]] = None,
         | 
| 121 | 
            +
                    num_images_per_prompt: Optional[int] = 1,
         | 
| 122 | 
            +
                    eta: float = 0.0,
         | 
| 123 | 
            +
                    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
         | 
| 124 | 
            +
                    latents: Optional[torch.FloatTensor] = None,
         | 
| 125 | 
            +
                    prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 126 | 
            +
                    negative_prompt_embeds: Optional[torch.FloatTensor] = None,
         | 
| 127 | 
            +
                    output_type: Optional[str] = "pil",
         | 
| 128 | 
            +
                    return_dict: bool = True,
         | 
| 129 | 
            +
                    callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
         | 
| 130 | 
            +
                    callback_steps: int = 1,
         | 
| 131 | 
            +
                    cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 132 | 
            +
                    controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
         | 
| 133 | 
            +
                    guess_mode: bool = False,
         | 
| 134 | 
            +
                    attention_auto_machine_weight: float = 1.0,
         | 
| 135 | 
            +
                    gn_auto_machine_weight: float = 1.0,
         | 
| 136 | 
            +
                    style_fidelity: float = 0.5,
         | 
| 137 | 
            +
                    reference_attn: bool = True,
         | 
| 138 | 
            +
                    reference_adain: bool = True,
         | 
| 139 | 
            +
                ):
         | 
| 140 | 
            +
                    r"""
         | 
| 141 | 
            +
                    Function invoked when calling the pipeline for generation.
         | 
| 142 | 
            +
             | 
| 143 | 
            +
                    Args:
         | 
| 144 | 
            +
                        prompt (`str` or `List[str]`, *optional*):
         | 
| 145 | 
            +
                            The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
         | 
| 146 | 
            +
                            instead.
         | 
| 147 | 
            +
                        image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
         | 
| 148 | 
            +
                                `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
         | 
| 149 | 
            +
                            The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
         | 
| 150 | 
            +
                            the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can
         | 
| 151 | 
            +
                            also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If
         | 
| 152 | 
            +
                            height and/or width are passed, `image` is resized according to them. If multiple ControlNets are
         | 
| 153 | 
            +
                            specified in init, images must be passed as a list such that each element of the list can be correctly
         | 
| 154 | 
            +
                            batched for input to a single controlnet.
         | 
| 155 | 
            +
                        ref_image (`torch.FloatTensor`, `PIL.Image.Image`):
         | 
| 156 | 
            +
                            The Reference Control input condition. Reference Control uses this input condition to generate guidance to Unet. If
         | 
| 157 | 
            +
                            the type is specified as `Torch.FloatTensor`, it is passed to Reference Control as is. `PIL.Image.Image` can
         | 
| 158 | 
            +
                            also be accepted as an image.
         | 
| 159 | 
            +
                        height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
         | 
| 160 | 
            +
                            The height in pixels of the generated image.
         | 
| 161 | 
            +
                        width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
         | 
| 162 | 
            +
                            The width in pixels of the generated image.
         | 
| 163 | 
            +
                        num_inference_steps (`int`, *optional*, defaults to 50):
         | 
| 164 | 
            +
                            The number of denoising steps. More denoising steps usually lead to a higher quality image at the
         | 
| 165 | 
            +
                            expense of slower inference.
         | 
| 166 | 
            +
                        guidance_scale (`float`, *optional*, defaults to 7.5):
         | 
| 167 | 
            +
                            Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
         | 
| 168 | 
            +
                            `guidance_scale` is defined as `w` of equation 2. of [Imagen
         | 
| 169 | 
            +
                            Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
         | 
| 170 | 
            +
                            1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
         | 
| 171 | 
            +
                            usually at the expense of lower image quality.
         | 
| 172 | 
            +
                        negative_prompt (`str` or `List[str]`, *optional*):
         | 
| 173 | 
            +
                            The prompt or prompts not to guide the image generation. If not defined, one has to pass
         | 
| 174 | 
            +
                            `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
         | 
| 175 | 
            +
                            less than `1`).
         | 
| 176 | 
            +
                        num_images_per_prompt (`int`, *optional*, defaults to 1):
         | 
| 177 | 
            +
                            The number of images to generate per prompt.
         | 
| 178 | 
            +
                        eta (`float`, *optional*, defaults to 0.0):
         | 
| 179 | 
            +
                            Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
         | 
| 180 | 
            +
                            [`schedulers.DDIMScheduler`], will be ignored for others.
         | 
| 181 | 
            +
                        generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
         | 
| 182 | 
            +
                            One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
         | 
| 183 | 
            +
                            to make generation deterministic.
         | 
| 184 | 
            +
                        latents (`torch.FloatTensor`, *optional*):
         | 
| 185 | 
            +
                            Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
         | 
| 186 | 
            +
                            generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
         | 
| 187 | 
            +
                            tensor will ge generated by sampling using the supplied random `generator`.
         | 
| 188 | 
            +
                        prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 189 | 
            +
                            Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
         | 
| 190 | 
            +
                            provided, text embeddings will be generated from `prompt` input argument.
         | 
| 191 | 
            +
                        negative_prompt_embeds (`torch.FloatTensor`, *optional*):
         | 
| 192 | 
            +
                            Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
         | 
| 193 | 
            +
                            weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
         | 
| 194 | 
            +
                            argument.
         | 
| 195 | 
            +
                        output_type (`str`, *optional*, defaults to `"pil"`):
         | 
| 196 | 
            +
                            The output format of the generate image. Choose between
         | 
| 197 | 
            +
                            [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
         | 
| 198 | 
            +
                        return_dict (`bool`, *optional*, defaults to `True`):
         | 
| 199 | 
            +
                            Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
         | 
| 200 | 
            +
                            plain tuple.
         | 
| 201 | 
            +
                        callback (`Callable`, *optional*):
         | 
| 202 | 
            +
                            A function that will be called every `callback_steps` steps during inference. The function will be
         | 
| 203 | 
            +
                            called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
         | 
| 204 | 
            +
                        callback_steps (`int`, *optional*, defaults to 1):
         | 
| 205 | 
            +
                            The frequency at which the `callback` function will be called. If not specified, the callback will be
         | 
| 206 | 
            +
                            called at every step.
         | 
| 207 | 
            +
                        cross_attention_kwargs (`dict`, *optional*):
         | 
| 208 | 
            +
                            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
         | 
| 209 | 
            +
                            `self.processor` in
         | 
| 210 | 
            +
                            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
         | 
| 211 | 
            +
                        controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
         | 
| 212 | 
            +
                            The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
         | 
| 213 | 
            +
                            to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
         | 
| 214 | 
            +
                            corresponding scale as a list.
         | 
| 215 | 
            +
                        guess_mode (`bool`, *optional*, defaults to `False`):
         | 
| 216 | 
            +
                            In this mode, the ControlNet encoder will try best to recognize the content of the input image even if
         | 
| 217 | 
            +
                            you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
         | 
| 218 | 
            +
                        attention_auto_machine_weight (`float`):
         | 
| 219 | 
            +
                            Weight of using reference query for self attention's context.
         | 
| 220 | 
            +
                            If attention_auto_machine_weight=1.0, use reference query for all self attention's context.
         | 
| 221 | 
            +
                        gn_auto_machine_weight (`float`):
         | 
| 222 | 
            +
                            Weight of using reference adain. If gn_auto_machine_weight=2.0, use all reference adain plugins.
         | 
| 223 | 
            +
                        style_fidelity (`float`):
         | 
| 224 | 
            +
                            style fidelity of ref_uncond_xt. If style_fidelity=1.0, control more important,
         | 
| 225 | 
            +
                            elif style_fidelity=0.0, prompt more important, else balanced.
         | 
| 226 | 
            +
                        reference_attn (`bool`):
         | 
| 227 | 
            +
                            Whether to use reference query for self attention's context.
         | 
| 228 | 
            +
                        reference_adain (`bool`):
         | 
| 229 | 
            +
                            Whether to use reference adain.
         | 
| 230 | 
            +
             | 
| 231 | 
            +
                    Examples:
         | 
| 232 | 
            +
             | 
| 233 | 
            +
                    Returns:
         | 
| 234 | 
            +
                        [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
         | 
| 235 | 
            +
                        [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
         | 
| 236 | 
            +
                        When returning a tuple, the first element is a list with the generated images, and the second element is a
         | 
| 237 | 
            +
                        list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
         | 
| 238 | 
            +
                        (nsfw) content, according to the `safety_checker`.
         | 
| 239 | 
            +
                    """
         | 
| 240 | 
            +
                    assert reference_attn or reference_adain, "`reference_attn` or `reference_adain` must be True."
         | 
| 241 | 
            +
             | 
| 242 | 
            +
                    # 1. Check inputs. Raise error if not correct
         | 
| 243 | 
            +
                    self.check_inputs(
         | 
| 244 | 
            +
                        prompt,
         | 
| 245 | 
            +
                        image,
         | 
| 246 | 
            +
                        callback_steps,
         | 
| 247 | 
            +
                        negative_prompt,
         | 
| 248 | 
            +
                        prompt_embeds,
         | 
| 249 | 
            +
                        negative_prompt_embeds,
         | 
| 250 | 
            +
                        controlnet_conditioning_scale,
         | 
| 251 | 
            +
                    )
         | 
| 252 | 
            +
             | 
| 253 | 
            +
                    # 2. Define call parameters
         | 
| 254 | 
            +
                    if prompt is not None and isinstance(prompt, str):
         | 
| 255 | 
            +
                        batch_size = 1
         | 
| 256 | 
            +
                    elif prompt is not None and isinstance(prompt, list):
         | 
| 257 | 
            +
                        batch_size = len(prompt)
         | 
| 258 | 
            +
                    else:
         | 
| 259 | 
            +
                        batch_size = prompt_embeds.shape[0]
         | 
| 260 | 
            +
             | 
| 261 | 
            +
                    device = self._execution_device
         | 
| 262 | 
            +
                    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
         | 
| 263 | 
            +
                    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
         | 
| 264 | 
            +
                    # corresponds to doing no classifier free guidance.
         | 
| 265 | 
            +
                    do_classifier_free_guidance = guidance_scale > 1.0
         | 
| 266 | 
            +
             | 
| 267 | 
            +
                    controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
         | 
| 268 | 
            +
             | 
| 269 | 
            +
                    if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
         | 
| 270 | 
            +
                        controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
         | 
| 271 | 
            +
             | 
| 272 | 
            +
                    global_pool_conditions = (
         | 
| 273 | 
            +
                        controlnet.config.global_pool_conditions
         | 
| 274 | 
            +
                        if isinstance(controlnet, ControlNetModel)
         | 
| 275 | 
            +
                        else controlnet.nets[0].config.global_pool_conditions
         | 
| 276 | 
            +
                    )
         | 
| 277 | 
            +
                    guess_mode = guess_mode or global_pool_conditions
         | 
| 278 | 
            +
             | 
| 279 | 
            +
                    # 3. Encode input prompt
         | 
| 280 | 
            +
                    text_encoder_lora_scale = (
         | 
| 281 | 
            +
                        cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
         | 
| 282 | 
            +
                    )
         | 
| 283 | 
            +
                    prompt_embeds = self._encode_prompt(
         | 
| 284 | 
            +
                        prompt,
         | 
| 285 | 
            +
                        device,
         | 
| 286 | 
            +
                        num_images_per_prompt,
         | 
| 287 | 
            +
                        do_classifier_free_guidance,
         | 
| 288 | 
            +
                        negative_prompt,
         | 
| 289 | 
            +
                        prompt_embeds=prompt_embeds,
         | 
| 290 | 
            +
                        negative_prompt_embeds=negative_prompt_embeds,
         | 
| 291 | 
            +
                        lora_scale=text_encoder_lora_scale,
         | 
| 292 | 
            +
                    )
         | 
| 293 | 
            +
             | 
| 294 | 
            +
                    # 4. Prepare image
         | 
| 295 | 
            +
                    if isinstance(controlnet, ControlNetModel):
         | 
| 296 | 
            +
                        image = self.prepare_image(
         | 
| 297 | 
            +
                            image=image,
         | 
| 298 | 
            +
                            width=width,
         | 
| 299 | 
            +
                            height=height,
         | 
| 300 | 
            +
                            batch_size=batch_size * num_images_per_prompt,
         | 
| 301 | 
            +
                            num_images_per_prompt=num_images_per_prompt,
         | 
| 302 | 
            +
                            device=device,
         | 
| 303 | 
            +
                            dtype=controlnet.dtype,
         | 
| 304 | 
            +
                            do_classifier_free_guidance=do_classifier_free_guidance,
         | 
| 305 | 
            +
                            guess_mode=guess_mode,
         | 
| 306 | 
            +
                        )
         | 
| 307 | 
            +
                        height, width = image.shape[-2:]
         | 
| 308 | 
            +
                    elif isinstance(controlnet, MultiControlNetModel):
         | 
| 309 | 
            +
                        images = []
         | 
| 310 | 
            +
             | 
| 311 | 
            +
                        for image_ in image:
         | 
| 312 | 
            +
                            image_ = self.prepare_image(
         | 
| 313 | 
            +
                                image=image_,
         | 
| 314 | 
            +
                                width=width,
         | 
| 315 | 
            +
                                height=height,
         | 
| 316 | 
            +
                                batch_size=batch_size * num_images_per_prompt,
         | 
| 317 | 
            +
                                num_images_per_prompt=num_images_per_prompt,
         | 
| 318 | 
            +
                                device=device,
         | 
| 319 | 
            +
                                dtype=controlnet.dtype,
         | 
| 320 | 
            +
                                do_classifier_free_guidance=do_classifier_free_guidance,
         | 
| 321 | 
            +
                                guess_mode=guess_mode,
         | 
| 322 | 
            +
                            )
         | 
| 323 | 
            +
             | 
| 324 | 
            +
                            images.append(image_)
         | 
| 325 | 
            +
             | 
| 326 | 
            +
                        image = images
         | 
| 327 | 
            +
                        height, width = image[0].shape[-2:]
         | 
| 328 | 
            +
                    else:
         | 
| 329 | 
            +
                        assert False
         | 
| 330 | 
            +
             | 
| 331 | 
            +
                    # 5. Preprocess reference image
         | 
| 332 | 
            +
                    ref_image = self.prepare_image(
         | 
| 333 | 
            +
                        image=ref_image,
         | 
| 334 | 
            +
                        width=width,
         | 
| 335 | 
            +
                        height=height,
         | 
| 336 | 
            +
                        batch_size=batch_size * num_images_per_prompt,
         | 
| 337 | 
            +
                        num_images_per_prompt=num_images_per_prompt,
         | 
| 338 | 
            +
                        device=device,
         | 
| 339 | 
            +
                        dtype=prompt_embeds.dtype,
         | 
| 340 | 
            +
                    )
         | 
| 341 | 
            +
             | 
| 342 | 
            +
                    # 6. Prepare timesteps
         | 
| 343 | 
            +
                    self.scheduler.set_timesteps(num_inference_steps, device=device)
         | 
| 344 | 
            +
                    timesteps = self.scheduler.timesteps
         | 
| 345 | 
            +
             | 
| 346 | 
            +
                    # 7. Prepare latent variables
         | 
| 347 | 
            +
                    num_channels_latents = self.unet.config.in_channels
         | 
| 348 | 
            +
                    latents = self.prepare_latents(
         | 
| 349 | 
            +
                        batch_size * num_images_per_prompt,
         | 
| 350 | 
            +
                        num_channels_latents,
         | 
| 351 | 
            +
                        height,
         | 
| 352 | 
            +
                        width,
         | 
| 353 | 
            +
                        prompt_embeds.dtype,
         | 
| 354 | 
            +
                        device,
         | 
| 355 | 
            +
                        generator,
         | 
| 356 | 
            +
                        latents,
         | 
| 357 | 
            +
                    )
         | 
| 358 | 
            +
             | 
| 359 | 
            +
                    # 8. Prepare reference latent variables
         | 
| 360 | 
            +
                    ref_image_latents = self.prepare_ref_latents(
         | 
| 361 | 
            +
                        ref_image,
         | 
| 362 | 
            +
                        batch_size * num_images_per_prompt,
         | 
| 363 | 
            +
                        prompt_embeds.dtype,
         | 
| 364 | 
            +
                        device,
         | 
| 365 | 
            +
                        generator,
         | 
| 366 | 
            +
                        do_classifier_free_guidance,
         | 
| 367 | 
            +
                    )
         | 
| 368 | 
            +
             | 
| 369 | 
            +
                    # 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
         | 
| 370 | 
            +
                    extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
         | 
| 371 | 
            +
             | 
| 372 | 
            +
                    # 10. Modify self attention and group norm
         | 
| 373 | 
            +
                    MODE = "write"
         | 
| 374 | 
            +
                    uc_mask = (
         | 
| 375 | 
            +
                        torch.Tensor([1] * batch_size * num_images_per_prompt + [0] * batch_size * num_images_per_prompt)
         | 
| 376 | 
            +
                        .type_as(ref_image_latents)
         | 
| 377 | 
            +
                        .bool()
         | 
| 378 | 
            +
                    )
         | 
| 379 | 
            +
             | 
| 380 | 
            +
                    def hacked_basic_transformer_inner_forward(
         | 
| 381 | 
            +
                        self,
         | 
| 382 | 
            +
                        hidden_states: torch.FloatTensor,
         | 
| 383 | 
            +
                        attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 384 | 
            +
                        encoder_hidden_states: Optional[torch.FloatTensor] = None,
         | 
| 385 | 
            +
                        encoder_attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 386 | 
            +
                        timestep: Optional[torch.LongTensor] = None,
         | 
| 387 | 
            +
                        cross_attention_kwargs: Dict[str, Any] = None,
         | 
| 388 | 
            +
                        class_labels: Optional[torch.LongTensor] = None,
         | 
| 389 | 
            +
                    ):
         | 
| 390 | 
            +
                        if self.use_ada_layer_norm:
         | 
| 391 | 
            +
                            norm_hidden_states = self.norm1(hidden_states, timestep)
         | 
| 392 | 
            +
                        elif self.use_ada_layer_norm_zero:
         | 
| 393 | 
            +
                            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
         | 
| 394 | 
            +
                                hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
         | 
| 395 | 
            +
                            )
         | 
| 396 | 
            +
                        else:
         | 
| 397 | 
            +
                            norm_hidden_states = self.norm1(hidden_states)
         | 
| 398 | 
            +
             | 
| 399 | 
            +
                        # 1. Self-Attention
         | 
| 400 | 
            +
                        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
         | 
| 401 | 
            +
                        if self.only_cross_attention:
         | 
| 402 | 
            +
                            attn_output = self.attn1(
         | 
| 403 | 
            +
                                norm_hidden_states,
         | 
| 404 | 
            +
                                encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
         | 
| 405 | 
            +
                                attention_mask=attention_mask,
         | 
| 406 | 
            +
                                **cross_attention_kwargs,
         | 
| 407 | 
            +
                            )
         | 
| 408 | 
            +
                        else:
         | 
| 409 | 
            +
                            if MODE == "write":
         | 
| 410 | 
            +
                                self.bank.append(norm_hidden_states.detach().clone())
         | 
| 411 | 
            +
                                attn_output = self.attn1(
         | 
| 412 | 
            +
                                    norm_hidden_states,
         | 
| 413 | 
            +
                                    encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
         | 
| 414 | 
            +
                                    attention_mask=attention_mask,
         | 
| 415 | 
            +
                                    **cross_attention_kwargs,
         | 
| 416 | 
            +
                                )
         | 
| 417 | 
            +
                            if MODE == "read":
         | 
| 418 | 
            +
                                if attention_auto_machine_weight > self.attn_weight:
         | 
| 419 | 
            +
                                    attn_output_uc = self.attn1(
         | 
| 420 | 
            +
                                        norm_hidden_states,
         | 
| 421 | 
            +
                                        encoder_hidden_states=torch.cat([norm_hidden_states] + self.bank, dim=1),
         | 
| 422 | 
            +
                                        # attention_mask=attention_mask,
         | 
| 423 | 
            +
                                        **cross_attention_kwargs,
         | 
| 424 | 
            +
                                    )
         | 
| 425 | 
            +
                                    attn_output_c = attn_output_uc.clone()
         | 
| 426 | 
            +
                                    if do_classifier_free_guidance and style_fidelity > 0:
         | 
| 427 | 
            +
                                        attn_output_c[uc_mask] = self.attn1(
         | 
| 428 | 
            +
                                            norm_hidden_states[uc_mask],
         | 
| 429 | 
            +
                                            encoder_hidden_states=norm_hidden_states[uc_mask],
         | 
| 430 | 
            +
                                            **cross_attention_kwargs,
         | 
| 431 | 
            +
                                        )
         | 
| 432 | 
            +
                                    attn_output = style_fidelity * attn_output_c + (1.0 - style_fidelity) * attn_output_uc
         | 
| 433 | 
            +
                                    self.bank.clear()
         | 
| 434 | 
            +
                                else:
         | 
| 435 | 
            +
                                    attn_output = self.attn1(
         | 
| 436 | 
            +
                                        norm_hidden_states,
         | 
| 437 | 
            +
                                        encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
         | 
| 438 | 
            +
                                        attention_mask=attention_mask,
         | 
| 439 | 
            +
                                        **cross_attention_kwargs,
         | 
| 440 | 
            +
                                    )
         | 
| 441 | 
            +
                        if self.use_ada_layer_norm_zero:
         | 
| 442 | 
            +
                            attn_output = gate_msa.unsqueeze(1) * attn_output
         | 
| 443 | 
            +
                        hidden_states = attn_output + hidden_states
         | 
| 444 | 
            +
             | 
| 445 | 
            +
                        if self.attn2 is not None:
         | 
| 446 | 
            +
                            norm_hidden_states = (
         | 
| 447 | 
            +
                                self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
         | 
| 448 | 
            +
                            )
         | 
| 449 | 
            +
             | 
| 450 | 
            +
                            # 2. Cross-Attention
         | 
| 451 | 
            +
                            attn_output = self.attn2(
         | 
| 452 | 
            +
                                norm_hidden_states,
         | 
| 453 | 
            +
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 454 | 
            +
                                attention_mask=encoder_attention_mask,
         | 
| 455 | 
            +
                                **cross_attention_kwargs,
         | 
| 456 | 
            +
                            )
         | 
| 457 | 
            +
                            hidden_states = attn_output + hidden_states
         | 
| 458 | 
            +
             | 
| 459 | 
            +
                        # 3. Feed-forward
         | 
| 460 | 
            +
                        norm_hidden_states = self.norm3(hidden_states)
         | 
| 461 | 
            +
             | 
| 462 | 
            +
                        if self.use_ada_layer_norm_zero:
         | 
| 463 | 
            +
                            norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
         | 
| 464 | 
            +
             | 
| 465 | 
            +
                        ff_output = self.ff(norm_hidden_states)
         | 
| 466 | 
            +
             | 
| 467 | 
            +
                        if self.use_ada_layer_norm_zero:
         | 
| 468 | 
            +
                            ff_output = gate_mlp.unsqueeze(1) * ff_output
         | 
| 469 | 
            +
             | 
| 470 | 
            +
                        hidden_states = ff_output + hidden_states
         | 
| 471 | 
            +
             | 
| 472 | 
            +
                        return hidden_states
         | 
| 473 | 
            +
             | 
| 474 | 
            +
                    def hacked_mid_forward(self, *args, **kwargs):
         | 
| 475 | 
            +
                        eps = 1e-6
         | 
| 476 | 
            +
                        x = self.original_forward(*args, **kwargs)
         | 
| 477 | 
            +
                        if MODE == "write":
         | 
| 478 | 
            +
                            if gn_auto_machine_weight >= self.gn_weight:
         | 
| 479 | 
            +
                                var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
         | 
| 480 | 
            +
                                self.mean_bank.append(mean)
         | 
| 481 | 
            +
                                self.var_bank.append(var)
         | 
| 482 | 
            +
                        if MODE == "read":
         | 
| 483 | 
            +
                            if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
         | 
| 484 | 
            +
                                var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0)
         | 
| 485 | 
            +
                                std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
         | 
| 486 | 
            +
                                mean_acc = sum(self.mean_bank) / float(len(self.mean_bank))
         | 
| 487 | 
            +
                                var_acc = sum(self.var_bank) / float(len(self.var_bank))
         | 
| 488 | 
            +
                                std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
         | 
| 489 | 
            +
                                x_uc = (((x - mean) / std) * std_acc) + mean_acc
         | 
| 490 | 
            +
                                x_c = x_uc.clone()
         | 
| 491 | 
            +
                                if do_classifier_free_guidance and style_fidelity > 0:
         | 
| 492 | 
            +
                                    x_c[uc_mask] = x[uc_mask]
         | 
| 493 | 
            +
                                x = style_fidelity * x_c + (1.0 - style_fidelity) * x_uc
         | 
| 494 | 
            +
                            self.mean_bank = []
         | 
| 495 | 
            +
                            self.var_bank = []
         | 
| 496 | 
            +
                        return x
         | 
| 497 | 
            +
             | 
| 498 | 
            +
                    def hack_CrossAttnDownBlock2D_forward(
         | 
| 499 | 
            +
                        self,
         | 
| 500 | 
            +
                        hidden_states: torch.FloatTensor,
         | 
| 501 | 
            +
                        temb: Optional[torch.FloatTensor] = None,
         | 
| 502 | 
            +
                        encoder_hidden_states: Optional[torch.FloatTensor] = None,
         | 
| 503 | 
            +
                        attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 504 | 
            +
                        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 505 | 
            +
                        encoder_attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 506 | 
            +
                    ):
         | 
| 507 | 
            +
                        eps = 1e-6
         | 
| 508 | 
            +
             | 
| 509 | 
            +
                        # TODO(Patrick, William) - attention mask is not used
         | 
| 510 | 
            +
                        output_states = ()
         | 
| 511 | 
            +
             | 
| 512 | 
            +
                        for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
         | 
| 513 | 
            +
                            hidden_states = resnet(hidden_states, temb)
         | 
| 514 | 
            +
                            hidden_states = attn(
         | 
| 515 | 
            +
                                hidden_states,
         | 
| 516 | 
            +
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 517 | 
            +
                                cross_attention_kwargs=cross_attention_kwargs,
         | 
| 518 | 
            +
                                attention_mask=attention_mask,
         | 
| 519 | 
            +
                                encoder_attention_mask=encoder_attention_mask,
         | 
| 520 | 
            +
                                return_dict=False,
         | 
| 521 | 
            +
                            )[0]
         | 
| 522 | 
            +
                            if MODE == "write":
         | 
| 523 | 
            +
                                if gn_auto_machine_weight >= self.gn_weight:
         | 
| 524 | 
            +
                                    var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
         | 
| 525 | 
            +
                                    self.mean_bank.append([mean])
         | 
| 526 | 
            +
                                    self.var_bank.append([var])
         | 
| 527 | 
            +
                            if MODE == "read":
         | 
| 528 | 
            +
                                if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
         | 
| 529 | 
            +
                                    var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
         | 
| 530 | 
            +
                                    std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
         | 
| 531 | 
            +
                                    mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
         | 
| 532 | 
            +
                                    var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
         | 
| 533 | 
            +
                                    std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
         | 
| 534 | 
            +
                                    hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
         | 
| 535 | 
            +
                                    hidden_states_c = hidden_states_uc.clone()
         | 
| 536 | 
            +
                                    if do_classifier_free_guidance and style_fidelity > 0:
         | 
| 537 | 
            +
                                        hidden_states_c[uc_mask] = hidden_states[uc_mask]
         | 
| 538 | 
            +
                                    hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
         | 
| 539 | 
            +
             | 
| 540 | 
            +
                            output_states = output_states + (hidden_states,)
         | 
| 541 | 
            +
             | 
| 542 | 
            +
                        if MODE == "read":
         | 
| 543 | 
            +
                            self.mean_bank = []
         | 
| 544 | 
            +
                            self.var_bank = []
         | 
| 545 | 
            +
             | 
| 546 | 
            +
                        if self.downsamplers is not None:
         | 
| 547 | 
            +
                            for downsampler in self.downsamplers:
         | 
| 548 | 
            +
                                hidden_states = downsampler(hidden_states)
         | 
| 549 | 
            +
             | 
| 550 | 
            +
                            output_states = output_states + (hidden_states,)
         | 
| 551 | 
            +
             | 
| 552 | 
            +
                        return hidden_states, output_states
         | 
| 553 | 
            +
             | 
| 554 | 
            +
                    def hacked_DownBlock2D_forward(self, hidden_states, temb=None):
         | 
| 555 | 
            +
                        eps = 1e-6
         | 
| 556 | 
            +
             | 
| 557 | 
            +
                        output_states = ()
         | 
| 558 | 
            +
             | 
| 559 | 
            +
                        for i, resnet in enumerate(self.resnets):
         | 
| 560 | 
            +
                            hidden_states = resnet(hidden_states, temb)
         | 
| 561 | 
            +
             | 
| 562 | 
            +
                            if MODE == "write":
         | 
| 563 | 
            +
                                if gn_auto_machine_weight >= self.gn_weight:
         | 
| 564 | 
            +
                                    var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
         | 
| 565 | 
            +
                                    self.mean_bank.append([mean])
         | 
| 566 | 
            +
                                    self.var_bank.append([var])
         | 
| 567 | 
            +
                            if MODE == "read":
         | 
| 568 | 
            +
                                if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
         | 
| 569 | 
            +
                                    var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
         | 
| 570 | 
            +
                                    std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
         | 
| 571 | 
            +
                                    mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
         | 
| 572 | 
            +
                                    var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
         | 
| 573 | 
            +
                                    std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
         | 
| 574 | 
            +
                                    hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
         | 
| 575 | 
            +
                                    hidden_states_c = hidden_states_uc.clone()
         | 
| 576 | 
            +
                                    if do_classifier_free_guidance and style_fidelity > 0:
         | 
| 577 | 
            +
                                        hidden_states_c[uc_mask] = hidden_states[uc_mask]
         | 
| 578 | 
            +
                                    hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
         | 
| 579 | 
            +
             | 
| 580 | 
            +
                            output_states = output_states + (hidden_states,)
         | 
| 581 | 
            +
             | 
| 582 | 
            +
                        if MODE == "read":
         | 
| 583 | 
            +
                            self.mean_bank = []
         | 
| 584 | 
            +
                            self.var_bank = []
         | 
| 585 | 
            +
             | 
| 586 | 
            +
                        if self.downsamplers is not None:
         | 
| 587 | 
            +
                            for downsampler in self.downsamplers:
         | 
| 588 | 
            +
                                hidden_states = downsampler(hidden_states)
         | 
| 589 | 
            +
             | 
| 590 | 
            +
                            output_states = output_states + (hidden_states,)
         | 
| 591 | 
            +
             | 
| 592 | 
            +
                        return hidden_states, output_states
         | 
| 593 | 
            +
             | 
| 594 | 
            +
                    def hacked_CrossAttnUpBlock2D_forward(
         | 
| 595 | 
            +
                        self,
         | 
| 596 | 
            +
                        hidden_states: torch.FloatTensor,
         | 
| 597 | 
            +
                        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
         | 
| 598 | 
            +
                        temb: Optional[torch.FloatTensor] = None,
         | 
| 599 | 
            +
                        encoder_hidden_states: Optional[torch.FloatTensor] = None,
         | 
| 600 | 
            +
                        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 601 | 
            +
                        upsample_size: Optional[int] = None,
         | 
| 602 | 
            +
                        attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 603 | 
            +
                        encoder_attention_mask: Optional[torch.FloatTensor] = None,
         | 
| 604 | 
            +
                    ):
         | 
| 605 | 
            +
                        eps = 1e-6
         | 
| 606 | 
            +
                        # TODO(Patrick, William) - attention mask is not used
         | 
| 607 | 
            +
                        for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)):
         | 
| 608 | 
            +
                            # pop res hidden states
         | 
| 609 | 
            +
                            res_hidden_states = res_hidden_states_tuple[-1]
         | 
| 610 | 
            +
                            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
         | 
| 611 | 
            +
                            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
         | 
| 612 | 
            +
                            hidden_states = resnet(hidden_states, temb)
         | 
| 613 | 
            +
                            hidden_states = attn(
         | 
| 614 | 
            +
                                hidden_states,
         | 
| 615 | 
            +
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 616 | 
            +
                                cross_attention_kwargs=cross_attention_kwargs,
         | 
| 617 | 
            +
                                attention_mask=attention_mask,
         | 
| 618 | 
            +
                                encoder_attention_mask=encoder_attention_mask,
         | 
| 619 | 
            +
                                return_dict=False,
         | 
| 620 | 
            +
                            )[0]
         | 
| 621 | 
            +
             | 
| 622 | 
            +
                            if MODE == "write":
         | 
| 623 | 
            +
                                if gn_auto_machine_weight >= self.gn_weight:
         | 
| 624 | 
            +
                                    var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
         | 
| 625 | 
            +
                                    self.mean_bank.append([mean])
         | 
| 626 | 
            +
                                    self.var_bank.append([var])
         | 
| 627 | 
            +
                            if MODE == "read":
         | 
| 628 | 
            +
                                if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
         | 
| 629 | 
            +
                                    var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
         | 
| 630 | 
            +
                                    std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
         | 
| 631 | 
            +
                                    mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
         | 
| 632 | 
            +
                                    var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
         | 
| 633 | 
            +
                                    std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
         | 
| 634 | 
            +
                                    hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
         | 
| 635 | 
            +
                                    hidden_states_c = hidden_states_uc.clone()
         | 
| 636 | 
            +
                                    if do_classifier_free_guidance and style_fidelity > 0:
         | 
| 637 | 
            +
                                        hidden_states_c[uc_mask] = hidden_states[uc_mask]
         | 
| 638 | 
            +
                                    hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
         | 
| 639 | 
            +
             | 
| 640 | 
            +
                        if MODE == "read":
         | 
| 641 | 
            +
                            self.mean_bank = []
         | 
| 642 | 
            +
                            self.var_bank = []
         | 
| 643 | 
            +
             | 
| 644 | 
            +
                        if self.upsamplers is not None:
         | 
| 645 | 
            +
                            for upsampler in self.upsamplers:
         | 
| 646 | 
            +
                                hidden_states = upsampler(hidden_states, upsample_size)
         | 
| 647 | 
            +
             | 
| 648 | 
            +
                        return hidden_states
         | 
| 649 | 
            +
             | 
| 650 | 
            +
                    def hacked_UpBlock2D_forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
         | 
| 651 | 
            +
                        eps = 1e-6
         | 
| 652 | 
            +
                        for i, resnet in enumerate(self.resnets):
         | 
| 653 | 
            +
                            # pop res hidden states
         | 
| 654 | 
            +
                            res_hidden_states = res_hidden_states_tuple[-1]
         | 
| 655 | 
            +
                            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
         | 
| 656 | 
            +
                            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
         | 
| 657 | 
            +
                            hidden_states = resnet(hidden_states, temb)
         | 
| 658 | 
            +
             | 
| 659 | 
            +
                            if MODE == "write":
         | 
| 660 | 
            +
                                if gn_auto_machine_weight >= self.gn_weight:
         | 
| 661 | 
            +
                                    var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
         | 
| 662 | 
            +
                                    self.mean_bank.append([mean])
         | 
| 663 | 
            +
                                    self.var_bank.append([var])
         | 
| 664 | 
            +
                            if MODE == "read":
         | 
| 665 | 
            +
                                if len(self.mean_bank) > 0 and len(self.var_bank) > 0:
         | 
| 666 | 
            +
                                    var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0)
         | 
| 667 | 
            +
                                    std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5
         | 
| 668 | 
            +
                                    mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i]))
         | 
| 669 | 
            +
                                    var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i]))
         | 
| 670 | 
            +
                                    std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5
         | 
| 671 | 
            +
                                    hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc
         | 
| 672 | 
            +
                                    hidden_states_c = hidden_states_uc.clone()
         | 
| 673 | 
            +
                                    if do_classifier_free_guidance and style_fidelity > 0:
         | 
| 674 | 
            +
                                        hidden_states_c[uc_mask] = hidden_states[uc_mask]
         | 
| 675 | 
            +
                                    hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc
         | 
| 676 | 
            +
             | 
| 677 | 
            +
                        if MODE == "read":
         | 
| 678 | 
            +
                            self.mean_bank = []
         | 
| 679 | 
            +
                            self.var_bank = []
         | 
| 680 | 
            +
             | 
| 681 | 
            +
                        if self.upsamplers is not None:
         | 
| 682 | 
            +
                            for upsampler in self.upsamplers:
         | 
| 683 | 
            +
                                hidden_states = upsampler(hidden_states, upsample_size)
         | 
| 684 | 
            +
             | 
| 685 | 
            +
                        return hidden_states
         | 
| 686 | 
            +
             | 
| 687 | 
            +
                    if reference_attn:
         | 
| 688 | 
            +
                        attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock)]
         | 
| 689 | 
            +
                        attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0])
         | 
| 690 | 
            +
             | 
| 691 | 
            +
                        for i, module in enumerate(attn_modules):
         | 
| 692 | 
            +
                            module._original_inner_forward = module.forward
         | 
| 693 | 
            +
                            module.forward = hacked_basic_transformer_inner_forward.__get__(module, BasicTransformerBlock)
         | 
| 694 | 
            +
                            module.bank = []
         | 
| 695 | 
            +
                            module.attn_weight = float(i) / float(len(attn_modules))
         | 
| 696 | 
            +
             | 
| 697 | 
            +
                    if reference_adain:
         | 
| 698 | 
            +
                        gn_modules = [self.unet.mid_block]
         | 
| 699 | 
            +
                        self.unet.mid_block.gn_weight = 0
         | 
| 700 | 
            +
             | 
| 701 | 
            +
                        down_blocks = self.unet.down_blocks
         | 
| 702 | 
            +
                        for w, module in enumerate(down_blocks):
         | 
| 703 | 
            +
                            module.gn_weight = 1.0 - float(w) / float(len(down_blocks))
         | 
| 704 | 
            +
                            gn_modules.append(module)
         | 
| 705 | 
            +
             | 
| 706 | 
            +
                        up_blocks = self.unet.up_blocks
         | 
| 707 | 
            +
                        for w, module in enumerate(up_blocks):
         | 
| 708 | 
            +
                            module.gn_weight = float(w) / float(len(up_blocks))
         | 
| 709 | 
            +
                            gn_modules.append(module)
         | 
| 710 | 
            +
             | 
| 711 | 
            +
                        for i, module in enumerate(gn_modules):
         | 
| 712 | 
            +
                            if getattr(module, "original_forward", None) is None:
         | 
| 713 | 
            +
                                module.original_forward = module.forward
         | 
| 714 | 
            +
                            if i == 0:
         | 
| 715 | 
            +
                                # mid_block
         | 
| 716 | 
            +
                                module.forward = hacked_mid_forward.__get__(module, torch.nn.Module)
         | 
| 717 | 
            +
                            elif isinstance(module, CrossAttnDownBlock2D):
         | 
| 718 | 
            +
                                module.forward = hack_CrossAttnDownBlock2D_forward.__get__(module, CrossAttnDownBlock2D)
         | 
| 719 | 
            +
                            elif isinstance(module, DownBlock2D):
         | 
| 720 | 
            +
                                module.forward = hacked_DownBlock2D_forward.__get__(module, DownBlock2D)
         | 
| 721 | 
            +
                            elif isinstance(module, CrossAttnUpBlock2D):
         | 
| 722 | 
            +
                                module.forward = hacked_CrossAttnUpBlock2D_forward.__get__(module, CrossAttnUpBlock2D)
         | 
| 723 | 
            +
                            elif isinstance(module, UpBlock2D):
         | 
| 724 | 
            +
                                module.forward = hacked_UpBlock2D_forward.__get__(module, UpBlock2D)
         | 
| 725 | 
            +
                            module.mean_bank = []
         | 
| 726 | 
            +
                            module.var_bank = []
         | 
| 727 | 
            +
                            module.gn_weight *= 2
         | 
| 728 | 
            +
             | 
| 729 | 
            +
                    # 11. Denoising loop
         | 
| 730 | 
            +
                    num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
         | 
| 731 | 
            +
                    with self.progress_bar(total=num_inference_steps) as progress_bar:
         | 
| 732 | 
            +
                        for i, t in enumerate(timesteps):
         | 
| 733 | 
            +
                            # expand the latents if we are doing classifier free guidance
         | 
| 734 | 
            +
                            latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
         | 
| 735 | 
            +
                            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
         | 
| 736 | 
            +
             | 
| 737 | 
            +
                            # controlnet(s) inference
         | 
| 738 | 
            +
                            if guess_mode and do_classifier_free_guidance:
         | 
| 739 | 
            +
                                # Infer ControlNet only for the conditional batch.
         | 
| 740 | 
            +
                                control_model_input = latents
         | 
| 741 | 
            +
                                control_model_input = self.scheduler.scale_model_input(control_model_input, t)
         | 
| 742 | 
            +
                                controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
         | 
| 743 | 
            +
                            else:
         | 
| 744 | 
            +
                                control_model_input = latent_model_input
         | 
| 745 | 
            +
                                controlnet_prompt_embeds = prompt_embeds
         | 
| 746 | 
            +
             | 
| 747 | 
            +
                            down_block_res_samples, mid_block_res_sample = self.controlnet(
         | 
| 748 | 
            +
                                control_model_input,
         | 
| 749 | 
            +
                                t,
         | 
| 750 | 
            +
                                encoder_hidden_states=controlnet_prompt_embeds,
         | 
| 751 | 
            +
                                controlnet_cond=image,
         | 
| 752 | 
            +
                                conditioning_scale=controlnet_conditioning_scale,
         | 
| 753 | 
            +
                                guess_mode=guess_mode,
         | 
| 754 | 
            +
                                return_dict=False,
         | 
| 755 | 
            +
                            )
         | 
| 756 | 
            +
             | 
| 757 | 
            +
                            if guess_mode and do_classifier_free_guidance:
         | 
| 758 | 
            +
                                # Infered ControlNet only for the conditional batch.
         | 
| 759 | 
            +
                                # To apply the output of ControlNet to both the unconditional and conditional batches,
         | 
| 760 | 
            +
                                # add 0 to the unconditional batch to keep it unchanged.
         | 
| 761 | 
            +
                                down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
         | 
| 762 | 
            +
                                mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
         | 
| 763 | 
            +
             | 
| 764 | 
            +
                            # ref only part
         | 
| 765 | 
            +
                            noise = randn_tensor(
         | 
| 766 | 
            +
                                ref_image_latents.shape, generator=generator, device=device, dtype=ref_image_latents.dtype
         | 
| 767 | 
            +
                            )
         | 
| 768 | 
            +
                            ref_xt = self.scheduler.add_noise(
         | 
| 769 | 
            +
                                ref_image_latents,
         | 
| 770 | 
            +
                                noise,
         | 
| 771 | 
            +
                                t.reshape(
         | 
| 772 | 
            +
                                    1,
         | 
| 773 | 
            +
                                ),
         | 
| 774 | 
            +
                            )
         | 
| 775 | 
            +
                            ref_xt = self.scheduler.scale_model_input(ref_xt, t)
         | 
| 776 | 
            +
             | 
| 777 | 
            +
                            MODE = "write"
         | 
| 778 | 
            +
                            self.unet(
         | 
| 779 | 
            +
                                ref_xt,
         | 
| 780 | 
            +
                                t,
         | 
| 781 | 
            +
                                encoder_hidden_states=prompt_embeds,
         | 
| 782 | 
            +
                                cross_attention_kwargs=cross_attention_kwargs,
         | 
| 783 | 
            +
                                return_dict=False,
         | 
| 784 | 
            +
                            )
         | 
| 785 | 
            +
             | 
| 786 | 
            +
                            # predict the noise residual
         | 
| 787 | 
            +
                            MODE = "read"
         | 
| 788 | 
            +
                            noise_pred = self.unet(
         | 
| 789 | 
            +
                                latent_model_input,
         | 
| 790 | 
            +
                                t,
         | 
| 791 | 
            +
                                encoder_hidden_states=prompt_embeds,
         | 
| 792 | 
            +
                                cross_attention_kwargs=cross_attention_kwargs,
         | 
| 793 | 
            +
                                down_block_additional_residuals=down_block_res_samples,
         | 
| 794 | 
            +
                                mid_block_additional_residual=mid_block_res_sample,
         | 
| 795 | 
            +
                                return_dict=False,
         | 
| 796 | 
            +
                            )[0]
         | 
| 797 | 
            +
             | 
| 798 | 
            +
                            # perform guidance
         | 
| 799 | 
            +
                            if do_classifier_free_guidance:
         | 
| 800 | 
            +
                                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
         | 
| 801 | 
            +
                                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
         | 
| 802 | 
            +
             | 
| 803 | 
            +
                            # compute the previous noisy sample x_t -> x_t-1
         | 
| 804 | 
            +
                            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
         | 
| 805 | 
            +
             | 
| 806 | 
            +
                            # call the callback, if provided
         | 
| 807 | 
            +
                            if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
         | 
| 808 | 
            +
                                progress_bar.update()
         | 
| 809 | 
            +
                                if callback is not None and i % callback_steps == 0:
         | 
| 810 | 
            +
                                    callback(i, t, latents)
         | 
| 811 | 
            +
             | 
| 812 | 
            +
                    # If we do sequential model offloading, let's offload unet and controlnet
         | 
| 813 | 
            +
                    # manually for max memory savings
         | 
| 814 | 
            +
                    if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
         | 
| 815 | 
            +
                        self.unet.to("cpu")
         | 
| 816 | 
            +
                        self.controlnet.to("cpu")
         | 
| 817 | 
            +
                        torch.cuda.empty_cache()
         | 
| 818 | 
            +
             | 
| 819 | 
            +
                    if not output_type == "latent":
         | 
| 820 | 
            +
                        image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
         | 
| 821 | 
            +
                        image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
         | 
| 822 | 
            +
                    else:
         | 
| 823 | 
            +
                        image = latents
         | 
| 824 | 
            +
                        has_nsfw_concept = None
         | 
| 825 | 
            +
             | 
| 826 | 
            +
                    if has_nsfw_concept is None:
         | 
| 827 | 
            +
                        do_denormalize = [True] * image.shape[0]
         | 
| 828 | 
            +
                    else:
         | 
| 829 | 
            +
                        do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
         | 
| 830 | 
            +
             | 
| 831 | 
            +
                    image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
         | 
| 832 | 
            +
             | 
| 833 | 
            +
                    # Offload last model to CPU
         | 
| 834 | 
            +
                    if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
         | 
| 835 | 
            +
                        self.final_offload_hook.offload()
         | 
| 836 | 
            +
             | 
| 837 | 
            +
                    if not return_dict:
         | 
| 838 | 
            +
                        return (image, has_nsfw_concept)
         | 
| 839 | 
            +
             | 
| 840 | 
            +
                    return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
         | 
    	
        magicanimate/models/unet.py
    ADDED
    
    | @@ -0,0 +1,508 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # *************************************************************************
         | 
| 2 | 
            +
            # This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo-
         | 
| 3 | 
            +
            # difications”). All Bytedance Inc.'s Modifications are Copyright (2023) B-
         | 
| 4 | 
            +
            # ytedance Inc..  
         | 
| 5 | 
            +
            # *************************************************************************
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Adapted from https://github.com/guoyww/AnimateDiff
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            # Copyright 2023 The HuggingFace Team. All rights reserved.
         | 
| 10 | 
            +
            #
         | 
| 11 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 12 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 13 | 
            +
            # You may obtain a copy of the License at
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 16 | 
            +
            #
         | 
| 17 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 18 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 19 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 20 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 21 | 
            +
            # limitations under the License.
         | 
| 22 | 
            +
            from dataclasses import dataclass
         | 
| 23 | 
            +
            from typing import List, Optional, Tuple, Union
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            import os
         | 
| 26 | 
            +
            import json
         | 
| 27 | 
            +
            import pdb
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            import torch
         | 
| 30 | 
            +
            import torch.nn as nn
         | 
| 31 | 
            +
            import torch.utils.checkpoint
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            from diffusers.configuration_utils import ConfigMixin, register_to_config
         | 
| 34 | 
            +
            from diffusers.models.modeling_utils import ModelMixin
         | 
| 35 | 
            +
            from diffusers.utils import BaseOutput, logging
         | 
| 36 | 
            +
            from diffusers.models.embeddings import TimestepEmbedding, Timesteps
         | 
| 37 | 
            +
            from .unet_3d_blocks import (
         | 
| 38 | 
            +
                CrossAttnDownBlock3D,
         | 
| 39 | 
            +
                CrossAttnUpBlock3D,
         | 
| 40 | 
            +
                DownBlock3D,
         | 
| 41 | 
            +
                UNetMidBlock3DCrossAttn,
         | 
| 42 | 
            +
                UpBlock3D,
         | 
| 43 | 
            +
                get_down_block,
         | 
| 44 | 
            +
                get_up_block,
         | 
| 45 | 
            +
            )
         | 
| 46 | 
            +
            from .resnet import InflatedConv3d
         | 
| 47 | 
            +
             | 
| 48 | 
            +
             | 
| 49 | 
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 50 | 
            +
             | 
| 51 | 
            +
             | 
| 52 | 
            +
            @dataclass
         | 
| 53 | 
            +
            class UNet3DConditionOutput(BaseOutput):
         | 
| 54 | 
            +
                sample: torch.FloatTensor
         | 
| 55 | 
            +
             | 
| 56 | 
            +
             | 
| 57 | 
            +
            class UNet3DConditionModel(ModelMixin, ConfigMixin):
         | 
| 58 | 
            +
                _supports_gradient_checkpointing = True
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                @register_to_config
         | 
| 61 | 
            +
                def __init__(
         | 
| 62 | 
            +
                    self,
         | 
| 63 | 
            +
                    sample_size: Optional[int] = None,
         | 
| 64 | 
            +
                    in_channels: int = 4,
         | 
| 65 | 
            +
                    out_channels: int = 4,
         | 
| 66 | 
            +
                    center_input_sample: bool = False,
         | 
| 67 | 
            +
                    flip_sin_to_cos: bool = True,
         | 
| 68 | 
            +
                    freq_shift: int = 0,      
         | 
| 69 | 
            +
                    down_block_types: Tuple[str] = (
         | 
| 70 | 
            +
                        "CrossAttnDownBlock3D",
         | 
| 71 | 
            +
                        "CrossAttnDownBlock3D",
         | 
| 72 | 
            +
                        "CrossAttnDownBlock3D",
         | 
| 73 | 
            +
                        "DownBlock3D",
         | 
| 74 | 
            +
                    ),
         | 
| 75 | 
            +
                    mid_block_type: str = "UNetMidBlock3DCrossAttn",
         | 
| 76 | 
            +
                    up_block_types: Tuple[str] = (
         | 
| 77 | 
            +
                        "UpBlock3D",
         | 
| 78 | 
            +
                        "CrossAttnUpBlock3D",
         | 
| 79 | 
            +
                        "CrossAttnUpBlock3D",
         | 
| 80 | 
            +
                        "CrossAttnUpBlock3D"
         | 
| 81 | 
            +
                    ),
         | 
| 82 | 
            +
                    only_cross_attention: Union[bool, Tuple[bool]] = False,
         | 
| 83 | 
            +
                    block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
         | 
| 84 | 
            +
                    layers_per_block: int = 2,
         | 
| 85 | 
            +
                    downsample_padding: int = 1,
         | 
| 86 | 
            +
                    mid_block_scale_factor: float = 1,
         | 
| 87 | 
            +
                    act_fn: str = "silu",
         | 
| 88 | 
            +
                    norm_num_groups: int = 32,
         | 
| 89 | 
            +
                    norm_eps: float = 1e-5,
         | 
| 90 | 
            +
                    cross_attention_dim: int = 1280,
         | 
| 91 | 
            +
                    attention_head_dim: Union[int, Tuple[int]] = 8,
         | 
| 92 | 
            +
                    dual_cross_attention: bool = False,
         | 
| 93 | 
            +
                    use_linear_projection: bool = False,
         | 
| 94 | 
            +
                    class_embed_type: Optional[str] = None,
         | 
| 95 | 
            +
                    num_class_embeds: Optional[int] = None,
         | 
| 96 | 
            +
                    upcast_attention: bool = False,
         | 
| 97 | 
            +
                    resnet_time_scale_shift: str = "default",
         | 
| 98 | 
            +
                    
         | 
| 99 | 
            +
                    # Additional
         | 
| 100 | 
            +
                    use_motion_module              = False,
         | 
| 101 | 
            +
                    motion_module_resolutions      = ( 1,2,4,8 ),
         | 
| 102 | 
            +
                    motion_module_mid_block        = False,
         | 
| 103 | 
            +
                    motion_module_decoder_only     = False,
         | 
| 104 | 
            +
                    motion_module_type             = None,
         | 
| 105 | 
            +
                    motion_module_kwargs           = {},
         | 
| 106 | 
            +
                    unet_use_cross_frame_attention = None,
         | 
| 107 | 
            +
                    unet_use_temporal_attention    = None,
         | 
| 108 | 
            +
                ):
         | 
| 109 | 
            +
                    super().__init__()
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                    self.sample_size = sample_size
         | 
| 112 | 
            +
                    time_embed_dim = block_out_channels[0] * 4
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                    # input
         | 
| 115 | 
            +
                    self.conv_in = InflatedConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                    # time
         | 
| 118 | 
            +
                    self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
         | 
| 119 | 
            +
                    timestep_input_dim = block_out_channels[0]
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                    self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                    # class embedding
         | 
| 124 | 
            +
                    if class_embed_type is None and num_class_embeds is not None:
         | 
| 125 | 
            +
                        self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
         | 
| 126 | 
            +
                    elif class_embed_type == "timestep":
         | 
| 127 | 
            +
                        self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
         | 
| 128 | 
            +
                    elif class_embed_type == "identity":
         | 
| 129 | 
            +
                        self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
         | 
| 130 | 
            +
                    else:
         | 
| 131 | 
            +
                        self.class_embedding = None
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                    self.down_blocks = nn.ModuleList([])
         | 
| 134 | 
            +
                    self.mid_block = None
         | 
| 135 | 
            +
                    self.up_blocks = nn.ModuleList([])
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                    if isinstance(only_cross_attention, bool):
         | 
| 138 | 
            +
                        only_cross_attention = [only_cross_attention] * len(down_block_types)
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                    if isinstance(attention_head_dim, int):
         | 
| 141 | 
            +
                        attention_head_dim = (attention_head_dim,) * len(down_block_types)
         | 
| 142 | 
            +
             | 
| 143 | 
            +
                    # down
         | 
| 144 | 
            +
                    output_channel = block_out_channels[0]
         | 
| 145 | 
            +
                    for i, down_block_type in enumerate(down_block_types):
         | 
| 146 | 
            +
                        res = 2 ** i
         | 
| 147 | 
            +
                        input_channel = output_channel
         | 
| 148 | 
            +
                        output_channel = block_out_channels[i]
         | 
| 149 | 
            +
                        is_final_block = i == len(block_out_channels) - 1
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                        down_block = get_down_block(
         | 
| 152 | 
            +
                            down_block_type,
         | 
| 153 | 
            +
                            num_layers=layers_per_block,
         | 
| 154 | 
            +
                            in_channels=input_channel,
         | 
| 155 | 
            +
                            out_channels=output_channel,
         | 
| 156 | 
            +
                            temb_channels=time_embed_dim,
         | 
| 157 | 
            +
                            add_downsample=not is_final_block,
         | 
| 158 | 
            +
                            resnet_eps=norm_eps,
         | 
| 159 | 
            +
                            resnet_act_fn=act_fn,
         | 
| 160 | 
            +
                            resnet_groups=norm_num_groups,
         | 
| 161 | 
            +
                            cross_attention_dim=cross_attention_dim,
         | 
| 162 | 
            +
                            attn_num_head_channels=attention_head_dim[i],
         | 
| 163 | 
            +
                            downsample_padding=downsample_padding,
         | 
| 164 | 
            +
                            dual_cross_attention=dual_cross_attention,
         | 
| 165 | 
            +
                            use_linear_projection=use_linear_projection,
         | 
| 166 | 
            +
                            only_cross_attention=only_cross_attention[i],
         | 
| 167 | 
            +
                            upcast_attention=upcast_attention,
         | 
| 168 | 
            +
                            resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                            unet_use_cross_frame_attention=unet_use_cross_frame_attention,
         | 
| 171 | 
            +
                            unet_use_temporal_attention=unet_use_temporal_attention,
         | 
| 172 | 
            +
                            
         | 
| 173 | 
            +
                            use_motion_module=use_motion_module and (res in motion_module_resolutions) and (not motion_module_decoder_only),
         | 
| 174 | 
            +
                            motion_module_type=motion_module_type,
         | 
| 175 | 
            +
                            motion_module_kwargs=motion_module_kwargs,
         | 
| 176 | 
            +
                        )
         | 
| 177 | 
            +
                        self.down_blocks.append(down_block)
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                    # mid
         | 
| 180 | 
            +
                    if mid_block_type == "UNetMidBlock3DCrossAttn":
         | 
| 181 | 
            +
                        self.mid_block = UNetMidBlock3DCrossAttn(
         | 
| 182 | 
            +
                            in_channels=block_out_channels[-1],
         | 
| 183 | 
            +
                            temb_channels=time_embed_dim,
         | 
| 184 | 
            +
                            resnet_eps=norm_eps,
         | 
| 185 | 
            +
                            resnet_act_fn=act_fn,
         | 
| 186 | 
            +
                            output_scale_factor=mid_block_scale_factor,
         | 
| 187 | 
            +
                            resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 188 | 
            +
                            cross_attention_dim=cross_attention_dim,
         | 
| 189 | 
            +
                            attn_num_head_channels=attention_head_dim[-1],
         | 
| 190 | 
            +
                            resnet_groups=norm_num_groups,
         | 
| 191 | 
            +
                            dual_cross_attention=dual_cross_attention,
         | 
| 192 | 
            +
                            use_linear_projection=use_linear_projection,
         | 
| 193 | 
            +
                            upcast_attention=upcast_attention,
         | 
| 194 | 
            +
             | 
| 195 | 
            +
                            unet_use_cross_frame_attention=unet_use_cross_frame_attention,
         | 
| 196 | 
            +
                            unet_use_temporal_attention=unet_use_temporal_attention,
         | 
| 197 | 
            +
                            
         | 
| 198 | 
            +
                            use_motion_module=use_motion_module and motion_module_mid_block,
         | 
| 199 | 
            +
                            motion_module_type=motion_module_type,
         | 
| 200 | 
            +
                            motion_module_kwargs=motion_module_kwargs,
         | 
| 201 | 
            +
                        )
         | 
| 202 | 
            +
                    else:
         | 
| 203 | 
            +
                        raise ValueError(f"unknown mid_block_type : {mid_block_type}")
         | 
| 204 | 
            +
                    
         | 
| 205 | 
            +
                    # count how many layers upsample the videos
         | 
| 206 | 
            +
                    self.num_upsamplers = 0
         | 
| 207 | 
            +
             | 
| 208 | 
            +
                    # up
         | 
| 209 | 
            +
                    reversed_block_out_channels = list(reversed(block_out_channels))
         | 
| 210 | 
            +
                    reversed_attention_head_dim = list(reversed(attention_head_dim))
         | 
| 211 | 
            +
                    only_cross_attention = list(reversed(only_cross_attention))
         | 
| 212 | 
            +
                    output_channel = reversed_block_out_channels[0]
         | 
| 213 | 
            +
                    for i, up_block_type in enumerate(up_block_types):
         | 
| 214 | 
            +
                        res = 2 ** (3 - i)
         | 
| 215 | 
            +
                        is_final_block = i == len(block_out_channels) - 1
         | 
| 216 | 
            +
             | 
| 217 | 
            +
                        prev_output_channel = output_channel
         | 
| 218 | 
            +
                        output_channel = reversed_block_out_channels[i]
         | 
| 219 | 
            +
                        input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
         | 
| 220 | 
            +
             | 
| 221 | 
            +
                        # add upsample block for all BUT final layer
         | 
| 222 | 
            +
                        if not is_final_block:
         | 
| 223 | 
            +
                            add_upsample = True
         | 
| 224 | 
            +
                            self.num_upsamplers += 1
         | 
| 225 | 
            +
                        else:
         | 
| 226 | 
            +
                            add_upsample = False
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                        up_block = get_up_block(
         | 
| 229 | 
            +
                            up_block_type,
         | 
| 230 | 
            +
                            num_layers=layers_per_block + 1,
         | 
| 231 | 
            +
                            in_channels=input_channel,
         | 
| 232 | 
            +
                            out_channels=output_channel,
         | 
| 233 | 
            +
                            prev_output_channel=prev_output_channel,
         | 
| 234 | 
            +
                            temb_channels=time_embed_dim,
         | 
| 235 | 
            +
                            add_upsample=add_upsample,
         | 
| 236 | 
            +
                            resnet_eps=norm_eps,
         | 
| 237 | 
            +
                            resnet_act_fn=act_fn,
         | 
| 238 | 
            +
                            resnet_groups=norm_num_groups,
         | 
| 239 | 
            +
                            cross_attention_dim=cross_attention_dim,
         | 
| 240 | 
            +
                            attn_num_head_channels=reversed_attention_head_dim[i],
         | 
| 241 | 
            +
                            dual_cross_attention=dual_cross_attention,
         | 
| 242 | 
            +
                            use_linear_projection=use_linear_projection,
         | 
| 243 | 
            +
                            only_cross_attention=only_cross_attention[i],
         | 
| 244 | 
            +
                            upcast_attention=upcast_attention,
         | 
| 245 | 
            +
                            resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 246 | 
            +
             | 
| 247 | 
            +
                            unet_use_cross_frame_attention=unet_use_cross_frame_attention,
         | 
| 248 | 
            +
                            unet_use_temporal_attention=unet_use_temporal_attention,
         | 
| 249 | 
            +
             | 
| 250 | 
            +
                            use_motion_module=use_motion_module and (res in motion_module_resolutions),
         | 
| 251 | 
            +
                            motion_module_type=motion_module_type,
         | 
| 252 | 
            +
                            motion_module_kwargs=motion_module_kwargs,
         | 
| 253 | 
            +
                        )
         | 
| 254 | 
            +
                        self.up_blocks.append(up_block)
         | 
| 255 | 
            +
                        prev_output_channel = output_channel
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                    # out
         | 
| 258 | 
            +
                    self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
         | 
| 259 | 
            +
                    self.conv_act = nn.SiLU()
         | 
| 260 | 
            +
                    self.conv_out = InflatedConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
         | 
| 261 | 
            +
             | 
| 262 | 
            +
                def set_attention_slice(self, slice_size):
         | 
| 263 | 
            +
                    r"""
         | 
| 264 | 
            +
                    Enable sliced attention computation.
         | 
| 265 | 
            +
             | 
| 266 | 
            +
                    When this option is enabled, the attention module will split the input tensor in slices, to compute attention
         | 
| 267 | 
            +
                    in several steps. This is useful to save some memory in exchange for a small speed decrease.
         | 
| 268 | 
            +
             | 
| 269 | 
            +
                    Args:
         | 
| 270 | 
            +
                        slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
         | 
| 271 | 
            +
                            When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
         | 
| 272 | 
            +
                            `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
         | 
| 273 | 
            +
                            provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
         | 
| 274 | 
            +
                            must be a multiple of `slice_size`.
         | 
| 275 | 
            +
                    """
         | 
| 276 | 
            +
                    sliceable_head_dims = []
         | 
| 277 | 
            +
             | 
| 278 | 
            +
                    def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
         | 
| 279 | 
            +
                        if hasattr(module, "set_attention_slice"):
         | 
| 280 | 
            +
                            sliceable_head_dims.append(module.sliceable_head_dim)
         | 
| 281 | 
            +
             | 
| 282 | 
            +
                        for child in module.children():
         | 
| 283 | 
            +
                            fn_recursive_retrieve_slicable_dims(child)
         | 
| 284 | 
            +
             | 
| 285 | 
            +
                    # retrieve number of attention layers
         | 
| 286 | 
            +
                    for module in self.children():
         | 
| 287 | 
            +
                        fn_recursive_retrieve_slicable_dims(module)
         | 
| 288 | 
            +
             | 
| 289 | 
            +
                    num_slicable_layers = len(sliceable_head_dims)
         | 
| 290 | 
            +
             | 
| 291 | 
            +
                    if slice_size == "auto":
         | 
| 292 | 
            +
                        # half the attention head size is usually a good trade-off between
         | 
| 293 | 
            +
                        # speed and memory
         | 
| 294 | 
            +
                        slice_size = [dim // 2 for dim in sliceable_head_dims]
         | 
| 295 | 
            +
                    elif slice_size == "max":
         | 
| 296 | 
            +
                        # make smallest slice possible
         | 
| 297 | 
            +
                        slice_size = num_slicable_layers * [1]
         | 
| 298 | 
            +
             | 
| 299 | 
            +
                    slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
         | 
| 300 | 
            +
             | 
| 301 | 
            +
                    if len(slice_size) != len(sliceable_head_dims):
         | 
| 302 | 
            +
                        raise ValueError(
         | 
| 303 | 
            +
                            f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
         | 
| 304 | 
            +
                            f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
         | 
| 305 | 
            +
                        )
         | 
| 306 | 
            +
             | 
| 307 | 
            +
                    for i in range(len(slice_size)):
         | 
| 308 | 
            +
                        size = slice_size[i]
         | 
| 309 | 
            +
                        dim = sliceable_head_dims[i]
         | 
| 310 | 
            +
                        if size is not None and size > dim:
         | 
| 311 | 
            +
                            raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
         | 
| 312 | 
            +
             | 
| 313 | 
            +
                    # Recursively walk through all the children.
         | 
| 314 | 
            +
                    # Any children which exposes the set_attention_slice method
         | 
| 315 | 
            +
                    # gets the message
         | 
| 316 | 
            +
                    def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
         | 
| 317 | 
            +
                        if hasattr(module, "set_attention_slice"):
         | 
| 318 | 
            +
                            module.set_attention_slice(slice_size.pop())
         | 
| 319 | 
            +
             | 
| 320 | 
            +
                        for child in module.children():
         | 
| 321 | 
            +
                            fn_recursive_set_attention_slice(child, slice_size)
         | 
| 322 | 
            +
             | 
| 323 | 
            +
                    reversed_slice_size = list(reversed(slice_size))
         | 
| 324 | 
            +
                    for module in self.children():
         | 
| 325 | 
            +
                        fn_recursive_set_attention_slice(module, reversed_slice_size)
         | 
| 326 | 
            +
             | 
| 327 | 
            +
                def _set_gradient_checkpointing(self, module, value=False):
         | 
| 328 | 
            +
                    if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
         | 
| 329 | 
            +
                        module.gradient_checkpointing = value
         | 
| 330 | 
            +
             | 
| 331 | 
            +
                def forward(
         | 
| 332 | 
            +
                    self,
         | 
| 333 | 
            +
                    sample: torch.FloatTensor,
         | 
| 334 | 
            +
                    timestep: Union[torch.Tensor, float, int],
         | 
| 335 | 
            +
                    encoder_hidden_states: torch.Tensor,
         | 
| 336 | 
            +
                    class_labels: Optional[torch.Tensor] = None,
         | 
| 337 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 338 | 
            +
                    return_dict: bool = True,
         | 
| 339 | 
            +
                ) -> Union[UNet3DConditionOutput, Tuple]:
         | 
| 340 | 
            +
                    r"""
         | 
| 341 | 
            +
                    Args:
         | 
| 342 | 
            +
                        sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
         | 
| 343 | 
            +
                        timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
         | 
| 344 | 
            +
                        encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
         | 
| 345 | 
            +
                        return_dict (`bool`, *optional*, defaults to `True`):
         | 
| 346 | 
            +
                            Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
         | 
| 347 | 
            +
             | 
| 348 | 
            +
                    Returns:
         | 
| 349 | 
            +
                        [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
         | 
| 350 | 
            +
                        [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
         | 
| 351 | 
            +
                        returning a tuple, the first element is the sample tensor.
         | 
| 352 | 
            +
                    """
         | 
| 353 | 
            +
                    # By default samples have to be AT least a multiple of the overall upsampling factor.
         | 
| 354 | 
            +
                    # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
         | 
| 355 | 
            +
                    # However, the upsampling interpolation output size can be forced to fit any upsampling size
         | 
| 356 | 
            +
                    # on the fly if necessary.
         | 
| 357 | 
            +
                    default_overall_up_factor = 2**self.num_upsamplers
         | 
| 358 | 
            +
             | 
| 359 | 
            +
                    # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
         | 
| 360 | 
            +
                    forward_upsample_size = False
         | 
| 361 | 
            +
                    upsample_size = None
         | 
| 362 | 
            +
             | 
| 363 | 
            +
                    if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
         | 
| 364 | 
            +
                        logger.info("Forward upsample size to force interpolation output size.")
         | 
| 365 | 
            +
                        forward_upsample_size = True
         | 
| 366 | 
            +
             | 
| 367 | 
            +
                    # prepare attention_mask
         | 
| 368 | 
            +
                    if attention_mask is not None:
         | 
| 369 | 
            +
                        attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
         | 
| 370 | 
            +
                        attention_mask = attention_mask.unsqueeze(1)
         | 
| 371 | 
            +
             | 
| 372 | 
            +
                    # center input if necessary
         | 
| 373 | 
            +
                    if self.config.center_input_sample:
         | 
| 374 | 
            +
                        sample = 2 * sample - 1.0
         | 
| 375 | 
            +
             | 
| 376 | 
            +
                    # time
         | 
| 377 | 
            +
                    timesteps = timestep
         | 
| 378 | 
            +
                    if not torch.is_tensor(timesteps):
         | 
| 379 | 
            +
                        # This would be a good case for the `match` statement (Python 3.10+)
         | 
| 380 | 
            +
                        is_mps = sample.device.type == "mps"
         | 
| 381 | 
            +
                        if isinstance(timestep, float):
         | 
| 382 | 
            +
                            dtype = torch.float32 if is_mps else torch.float64
         | 
| 383 | 
            +
                        else:
         | 
| 384 | 
            +
                            dtype = torch.int32 if is_mps else torch.int64
         | 
| 385 | 
            +
                        timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
         | 
| 386 | 
            +
                    elif len(timesteps.shape) == 0:
         | 
| 387 | 
            +
                        timesteps = timesteps[None].to(sample.device)
         | 
| 388 | 
            +
             | 
| 389 | 
            +
                    # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
         | 
| 390 | 
            +
                    timesteps = timesteps.expand(sample.shape[0])
         | 
| 391 | 
            +
             | 
| 392 | 
            +
                    t_emb = self.time_proj(timesteps)
         | 
| 393 | 
            +
             | 
| 394 | 
            +
                    # timesteps does not contain any weights and will always return f32 tensors
         | 
| 395 | 
            +
                    # but time_embedding might actually be running in fp16. so we need to cast here.
         | 
| 396 | 
            +
                    # there might be better ways to encapsulate this.
         | 
| 397 | 
            +
                    t_emb = t_emb.to(dtype=self.dtype)
         | 
| 398 | 
            +
                    emb = self.time_embedding(t_emb)
         | 
| 399 | 
            +
             | 
| 400 | 
            +
                    if self.class_embedding is not None:
         | 
| 401 | 
            +
                        if class_labels is None:
         | 
| 402 | 
            +
                            raise ValueError("class_labels should be provided when num_class_embeds > 0")
         | 
| 403 | 
            +
             | 
| 404 | 
            +
                        if self.config.class_embed_type == "timestep":
         | 
| 405 | 
            +
                            class_labels = self.time_proj(class_labels)
         | 
| 406 | 
            +
             | 
| 407 | 
            +
                        class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
         | 
| 408 | 
            +
                        emb = emb + class_emb
         | 
| 409 | 
            +
             | 
| 410 | 
            +
                    # pre-process
         | 
| 411 | 
            +
                    sample = self.conv_in(sample)
         | 
| 412 | 
            +
             | 
| 413 | 
            +
                    # down
         | 
| 414 | 
            +
                    down_block_res_samples = (sample,)
         | 
| 415 | 
            +
                    for downsample_block in self.down_blocks:
         | 
| 416 | 
            +
                        if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
         | 
| 417 | 
            +
                            sample, res_samples = downsample_block(
         | 
| 418 | 
            +
                                hidden_states=sample,
         | 
| 419 | 
            +
                                temb=emb,
         | 
| 420 | 
            +
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 421 | 
            +
                                attention_mask=attention_mask,
         | 
| 422 | 
            +
                            )
         | 
| 423 | 
            +
                        else:
         | 
| 424 | 
            +
                            sample, res_samples = downsample_block(hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states)
         | 
| 425 | 
            +
             | 
| 426 | 
            +
                        down_block_res_samples += res_samples
         | 
| 427 | 
            +
             | 
| 428 | 
            +
                    # mid
         | 
| 429 | 
            +
                    sample = self.mid_block(
         | 
| 430 | 
            +
                        sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
         | 
| 431 | 
            +
                    )
         | 
| 432 | 
            +
             | 
| 433 | 
            +
                    # up
         | 
| 434 | 
            +
                    for i, upsample_block in enumerate(self.up_blocks):
         | 
| 435 | 
            +
                        is_final_block = i == len(self.up_blocks) - 1
         | 
| 436 | 
            +
             | 
| 437 | 
            +
                        res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
         | 
| 438 | 
            +
                        down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
         | 
| 439 | 
            +
             | 
| 440 | 
            +
                        # if we have not reached the final block and need to forward the
         | 
| 441 | 
            +
                        # upsample size, we do it here
         | 
| 442 | 
            +
                        if not is_final_block and forward_upsample_size:
         | 
| 443 | 
            +
                            upsample_size = down_block_res_samples[-1].shape[2:]
         | 
| 444 | 
            +
             | 
| 445 | 
            +
                        if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
         | 
| 446 | 
            +
                            sample = upsample_block(
         | 
| 447 | 
            +
                                hidden_states=sample,
         | 
| 448 | 
            +
                                temb=emb,
         | 
| 449 | 
            +
                                res_hidden_states_tuple=res_samples,
         | 
| 450 | 
            +
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 451 | 
            +
                                upsample_size=upsample_size,
         | 
| 452 | 
            +
                                attention_mask=attention_mask,
         | 
| 453 | 
            +
                            )
         | 
| 454 | 
            +
                        else:
         | 
| 455 | 
            +
                            sample = upsample_block(
         | 
| 456 | 
            +
                                hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size, encoder_hidden_states=encoder_hidden_states,
         | 
| 457 | 
            +
                            )
         | 
| 458 | 
            +
             | 
| 459 | 
            +
                    # post-process
         | 
| 460 | 
            +
                    sample = self.conv_norm_out(sample)
         | 
| 461 | 
            +
                    sample = self.conv_act(sample)
         | 
| 462 | 
            +
                    sample = self.conv_out(sample)
         | 
| 463 | 
            +
             | 
| 464 | 
            +
                    if not return_dict:
         | 
| 465 | 
            +
                        return (sample,)
         | 
| 466 | 
            +
             | 
| 467 | 
            +
                    return UNet3DConditionOutput(sample=sample)
         | 
| 468 | 
            +
             | 
| 469 | 
            +
                @classmethod
         | 
| 470 | 
            +
                def from_pretrained_2d(cls, pretrained_model_path, subfolder=None, unet_additional_kwargs=None):
         | 
| 471 | 
            +
                    if subfolder is not None:
         | 
| 472 | 
            +
                        pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
         | 
| 473 | 
            +
                    print(f"loaded temporal unet's pretrained weights from {pretrained_model_path} ...")
         | 
| 474 | 
            +
             | 
| 475 | 
            +
                    config_file = os.path.join(pretrained_model_path, 'config.json')
         | 
| 476 | 
            +
                    if not os.path.isfile(config_file):
         | 
| 477 | 
            +
                        raise RuntimeError(f"{config_file} does not exist")
         | 
| 478 | 
            +
                    with open(config_file, "r") as f:
         | 
| 479 | 
            +
                        config = json.load(f)
         | 
| 480 | 
            +
                    config["_class_name"] = cls.__name__
         | 
| 481 | 
            +
                    config["down_block_types"] = [
         | 
| 482 | 
            +
                        "CrossAttnDownBlock3D",
         | 
| 483 | 
            +
                        "CrossAttnDownBlock3D",
         | 
| 484 | 
            +
                        "CrossAttnDownBlock3D",
         | 
| 485 | 
            +
                        "DownBlock3D"
         | 
| 486 | 
            +
                    ]
         | 
| 487 | 
            +
                    config["up_block_types"] = [
         | 
| 488 | 
            +
                        "UpBlock3D",
         | 
| 489 | 
            +
                        "CrossAttnUpBlock3D",
         | 
| 490 | 
            +
                        "CrossAttnUpBlock3D",
         | 
| 491 | 
            +
                        "CrossAttnUpBlock3D"
         | 
| 492 | 
            +
                    ]
         | 
| 493 | 
            +
             | 
| 494 | 
            +
                    from diffusers.utils import WEIGHTS_NAME
         | 
| 495 | 
            +
                    model = cls.from_config(config, **unet_additional_kwargs)
         | 
| 496 | 
            +
                    model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
         | 
| 497 | 
            +
                    if not os.path.isfile(model_file):
         | 
| 498 | 
            +
                        raise RuntimeError(f"{model_file} does not exist")
         | 
| 499 | 
            +
                    state_dict = torch.load(model_file, map_location="cpu")
         | 
| 500 | 
            +
             | 
| 501 | 
            +
                    m, u = model.load_state_dict(state_dict, strict=False)
         | 
| 502 | 
            +
                    print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
         | 
| 503 | 
            +
                    # print(f"### missing keys:\n{m}\n### unexpected keys:\n{u}\n")
         | 
| 504 | 
            +
                    
         | 
| 505 | 
            +
                    params = [p.numel() if "temporal" in n else 0 for n, p in model.named_parameters()]
         | 
| 506 | 
            +
                    print(f"### Temporal Module Parameters: {sum(params) / 1e6} M")
         | 
| 507 | 
            +
                    
         | 
| 508 | 
            +
                    return model
         | 
    	
        magicanimate/models/unet_3d_blocks.py
    ADDED
    
    | @@ -0,0 +1,751 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # *************************************************************************
         | 
| 2 | 
            +
            # This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo-
         | 
| 3 | 
            +
            # difications”). All Bytedance Inc.'s Modifications are Copyright (2023) B-
         | 
| 4 | 
            +
            # ytedance Inc..  
         | 
| 5 | 
            +
            # *************************************************************************
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Adapted from https://github.com/guoyww/AnimateDiff
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            # Copyright 2023 The HuggingFace Team. All rights reserved.
         | 
| 10 | 
            +
            #
         | 
| 11 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 12 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 13 | 
            +
            # You may obtain a copy of the License at
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 16 | 
            +
            #
         | 
| 17 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 18 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 19 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 20 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 21 | 
            +
            # limitations under the License.
         | 
| 22 | 
            +
            import torch
         | 
| 23 | 
            +
            from torch import nn
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            from .attention import Transformer3DModel
         | 
| 26 | 
            +
            from .resnet import Downsample3D, ResnetBlock3D, Upsample3D
         | 
| 27 | 
            +
            from .motion_module import get_motion_module
         | 
| 28 | 
            +
             | 
| 29 | 
            +
             | 
| 30 | 
            +
            def get_down_block(
         | 
| 31 | 
            +
                down_block_type,
         | 
| 32 | 
            +
                num_layers,
         | 
| 33 | 
            +
                in_channels,
         | 
| 34 | 
            +
                out_channels,
         | 
| 35 | 
            +
                temb_channels,
         | 
| 36 | 
            +
                add_downsample,
         | 
| 37 | 
            +
                resnet_eps,
         | 
| 38 | 
            +
                resnet_act_fn,
         | 
| 39 | 
            +
                attn_num_head_channels,
         | 
| 40 | 
            +
                resnet_groups=None,
         | 
| 41 | 
            +
                cross_attention_dim=None,
         | 
| 42 | 
            +
                downsample_padding=None,
         | 
| 43 | 
            +
                dual_cross_attention=False,
         | 
| 44 | 
            +
                use_linear_projection=False,
         | 
| 45 | 
            +
                only_cross_attention=False,
         | 
| 46 | 
            +
                upcast_attention=False,
         | 
| 47 | 
            +
                resnet_time_scale_shift="default",
         | 
| 48 | 
            +
                
         | 
| 49 | 
            +
                unet_use_cross_frame_attention=None,
         | 
| 50 | 
            +
                unet_use_temporal_attention=None,
         | 
| 51 | 
            +
                
         | 
| 52 | 
            +
                use_motion_module=None,
         | 
| 53 | 
            +
                
         | 
| 54 | 
            +
                motion_module_type=None,
         | 
| 55 | 
            +
                motion_module_kwargs=None,
         | 
| 56 | 
            +
            ):
         | 
| 57 | 
            +
                down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
         | 
| 58 | 
            +
                if down_block_type == "DownBlock3D":
         | 
| 59 | 
            +
                    return DownBlock3D(
         | 
| 60 | 
            +
                        num_layers=num_layers,
         | 
| 61 | 
            +
                        in_channels=in_channels,
         | 
| 62 | 
            +
                        out_channels=out_channels,
         | 
| 63 | 
            +
                        temb_channels=temb_channels,
         | 
| 64 | 
            +
                        add_downsample=add_downsample,
         | 
| 65 | 
            +
                        resnet_eps=resnet_eps,
         | 
| 66 | 
            +
                        resnet_act_fn=resnet_act_fn,
         | 
| 67 | 
            +
                        resnet_groups=resnet_groups,
         | 
| 68 | 
            +
                        downsample_padding=downsample_padding,
         | 
| 69 | 
            +
                        resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                        use_motion_module=use_motion_module,
         | 
| 72 | 
            +
                        motion_module_type=motion_module_type,
         | 
| 73 | 
            +
                        motion_module_kwargs=motion_module_kwargs,
         | 
| 74 | 
            +
                    )
         | 
| 75 | 
            +
                elif down_block_type == "CrossAttnDownBlock3D":
         | 
| 76 | 
            +
                    if cross_attention_dim is None:
         | 
| 77 | 
            +
                        raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
         | 
| 78 | 
            +
                    return CrossAttnDownBlock3D(
         | 
| 79 | 
            +
                        num_layers=num_layers,
         | 
| 80 | 
            +
                        in_channels=in_channels,
         | 
| 81 | 
            +
                        out_channels=out_channels,
         | 
| 82 | 
            +
                        temb_channels=temb_channels,
         | 
| 83 | 
            +
                        add_downsample=add_downsample,
         | 
| 84 | 
            +
                        resnet_eps=resnet_eps,
         | 
| 85 | 
            +
                        resnet_act_fn=resnet_act_fn,
         | 
| 86 | 
            +
                        resnet_groups=resnet_groups,
         | 
| 87 | 
            +
                        downsample_padding=downsample_padding,
         | 
| 88 | 
            +
                        cross_attention_dim=cross_attention_dim,
         | 
| 89 | 
            +
                        attn_num_head_channels=attn_num_head_channels,
         | 
| 90 | 
            +
                        dual_cross_attention=dual_cross_attention,
         | 
| 91 | 
            +
                        use_linear_projection=use_linear_projection,
         | 
| 92 | 
            +
                        only_cross_attention=only_cross_attention,
         | 
| 93 | 
            +
                        upcast_attention=upcast_attention,
         | 
| 94 | 
            +
                        resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                        unet_use_cross_frame_attention=unet_use_cross_frame_attention,
         | 
| 97 | 
            +
                        unet_use_temporal_attention=unet_use_temporal_attention,
         | 
| 98 | 
            +
                        
         | 
| 99 | 
            +
                        use_motion_module=use_motion_module,
         | 
| 100 | 
            +
                        motion_module_type=motion_module_type,
         | 
| 101 | 
            +
                        motion_module_kwargs=motion_module_kwargs,
         | 
| 102 | 
            +
                    )
         | 
| 103 | 
            +
                raise ValueError(f"{down_block_type} does not exist.")
         | 
| 104 | 
            +
             | 
| 105 | 
            +
             | 
| 106 | 
            +
            def get_up_block(
         | 
| 107 | 
            +
                up_block_type,
         | 
| 108 | 
            +
                num_layers,
         | 
| 109 | 
            +
                in_channels,
         | 
| 110 | 
            +
                out_channels,
         | 
| 111 | 
            +
                prev_output_channel,
         | 
| 112 | 
            +
                temb_channels,
         | 
| 113 | 
            +
                add_upsample,
         | 
| 114 | 
            +
                resnet_eps,
         | 
| 115 | 
            +
                resnet_act_fn,
         | 
| 116 | 
            +
                attn_num_head_channels,
         | 
| 117 | 
            +
                resnet_groups=None,
         | 
| 118 | 
            +
                cross_attention_dim=None,
         | 
| 119 | 
            +
                dual_cross_attention=False,
         | 
| 120 | 
            +
                use_linear_projection=False,
         | 
| 121 | 
            +
                only_cross_attention=False,
         | 
| 122 | 
            +
                upcast_attention=False,
         | 
| 123 | 
            +
                resnet_time_scale_shift="default",
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                unet_use_cross_frame_attention=None,
         | 
| 126 | 
            +
                unet_use_temporal_attention=None,
         | 
| 127 | 
            +
                
         | 
| 128 | 
            +
                use_motion_module=None,
         | 
| 129 | 
            +
                motion_module_type=None,
         | 
| 130 | 
            +
                motion_module_kwargs=None,
         | 
| 131 | 
            +
            ):
         | 
| 132 | 
            +
                up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
         | 
| 133 | 
            +
                if up_block_type == "UpBlock3D":
         | 
| 134 | 
            +
                    return UpBlock3D(
         | 
| 135 | 
            +
                        num_layers=num_layers,
         | 
| 136 | 
            +
                        in_channels=in_channels,
         | 
| 137 | 
            +
                        out_channels=out_channels,
         | 
| 138 | 
            +
                        prev_output_channel=prev_output_channel,
         | 
| 139 | 
            +
                        temb_channels=temb_channels,
         | 
| 140 | 
            +
                        add_upsample=add_upsample,
         | 
| 141 | 
            +
                        resnet_eps=resnet_eps,
         | 
| 142 | 
            +
                        resnet_act_fn=resnet_act_fn,
         | 
| 143 | 
            +
                        resnet_groups=resnet_groups,
         | 
| 144 | 
            +
                        resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                        use_motion_module=use_motion_module,
         | 
| 147 | 
            +
                        motion_module_type=motion_module_type,
         | 
| 148 | 
            +
                        motion_module_kwargs=motion_module_kwargs,
         | 
| 149 | 
            +
                    )
         | 
| 150 | 
            +
                elif up_block_type == "CrossAttnUpBlock3D":
         | 
| 151 | 
            +
                    if cross_attention_dim is None:
         | 
| 152 | 
            +
                        raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
         | 
| 153 | 
            +
                    return CrossAttnUpBlock3D(
         | 
| 154 | 
            +
                        num_layers=num_layers,
         | 
| 155 | 
            +
                        in_channels=in_channels,
         | 
| 156 | 
            +
                        out_channels=out_channels,
         | 
| 157 | 
            +
                        prev_output_channel=prev_output_channel,
         | 
| 158 | 
            +
                        temb_channels=temb_channels,
         | 
| 159 | 
            +
                        add_upsample=add_upsample,
         | 
| 160 | 
            +
                        resnet_eps=resnet_eps,
         | 
| 161 | 
            +
                        resnet_act_fn=resnet_act_fn,
         | 
| 162 | 
            +
                        resnet_groups=resnet_groups,
         | 
| 163 | 
            +
                        cross_attention_dim=cross_attention_dim,
         | 
| 164 | 
            +
                        attn_num_head_channels=attn_num_head_channels,
         | 
| 165 | 
            +
                        dual_cross_attention=dual_cross_attention,
         | 
| 166 | 
            +
                        use_linear_projection=use_linear_projection,
         | 
| 167 | 
            +
                        only_cross_attention=only_cross_attention,
         | 
| 168 | 
            +
                        upcast_attention=upcast_attention,
         | 
| 169 | 
            +
                        resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 170 | 
            +
             | 
| 171 | 
            +
                        unet_use_cross_frame_attention=unet_use_cross_frame_attention,
         | 
| 172 | 
            +
                        unet_use_temporal_attention=unet_use_temporal_attention,
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                        use_motion_module=use_motion_module,
         | 
| 175 | 
            +
                        motion_module_type=motion_module_type,
         | 
| 176 | 
            +
                        motion_module_kwargs=motion_module_kwargs,
         | 
| 177 | 
            +
                    )
         | 
| 178 | 
            +
                raise ValueError(f"{up_block_type} does not exist.")
         | 
| 179 | 
            +
             | 
| 180 | 
            +
             | 
| 181 | 
            +
            class UNetMidBlock3DCrossAttn(nn.Module):
         | 
| 182 | 
            +
                def __init__(
         | 
| 183 | 
            +
                    self,
         | 
| 184 | 
            +
                    in_channels: int,
         | 
| 185 | 
            +
                    temb_channels: int,
         | 
| 186 | 
            +
                    dropout: float = 0.0,
         | 
| 187 | 
            +
                    num_layers: int = 1,
         | 
| 188 | 
            +
                    resnet_eps: float = 1e-6,
         | 
| 189 | 
            +
                    resnet_time_scale_shift: str = "default",
         | 
| 190 | 
            +
                    resnet_act_fn: str = "swish",
         | 
| 191 | 
            +
                    resnet_groups: int = 32,
         | 
| 192 | 
            +
                    resnet_pre_norm: bool = True,
         | 
| 193 | 
            +
                    attn_num_head_channels=1,
         | 
| 194 | 
            +
                    output_scale_factor=1.0,
         | 
| 195 | 
            +
                    cross_attention_dim=1280,
         | 
| 196 | 
            +
                    dual_cross_attention=False,
         | 
| 197 | 
            +
                    use_linear_projection=False,
         | 
| 198 | 
            +
                    upcast_attention=False,
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                    unet_use_cross_frame_attention=None,
         | 
| 201 | 
            +
                    unet_use_temporal_attention=None,
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                    use_motion_module=None,
         | 
| 204 | 
            +
                    
         | 
| 205 | 
            +
                    motion_module_type=None,
         | 
| 206 | 
            +
                    motion_module_kwargs=None,
         | 
| 207 | 
            +
                ):
         | 
| 208 | 
            +
                    super().__init__()
         | 
| 209 | 
            +
             | 
| 210 | 
            +
                    self.has_cross_attention = True
         | 
| 211 | 
            +
                    self.attn_num_head_channels = attn_num_head_channels
         | 
| 212 | 
            +
                    resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
         | 
| 213 | 
            +
             | 
| 214 | 
            +
                    # there is always at least one resnet
         | 
| 215 | 
            +
                    resnets = [
         | 
| 216 | 
            +
                        ResnetBlock3D(
         | 
| 217 | 
            +
                            in_channels=in_channels,
         | 
| 218 | 
            +
                            out_channels=in_channels,
         | 
| 219 | 
            +
                            temb_channels=temb_channels,
         | 
| 220 | 
            +
                            eps=resnet_eps,
         | 
| 221 | 
            +
                            groups=resnet_groups,
         | 
| 222 | 
            +
                            dropout=dropout,
         | 
| 223 | 
            +
                            time_embedding_norm=resnet_time_scale_shift,
         | 
| 224 | 
            +
                            non_linearity=resnet_act_fn,
         | 
| 225 | 
            +
                            output_scale_factor=output_scale_factor,
         | 
| 226 | 
            +
                            pre_norm=resnet_pre_norm,
         | 
| 227 | 
            +
                        )
         | 
| 228 | 
            +
                    ]
         | 
| 229 | 
            +
                    attentions = []
         | 
| 230 | 
            +
                    motion_modules = []
         | 
| 231 | 
            +
             | 
| 232 | 
            +
                    for _ in range(num_layers):
         | 
| 233 | 
            +
                        if dual_cross_attention:
         | 
| 234 | 
            +
                            raise NotImplementedError
         | 
| 235 | 
            +
                        attentions.append(
         | 
| 236 | 
            +
                            Transformer3DModel(
         | 
| 237 | 
            +
                                attn_num_head_channels,
         | 
| 238 | 
            +
                                in_channels // attn_num_head_channels,
         | 
| 239 | 
            +
                                in_channels=in_channels,
         | 
| 240 | 
            +
                                num_layers=1,
         | 
| 241 | 
            +
                                cross_attention_dim=cross_attention_dim,
         | 
| 242 | 
            +
                                norm_num_groups=resnet_groups,
         | 
| 243 | 
            +
                                use_linear_projection=use_linear_projection,
         | 
| 244 | 
            +
                                upcast_attention=upcast_attention,
         | 
| 245 | 
            +
             | 
| 246 | 
            +
                                unet_use_cross_frame_attention=unet_use_cross_frame_attention,
         | 
| 247 | 
            +
                                unet_use_temporal_attention=unet_use_temporal_attention,
         | 
| 248 | 
            +
                            )
         | 
| 249 | 
            +
                        )
         | 
| 250 | 
            +
                        motion_modules.append(
         | 
| 251 | 
            +
                            get_motion_module(
         | 
| 252 | 
            +
                                in_channels=in_channels,
         | 
| 253 | 
            +
                                motion_module_type=motion_module_type, 
         | 
| 254 | 
            +
                                motion_module_kwargs=motion_module_kwargs,
         | 
| 255 | 
            +
                            ) if use_motion_module else None
         | 
| 256 | 
            +
                        )
         | 
| 257 | 
            +
                        resnets.append(
         | 
| 258 | 
            +
                            ResnetBlock3D(
         | 
| 259 | 
            +
                                in_channels=in_channels,
         | 
| 260 | 
            +
                                out_channels=in_channels,
         | 
| 261 | 
            +
                                temb_channels=temb_channels,
         | 
| 262 | 
            +
                                eps=resnet_eps,
         | 
| 263 | 
            +
                                groups=resnet_groups,
         | 
| 264 | 
            +
                                dropout=dropout,
         | 
| 265 | 
            +
                                time_embedding_norm=resnet_time_scale_shift,
         | 
| 266 | 
            +
                                non_linearity=resnet_act_fn,
         | 
| 267 | 
            +
                                output_scale_factor=output_scale_factor,
         | 
| 268 | 
            +
                                pre_norm=resnet_pre_norm,
         | 
| 269 | 
            +
                            )
         | 
| 270 | 
            +
                        )
         | 
| 271 | 
            +
             | 
| 272 | 
            +
                    self.attentions = nn.ModuleList(attentions)
         | 
| 273 | 
            +
                    self.resnets = nn.ModuleList(resnets)
         | 
| 274 | 
            +
                    self.motion_modules = nn.ModuleList(motion_modules)
         | 
| 275 | 
            +
             | 
| 276 | 
            +
                def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
         | 
| 277 | 
            +
                    hidden_states = self.resnets[0](hidden_states, temb)
         | 
| 278 | 
            +
                    for attn, resnet, motion_module in zip(self.attentions, self.resnets[1:], self.motion_modules):
         | 
| 279 | 
            +
                        hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
         | 
| 280 | 
            +
                        hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states
         | 
| 281 | 
            +
                        hidden_states = resnet(hidden_states, temb)
         | 
| 282 | 
            +
             | 
| 283 | 
            +
                    return hidden_states
         | 
| 284 | 
            +
             | 
| 285 | 
            +
             | 
| 286 | 
            +
            class CrossAttnDownBlock3D(nn.Module):
         | 
| 287 | 
            +
                def __init__(
         | 
| 288 | 
            +
                    self,
         | 
| 289 | 
            +
                    in_channels: int,
         | 
| 290 | 
            +
                    out_channels: int,
         | 
| 291 | 
            +
                    temb_channels: int,
         | 
| 292 | 
            +
                    dropout: float = 0.0,
         | 
| 293 | 
            +
                    num_layers: int = 1,
         | 
| 294 | 
            +
                    resnet_eps: float = 1e-6,
         | 
| 295 | 
            +
                    resnet_time_scale_shift: str = "default",
         | 
| 296 | 
            +
                    resnet_act_fn: str = "swish",
         | 
| 297 | 
            +
                    resnet_groups: int = 32,
         | 
| 298 | 
            +
                    resnet_pre_norm: bool = True,
         | 
| 299 | 
            +
                    attn_num_head_channels=1,
         | 
| 300 | 
            +
                    cross_attention_dim=1280,
         | 
| 301 | 
            +
                    output_scale_factor=1.0,
         | 
| 302 | 
            +
                    downsample_padding=1,
         | 
| 303 | 
            +
                    add_downsample=True,
         | 
| 304 | 
            +
                    dual_cross_attention=False,
         | 
| 305 | 
            +
                    use_linear_projection=False,
         | 
| 306 | 
            +
                    only_cross_attention=False,
         | 
| 307 | 
            +
                    upcast_attention=False,
         | 
| 308 | 
            +
             | 
| 309 | 
            +
                    unet_use_cross_frame_attention=None,
         | 
| 310 | 
            +
                    unet_use_temporal_attention=None,
         | 
| 311 | 
            +
                    
         | 
| 312 | 
            +
                    use_motion_module=None,
         | 
| 313 | 
            +
             | 
| 314 | 
            +
                    motion_module_type=None,
         | 
| 315 | 
            +
                    motion_module_kwargs=None,
         | 
| 316 | 
            +
                ):
         | 
| 317 | 
            +
                    super().__init__()
         | 
| 318 | 
            +
                    resnets = []
         | 
| 319 | 
            +
                    attentions = []
         | 
| 320 | 
            +
                    motion_modules = []
         | 
| 321 | 
            +
             | 
| 322 | 
            +
                    self.has_cross_attention = True
         | 
| 323 | 
            +
                    self.attn_num_head_channels = attn_num_head_channels
         | 
| 324 | 
            +
             | 
| 325 | 
            +
                    for i in range(num_layers):
         | 
| 326 | 
            +
                        in_channels = in_channels if i == 0 else out_channels
         | 
| 327 | 
            +
                        resnets.append(
         | 
| 328 | 
            +
                            ResnetBlock3D(
         | 
| 329 | 
            +
                                in_channels=in_channels,
         | 
| 330 | 
            +
                                out_channels=out_channels,
         | 
| 331 | 
            +
                                temb_channels=temb_channels,
         | 
| 332 | 
            +
                                eps=resnet_eps,
         | 
| 333 | 
            +
                                groups=resnet_groups,
         | 
| 334 | 
            +
                                dropout=dropout,
         | 
| 335 | 
            +
                                time_embedding_norm=resnet_time_scale_shift,
         | 
| 336 | 
            +
                                non_linearity=resnet_act_fn,
         | 
| 337 | 
            +
                                output_scale_factor=output_scale_factor,
         | 
| 338 | 
            +
                                pre_norm=resnet_pre_norm,
         | 
| 339 | 
            +
                            )
         | 
| 340 | 
            +
                        )
         | 
| 341 | 
            +
                        if dual_cross_attention:
         | 
| 342 | 
            +
                            raise NotImplementedError
         | 
| 343 | 
            +
                        attentions.append(
         | 
| 344 | 
            +
                            Transformer3DModel(
         | 
| 345 | 
            +
                                attn_num_head_channels,
         | 
| 346 | 
            +
                                out_channels // attn_num_head_channels,
         | 
| 347 | 
            +
                                in_channels=out_channels,
         | 
| 348 | 
            +
                                num_layers=1,
         | 
| 349 | 
            +
                                cross_attention_dim=cross_attention_dim,
         | 
| 350 | 
            +
                                norm_num_groups=resnet_groups,
         | 
| 351 | 
            +
                                use_linear_projection=use_linear_projection,
         | 
| 352 | 
            +
                                only_cross_attention=only_cross_attention,
         | 
| 353 | 
            +
                                upcast_attention=upcast_attention,
         | 
| 354 | 
            +
             | 
| 355 | 
            +
                                unet_use_cross_frame_attention=unet_use_cross_frame_attention,
         | 
| 356 | 
            +
                                unet_use_temporal_attention=unet_use_temporal_attention,
         | 
| 357 | 
            +
                            )
         | 
| 358 | 
            +
                        )
         | 
| 359 | 
            +
                        motion_modules.append(
         | 
| 360 | 
            +
                            get_motion_module(
         | 
| 361 | 
            +
                                in_channels=out_channels,
         | 
| 362 | 
            +
                                motion_module_type=motion_module_type, 
         | 
| 363 | 
            +
                                motion_module_kwargs=motion_module_kwargs,
         | 
| 364 | 
            +
                            ) if use_motion_module else None
         | 
| 365 | 
            +
                        )
         | 
| 366 | 
            +
                        
         | 
| 367 | 
            +
                    self.attentions = nn.ModuleList(attentions)
         | 
| 368 | 
            +
                    self.resnets = nn.ModuleList(resnets)
         | 
| 369 | 
            +
                    self.motion_modules = nn.ModuleList(motion_modules)
         | 
| 370 | 
            +
             | 
| 371 | 
            +
                    if add_downsample:
         | 
| 372 | 
            +
                        self.downsamplers = nn.ModuleList(
         | 
| 373 | 
            +
                            [
         | 
| 374 | 
            +
                                Downsample3D(
         | 
| 375 | 
            +
                                    out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
         | 
| 376 | 
            +
                                )
         | 
| 377 | 
            +
                            ]
         | 
| 378 | 
            +
                        )
         | 
| 379 | 
            +
                    else:
         | 
| 380 | 
            +
                        self.downsamplers = None
         | 
| 381 | 
            +
             | 
| 382 | 
            +
                    self.gradient_checkpointing = False
         | 
| 383 | 
            +
             | 
| 384 | 
            +
                def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
         | 
| 385 | 
            +
                    output_states = ()
         | 
| 386 | 
            +
             | 
| 387 | 
            +
                    for resnet, attn, motion_module in zip(self.resnets, self.attentions, self.motion_modules):
         | 
| 388 | 
            +
                        if self.training and self.gradient_checkpointing:
         | 
| 389 | 
            +
             | 
| 390 | 
            +
                            def create_custom_forward(module, return_dict=None):
         | 
| 391 | 
            +
                                def custom_forward(*inputs):
         | 
| 392 | 
            +
                                    if return_dict is not None:
         | 
| 393 | 
            +
                                        return module(*inputs, return_dict=return_dict)
         | 
| 394 | 
            +
                                    else:
         | 
| 395 | 
            +
                                        return module(*inputs)
         | 
| 396 | 
            +
             | 
| 397 | 
            +
                                return custom_forward
         | 
| 398 | 
            +
             | 
| 399 | 
            +
                            hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
         | 
| 400 | 
            +
                            hidden_states = torch.utils.checkpoint.checkpoint(
         | 
| 401 | 
            +
                                create_custom_forward(attn, return_dict=False),
         | 
| 402 | 
            +
                                hidden_states,
         | 
| 403 | 
            +
                                encoder_hidden_states,
         | 
| 404 | 
            +
                            )[0]
         | 
| 405 | 
            +
                            if motion_module is not None:
         | 
| 406 | 
            +
                                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states)
         | 
| 407 | 
            +
                            
         | 
| 408 | 
            +
                        else:
         | 
| 409 | 
            +
                            hidden_states = resnet(hidden_states, temb)
         | 
| 410 | 
            +
                            hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
         | 
| 411 | 
            +
                            
         | 
| 412 | 
            +
                            # add motion module
         | 
| 413 | 
            +
                            hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states
         | 
| 414 | 
            +
             | 
| 415 | 
            +
                        output_states += (hidden_states,)
         | 
| 416 | 
            +
             | 
| 417 | 
            +
                    if self.downsamplers is not None:
         | 
| 418 | 
            +
                        for downsampler in self.downsamplers:
         | 
| 419 | 
            +
                            hidden_states = downsampler(hidden_states)
         | 
| 420 | 
            +
             | 
| 421 | 
            +
                        output_states += (hidden_states,)
         | 
| 422 | 
            +
             | 
| 423 | 
            +
                    return hidden_states, output_states
         | 
| 424 | 
            +
             | 
| 425 | 
            +
             | 
| 426 | 
            +
            class DownBlock3D(nn.Module):
         | 
| 427 | 
            +
                def __init__(
         | 
| 428 | 
            +
                    self,
         | 
| 429 | 
            +
                    in_channels: int,
         | 
| 430 | 
            +
                    out_channels: int,
         | 
| 431 | 
            +
                    temb_channels: int,
         | 
| 432 | 
            +
                    dropout: float = 0.0,
         | 
| 433 | 
            +
                    num_layers: int = 1,
         | 
| 434 | 
            +
                    resnet_eps: float = 1e-6,
         | 
| 435 | 
            +
                    resnet_time_scale_shift: str = "default",
         | 
| 436 | 
            +
                    resnet_act_fn: str = "swish",
         | 
| 437 | 
            +
                    resnet_groups: int = 32,
         | 
| 438 | 
            +
                    resnet_pre_norm: bool = True,
         | 
| 439 | 
            +
                    output_scale_factor=1.0,
         | 
| 440 | 
            +
                    add_downsample=True,
         | 
| 441 | 
            +
                    downsample_padding=1,
         | 
| 442 | 
            +
                    
         | 
| 443 | 
            +
                    use_motion_module=None,
         | 
| 444 | 
            +
                    motion_module_type=None,
         | 
| 445 | 
            +
                    motion_module_kwargs=None,
         | 
| 446 | 
            +
                ):
         | 
| 447 | 
            +
                    super().__init__()
         | 
| 448 | 
            +
                    resnets = []
         | 
| 449 | 
            +
                    motion_modules = []
         | 
| 450 | 
            +
             | 
| 451 | 
            +
                    for i in range(num_layers):
         | 
| 452 | 
            +
                        in_channels = in_channels if i == 0 else out_channels
         | 
| 453 | 
            +
                        resnets.append(
         | 
| 454 | 
            +
                            ResnetBlock3D(
         | 
| 455 | 
            +
                                in_channels=in_channels,
         | 
| 456 | 
            +
                                out_channels=out_channels,
         | 
| 457 | 
            +
                                temb_channels=temb_channels,
         | 
| 458 | 
            +
                                eps=resnet_eps,
         | 
| 459 | 
            +
                                groups=resnet_groups,
         | 
| 460 | 
            +
                                dropout=dropout,
         | 
| 461 | 
            +
                                time_embedding_norm=resnet_time_scale_shift,
         | 
| 462 | 
            +
                                non_linearity=resnet_act_fn,
         | 
| 463 | 
            +
                                output_scale_factor=output_scale_factor,
         | 
| 464 | 
            +
                                pre_norm=resnet_pre_norm,
         | 
| 465 | 
            +
                            )
         | 
| 466 | 
            +
                        )
         | 
| 467 | 
            +
                        motion_modules.append(
         | 
| 468 | 
            +
                            get_motion_module(
         | 
| 469 | 
            +
                                in_channels=out_channels,
         | 
| 470 | 
            +
                                motion_module_type=motion_module_type, 
         | 
| 471 | 
            +
                                motion_module_kwargs=motion_module_kwargs,
         | 
| 472 | 
            +
                            ) if use_motion_module else None
         | 
| 473 | 
            +
                        )
         | 
| 474 | 
            +
                        
         | 
| 475 | 
            +
                    self.resnets = nn.ModuleList(resnets)
         | 
| 476 | 
            +
                    self.motion_modules = nn.ModuleList(motion_modules)
         | 
| 477 | 
            +
             | 
| 478 | 
            +
                    if add_downsample:
         | 
| 479 | 
            +
                        self.downsamplers = nn.ModuleList(
         | 
| 480 | 
            +
                            [
         | 
| 481 | 
            +
                                Downsample3D(
         | 
| 482 | 
            +
                                    out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
         | 
| 483 | 
            +
                                )
         | 
| 484 | 
            +
                            ]
         | 
| 485 | 
            +
                        )
         | 
| 486 | 
            +
                    else:
         | 
| 487 | 
            +
                        self.downsamplers = None
         | 
| 488 | 
            +
             | 
| 489 | 
            +
                    self.gradient_checkpointing = False
         | 
| 490 | 
            +
             | 
| 491 | 
            +
                def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
         | 
| 492 | 
            +
                    output_states = ()
         | 
| 493 | 
            +
             | 
| 494 | 
            +
                    for resnet, motion_module in zip(self.resnets, self.motion_modules):
         | 
| 495 | 
            +
                        if self.training and self.gradient_checkpointing:
         | 
| 496 | 
            +
                            def create_custom_forward(module):
         | 
| 497 | 
            +
                                def custom_forward(*inputs):
         | 
| 498 | 
            +
                                    return module(*inputs)
         | 
| 499 | 
            +
             | 
| 500 | 
            +
                                return custom_forward
         | 
| 501 | 
            +
             | 
| 502 | 
            +
                            hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
         | 
| 503 | 
            +
                            if motion_module is not None:
         | 
| 504 | 
            +
                                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states)
         | 
| 505 | 
            +
                        else:
         | 
| 506 | 
            +
                            hidden_states = resnet(hidden_states, temb)
         | 
| 507 | 
            +
             | 
| 508 | 
            +
                            # add motion module
         | 
| 509 | 
            +
                            hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states
         | 
| 510 | 
            +
             | 
| 511 | 
            +
                        output_states += (hidden_states,)
         | 
| 512 | 
            +
             | 
| 513 | 
            +
                    if self.downsamplers is not None:
         | 
| 514 | 
            +
                        for downsampler in self.downsamplers:
         | 
| 515 | 
            +
                            hidden_states = downsampler(hidden_states)
         | 
| 516 | 
            +
             | 
| 517 | 
            +
                        output_states += (hidden_states,)
         | 
| 518 | 
            +
             | 
| 519 | 
            +
                    return hidden_states, output_states
         | 
| 520 | 
            +
             | 
| 521 | 
            +
             | 
| 522 | 
            +
            class CrossAttnUpBlock3D(nn.Module):
         | 
| 523 | 
            +
                def __init__(
         | 
| 524 | 
            +
                    self,
         | 
| 525 | 
            +
                    in_channels: int,
         | 
| 526 | 
            +
                    out_channels: int,
         | 
| 527 | 
            +
                    prev_output_channel: int,
         | 
| 528 | 
            +
                    temb_channels: int,
         | 
| 529 | 
            +
                    dropout: float = 0.0,
         | 
| 530 | 
            +
                    num_layers: int = 1,
         | 
| 531 | 
            +
                    resnet_eps: float = 1e-6,
         | 
| 532 | 
            +
                    resnet_time_scale_shift: str = "default",
         | 
| 533 | 
            +
                    resnet_act_fn: str = "swish",
         | 
| 534 | 
            +
                    resnet_groups: int = 32,
         | 
| 535 | 
            +
                    resnet_pre_norm: bool = True,
         | 
| 536 | 
            +
                    attn_num_head_channels=1,
         | 
| 537 | 
            +
                    cross_attention_dim=1280,
         | 
| 538 | 
            +
                    output_scale_factor=1.0,
         | 
| 539 | 
            +
                    add_upsample=True,
         | 
| 540 | 
            +
                    dual_cross_attention=False,
         | 
| 541 | 
            +
                    use_linear_projection=False,
         | 
| 542 | 
            +
                    only_cross_attention=False,
         | 
| 543 | 
            +
                    upcast_attention=False,
         | 
| 544 | 
            +
             | 
| 545 | 
            +
                    unet_use_cross_frame_attention=None,
         | 
| 546 | 
            +
                    unet_use_temporal_attention=None,
         | 
| 547 | 
            +
                    
         | 
| 548 | 
            +
                    use_motion_module=None,
         | 
| 549 | 
            +
             | 
| 550 | 
            +
                    motion_module_type=None,
         | 
| 551 | 
            +
                    motion_module_kwargs=None,
         | 
| 552 | 
            +
                ):
         | 
| 553 | 
            +
                    super().__init__()
         | 
| 554 | 
            +
                    resnets = []
         | 
| 555 | 
            +
                    attentions = []
         | 
| 556 | 
            +
                    motion_modules = []
         | 
| 557 | 
            +
             | 
| 558 | 
            +
                    self.has_cross_attention = True
         | 
| 559 | 
            +
                    self.attn_num_head_channels = attn_num_head_channels
         | 
| 560 | 
            +
             | 
| 561 | 
            +
                    for i in range(num_layers):
         | 
| 562 | 
            +
                        res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
         | 
| 563 | 
            +
                        resnet_in_channels = prev_output_channel if i == 0 else out_channels
         | 
| 564 | 
            +
             | 
| 565 | 
            +
                        resnets.append(
         | 
| 566 | 
            +
                            ResnetBlock3D(
         | 
| 567 | 
            +
                                in_channels=resnet_in_channels + res_skip_channels,
         | 
| 568 | 
            +
                                out_channels=out_channels,
         | 
| 569 | 
            +
                                temb_channels=temb_channels,
         | 
| 570 | 
            +
                                eps=resnet_eps,
         | 
| 571 | 
            +
                                groups=resnet_groups,
         | 
| 572 | 
            +
                                dropout=dropout,
         | 
| 573 | 
            +
                                time_embedding_norm=resnet_time_scale_shift,
         | 
| 574 | 
            +
                                non_linearity=resnet_act_fn,
         | 
| 575 | 
            +
                                output_scale_factor=output_scale_factor,
         | 
| 576 | 
            +
                                pre_norm=resnet_pre_norm,
         | 
| 577 | 
            +
                            )
         | 
| 578 | 
            +
                        )
         | 
| 579 | 
            +
                        if dual_cross_attention:
         | 
| 580 | 
            +
                            raise NotImplementedError
         | 
| 581 | 
            +
                        attentions.append(
         | 
| 582 | 
            +
                            Transformer3DModel(
         | 
| 583 | 
            +
                                attn_num_head_channels,
         | 
| 584 | 
            +
                                out_channels // attn_num_head_channels,
         | 
| 585 | 
            +
                                in_channels=out_channels,
         | 
| 586 | 
            +
                                num_layers=1,
         | 
| 587 | 
            +
                                cross_attention_dim=cross_attention_dim,
         | 
| 588 | 
            +
                                norm_num_groups=resnet_groups,
         | 
| 589 | 
            +
                                use_linear_projection=use_linear_projection,
         | 
| 590 | 
            +
                                only_cross_attention=only_cross_attention,
         | 
| 591 | 
            +
                                upcast_attention=upcast_attention,
         | 
| 592 | 
            +
             | 
| 593 | 
            +
                                unet_use_cross_frame_attention=unet_use_cross_frame_attention,
         | 
| 594 | 
            +
                                unet_use_temporal_attention=unet_use_temporal_attention,
         | 
| 595 | 
            +
                            )
         | 
| 596 | 
            +
                        )
         | 
| 597 | 
            +
                        motion_modules.append(
         | 
| 598 | 
            +
                            get_motion_module(
         | 
| 599 | 
            +
                                in_channels=out_channels,
         | 
| 600 | 
            +
                                motion_module_type=motion_module_type, 
         | 
| 601 | 
            +
                                motion_module_kwargs=motion_module_kwargs,
         | 
| 602 | 
            +
                            ) if use_motion_module else None
         | 
| 603 | 
            +
                        )
         | 
| 604 | 
            +
                        
         | 
| 605 | 
            +
                    self.attentions = nn.ModuleList(attentions)
         | 
| 606 | 
            +
                    self.resnets = nn.ModuleList(resnets)
         | 
| 607 | 
            +
                    self.motion_modules = nn.ModuleList(motion_modules)
         | 
| 608 | 
            +
             | 
| 609 | 
            +
                    if add_upsample:
         | 
| 610 | 
            +
                        self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
         | 
| 611 | 
            +
                    else:
         | 
| 612 | 
            +
                        self.upsamplers = None
         | 
| 613 | 
            +
             | 
| 614 | 
            +
                    self.gradient_checkpointing = False
         | 
| 615 | 
            +
             | 
| 616 | 
            +
                def forward(
         | 
| 617 | 
            +
                    self,
         | 
| 618 | 
            +
                    hidden_states,
         | 
| 619 | 
            +
                    res_hidden_states_tuple,
         | 
| 620 | 
            +
                    temb=None,
         | 
| 621 | 
            +
                    encoder_hidden_states=None,
         | 
| 622 | 
            +
                    upsample_size=None,
         | 
| 623 | 
            +
                    attention_mask=None,
         | 
| 624 | 
            +
                ):
         | 
| 625 | 
            +
                    for resnet, attn, motion_module in zip(self.resnets, self.attentions, self.motion_modules):
         | 
| 626 | 
            +
                        # pop res hidden states
         | 
| 627 | 
            +
                        res_hidden_states = res_hidden_states_tuple[-1]
         | 
| 628 | 
            +
                        res_hidden_states_tuple = res_hidden_states_tuple[:-1]
         | 
| 629 | 
            +
                        hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
         | 
| 630 | 
            +
             | 
| 631 | 
            +
                        if self.training and self.gradient_checkpointing:
         | 
| 632 | 
            +
             | 
| 633 | 
            +
                            def create_custom_forward(module, return_dict=None):
         | 
| 634 | 
            +
                                def custom_forward(*inputs):
         | 
| 635 | 
            +
                                    if return_dict is not None:
         | 
| 636 | 
            +
                                        return module(*inputs, return_dict=return_dict)
         | 
| 637 | 
            +
                                    else:
         | 
| 638 | 
            +
                                        return module(*inputs)
         | 
| 639 | 
            +
             | 
| 640 | 
            +
                                return custom_forward
         | 
| 641 | 
            +
             | 
| 642 | 
            +
                            hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
         | 
| 643 | 
            +
                            hidden_states = torch.utils.checkpoint.checkpoint(
         | 
| 644 | 
            +
                                create_custom_forward(attn, return_dict=False),
         | 
| 645 | 
            +
                                hidden_states,
         | 
| 646 | 
            +
                                encoder_hidden_states,
         | 
| 647 | 
            +
                            )[0]
         | 
| 648 | 
            +
                            if motion_module is not None:
         | 
| 649 | 
            +
                                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states)
         | 
| 650 | 
            +
                        
         | 
| 651 | 
            +
                        else:
         | 
| 652 | 
            +
                            hidden_states = resnet(hidden_states, temb)
         | 
| 653 | 
            +
                            hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
         | 
| 654 | 
            +
                            
         | 
| 655 | 
            +
                            # add motion module
         | 
| 656 | 
            +
                            hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states
         | 
| 657 | 
            +
             | 
| 658 | 
            +
                    if self.upsamplers is not None:
         | 
| 659 | 
            +
                        for upsampler in self.upsamplers:
         | 
| 660 | 
            +
                            hidden_states = upsampler(hidden_states, upsample_size)
         | 
| 661 | 
            +
             | 
| 662 | 
            +
                    return hidden_states
         | 
| 663 | 
            +
             | 
| 664 | 
            +
             | 
| 665 | 
            +
            class UpBlock3D(nn.Module):
         | 
| 666 | 
            +
                def __init__(
         | 
| 667 | 
            +
                    self,
         | 
| 668 | 
            +
                    in_channels: int,
         | 
| 669 | 
            +
                    prev_output_channel: int,
         | 
| 670 | 
            +
                    out_channels: int,
         | 
| 671 | 
            +
                    temb_channels: int,
         | 
| 672 | 
            +
                    dropout: float = 0.0,
         | 
| 673 | 
            +
                    num_layers: int = 1,
         | 
| 674 | 
            +
                    resnet_eps: float = 1e-6,
         | 
| 675 | 
            +
                    resnet_time_scale_shift: str = "default",
         | 
| 676 | 
            +
                    resnet_act_fn: str = "swish",
         | 
| 677 | 
            +
                    resnet_groups: int = 32,
         | 
| 678 | 
            +
                    resnet_pre_norm: bool = True,
         | 
| 679 | 
            +
                    output_scale_factor=1.0,
         | 
| 680 | 
            +
                    add_upsample=True,
         | 
| 681 | 
            +
             | 
| 682 | 
            +
                    use_motion_module=None,
         | 
| 683 | 
            +
                    motion_module_type=None,
         | 
| 684 | 
            +
                    motion_module_kwargs=None,
         | 
| 685 | 
            +
                ):
         | 
| 686 | 
            +
                    super().__init__()
         | 
| 687 | 
            +
                    resnets = []
         | 
| 688 | 
            +
                    motion_modules = []
         | 
| 689 | 
            +
             | 
| 690 | 
            +
                    for i in range(num_layers):
         | 
| 691 | 
            +
                        res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
         | 
| 692 | 
            +
                        resnet_in_channels = prev_output_channel if i == 0 else out_channels
         | 
| 693 | 
            +
             | 
| 694 | 
            +
                        resnets.append(
         | 
| 695 | 
            +
                            ResnetBlock3D(
         | 
| 696 | 
            +
                                in_channels=resnet_in_channels + res_skip_channels,
         | 
| 697 | 
            +
                                out_channels=out_channels,
         | 
| 698 | 
            +
                                temb_channels=temb_channels,
         | 
| 699 | 
            +
                                eps=resnet_eps,
         | 
| 700 | 
            +
                                groups=resnet_groups,
         | 
| 701 | 
            +
                                dropout=dropout,
         | 
| 702 | 
            +
                                time_embedding_norm=resnet_time_scale_shift,
         | 
| 703 | 
            +
                                non_linearity=resnet_act_fn,
         | 
| 704 | 
            +
                                output_scale_factor=output_scale_factor,
         | 
| 705 | 
            +
                                pre_norm=resnet_pre_norm,
         | 
| 706 | 
            +
                            )
         | 
| 707 | 
            +
                        )
         | 
| 708 | 
            +
                        motion_modules.append(
         | 
| 709 | 
            +
                            get_motion_module(
         | 
| 710 | 
            +
                                in_channels=out_channels,
         | 
| 711 | 
            +
                                motion_module_type=motion_module_type, 
         | 
| 712 | 
            +
                                motion_module_kwargs=motion_module_kwargs,
         | 
| 713 | 
            +
                            ) if use_motion_module else None
         | 
| 714 | 
            +
                        )
         | 
| 715 | 
            +
             | 
| 716 | 
            +
                    self.resnets = nn.ModuleList(resnets)
         | 
| 717 | 
            +
                    self.motion_modules = nn.ModuleList(motion_modules)
         | 
| 718 | 
            +
             | 
| 719 | 
            +
                    if add_upsample:
         | 
| 720 | 
            +
                        self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
         | 
| 721 | 
            +
                    else:
         | 
| 722 | 
            +
                        self.upsamplers = None
         | 
| 723 | 
            +
             | 
| 724 | 
            +
                    self.gradient_checkpointing = False
         | 
| 725 | 
            +
             | 
| 726 | 
            +
                def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, encoder_hidden_states=None,):
         | 
| 727 | 
            +
                    for resnet, motion_module in zip(self.resnets, self.motion_modules):
         | 
| 728 | 
            +
                        # pop res hidden states
         | 
| 729 | 
            +
                        res_hidden_states = res_hidden_states_tuple[-1]
         | 
| 730 | 
            +
                        res_hidden_states_tuple = res_hidden_states_tuple[:-1]
         | 
| 731 | 
            +
                        hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
         | 
| 732 | 
            +
             | 
| 733 | 
            +
                        if self.training and self.gradient_checkpointing:
         | 
| 734 | 
            +
                            def create_custom_forward(module):
         | 
| 735 | 
            +
                                def custom_forward(*inputs):
         | 
| 736 | 
            +
                                    return module(*inputs)
         | 
| 737 | 
            +
             | 
| 738 | 
            +
                                return custom_forward
         | 
| 739 | 
            +
             | 
| 740 | 
            +
                            hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
         | 
| 741 | 
            +
                            if motion_module is not None:
         | 
| 742 | 
            +
                                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states)
         | 
| 743 | 
            +
                        else:
         | 
| 744 | 
            +
                            hidden_states = resnet(hidden_states, temb)
         | 
| 745 | 
            +
                            hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states
         | 
| 746 | 
            +
             | 
| 747 | 
            +
                    if self.upsamplers is not None:
         | 
| 748 | 
            +
                        for upsampler in self.upsamplers:
         | 
| 749 | 
            +
                            hidden_states = upsampler(hidden_states, upsample_size)
         | 
| 750 | 
            +
             | 
| 751 | 
            +
                    return hidden_states
         | 
    	
        magicanimate/models/unet_controlnet.py
    ADDED
    
    | @@ -0,0 +1,525 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # *************************************************************************
         | 
| 2 | 
            +
            # This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo-
         | 
| 3 | 
            +
            # difications”). All Bytedance Inc.'s Modifications are Copyright (2023) B-
         | 
| 4 | 
            +
            # ytedance Inc..  
         | 
| 5 | 
            +
            # *************************************************************************
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Copyright 2023 The HuggingFace Team. All rights reserved.
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            from dataclasses import dataclass
         | 
| 21 | 
            +
            from typing import List, Optional, Tuple, Union
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            import os
         | 
| 24 | 
            +
            import json
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            import torch
         | 
| 27 | 
            +
            import torch.nn as nn
         | 
| 28 | 
            +
            import torch.utils.checkpoint
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            from diffusers.configuration_utils import ConfigMixin, register_to_config
         | 
| 31 | 
            +
            from diffusers.models.modeling_utils import ModelMixin
         | 
| 32 | 
            +
            from diffusers.utils import BaseOutput, logging
         | 
| 33 | 
            +
            from diffusers.models.embeddings import TimestepEmbedding, Timesteps
         | 
| 34 | 
            +
            from magicanimate.models.unet_3d_blocks import (
         | 
| 35 | 
            +
                CrossAttnDownBlock3D,
         | 
| 36 | 
            +
                CrossAttnUpBlock3D,
         | 
| 37 | 
            +
                DownBlock3D,
         | 
| 38 | 
            +
                UNetMidBlock3DCrossAttn,
         | 
| 39 | 
            +
                UpBlock3D,
         | 
| 40 | 
            +
                get_down_block,
         | 
| 41 | 
            +
                get_up_block,
         | 
| 42 | 
            +
            )
         | 
| 43 | 
            +
            from .resnet import InflatedConv3d
         | 
| 44 | 
            +
             | 
| 45 | 
            +
             | 
| 46 | 
            +
            logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
         | 
| 47 | 
            +
             | 
| 48 | 
            +
             | 
| 49 | 
            +
            @dataclass
         | 
| 50 | 
            +
            class UNet3DConditionOutput(BaseOutput):
         | 
| 51 | 
            +
                sample: torch.FloatTensor
         | 
| 52 | 
            +
             | 
| 53 | 
            +
             | 
| 54 | 
            +
            class UNet3DConditionModel(ModelMixin, ConfigMixin):
         | 
| 55 | 
            +
                _supports_gradient_checkpointing = True
         | 
| 56 | 
            +
             | 
| 57 | 
            +
                @register_to_config
         | 
| 58 | 
            +
                def __init__(
         | 
| 59 | 
            +
                    self,
         | 
| 60 | 
            +
                    sample_size: Optional[int] = None,
         | 
| 61 | 
            +
                    in_channels: int = 4,
         | 
| 62 | 
            +
                    out_channels: int = 4,
         | 
| 63 | 
            +
                    center_input_sample: bool = False,
         | 
| 64 | 
            +
                    flip_sin_to_cos: bool = True,
         | 
| 65 | 
            +
                    freq_shift: int = 0,      
         | 
| 66 | 
            +
                    down_block_types: Tuple[str] = (
         | 
| 67 | 
            +
                        "CrossAttnDownBlock3D",
         | 
| 68 | 
            +
                        "CrossAttnDownBlock3D",
         | 
| 69 | 
            +
                        "CrossAttnDownBlock3D",
         | 
| 70 | 
            +
                        "DownBlock3D",
         | 
| 71 | 
            +
                    ),
         | 
| 72 | 
            +
                    mid_block_type: str = "UNetMidBlock3DCrossAttn",
         | 
| 73 | 
            +
                    up_block_types: Tuple[str] = (
         | 
| 74 | 
            +
                        "UpBlock3D",
         | 
| 75 | 
            +
                        "CrossAttnUpBlock3D",
         | 
| 76 | 
            +
                        "CrossAttnUpBlock3D",
         | 
| 77 | 
            +
                        "CrossAttnUpBlock3D"
         | 
| 78 | 
            +
                    ),
         | 
| 79 | 
            +
                    only_cross_attention: Union[bool, Tuple[bool]] = False,
         | 
| 80 | 
            +
                    block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
         | 
| 81 | 
            +
                    layers_per_block: int = 2,
         | 
| 82 | 
            +
                    downsample_padding: int = 1,
         | 
| 83 | 
            +
                    mid_block_scale_factor: float = 1,
         | 
| 84 | 
            +
                    act_fn: str = "silu",
         | 
| 85 | 
            +
                    norm_num_groups: int = 32,
         | 
| 86 | 
            +
                    norm_eps: float = 1e-5,
         | 
| 87 | 
            +
                    cross_attention_dim: int = 1280,
         | 
| 88 | 
            +
                    attention_head_dim: Union[int, Tuple[int]] = 8,
         | 
| 89 | 
            +
                    dual_cross_attention: bool = False,
         | 
| 90 | 
            +
                    use_linear_projection: bool = False,
         | 
| 91 | 
            +
                    class_embed_type: Optional[str] = None,
         | 
| 92 | 
            +
                    num_class_embeds: Optional[int] = None,
         | 
| 93 | 
            +
                    upcast_attention: bool = False,
         | 
| 94 | 
            +
                    resnet_time_scale_shift: str = "default",
         | 
| 95 | 
            +
                    
         | 
| 96 | 
            +
                    # Additional
         | 
| 97 | 
            +
                    use_motion_module              = False,
         | 
| 98 | 
            +
                    motion_module_resolutions      = ( 1,2,4,8 ),
         | 
| 99 | 
            +
                    motion_module_mid_block        = False,
         | 
| 100 | 
            +
                    motion_module_decoder_only     = False,
         | 
| 101 | 
            +
                    motion_module_type             = None,
         | 
| 102 | 
            +
                    motion_module_kwargs           = {},
         | 
| 103 | 
            +
                    unet_use_cross_frame_attention = None,
         | 
| 104 | 
            +
                    unet_use_temporal_attention    = None,
         | 
| 105 | 
            +
                ):
         | 
| 106 | 
            +
                    super().__init__()
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                    self.sample_size = sample_size
         | 
| 109 | 
            +
                    time_embed_dim = block_out_channels[0] * 4
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                    # input
         | 
| 112 | 
            +
                    self.conv_in = InflatedConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                    # time
         | 
| 115 | 
            +
                    self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
         | 
| 116 | 
            +
                    timestep_input_dim = block_out_channels[0]
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                    self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                    # class embedding
         | 
| 121 | 
            +
                    if class_embed_type is None and num_class_embeds is not None:
         | 
| 122 | 
            +
                        self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
         | 
| 123 | 
            +
                    elif class_embed_type == "timestep":
         | 
| 124 | 
            +
                        self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
         | 
| 125 | 
            +
                    elif class_embed_type == "identity":
         | 
| 126 | 
            +
                        self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
         | 
| 127 | 
            +
                    else:
         | 
| 128 | 
            +
                        self.class_embedding = None
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                    self.down_blocks = nn.ModuleList([])
         | 
| 131 | 
            +
                    self.mid_block = None
         | 
| 132 | 
            +
                    self.up_blocks = nn.ModuleList([])
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                    if isinstance(only_cross_attention, bool):
         | 
| 135 | 
            +
                        only_cross_attention = [only_cross_attention] * len(down_block_types)
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                    if isinstance(attention_head_dim, int):
         | 
| 138 | 
            +
                        attention_head_dim = (attention_head_dim,) * len(down_block_types)
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                    # down
         | 
| 141 | 
            +
                    output_channel = block_out_channels[0]
         | 
| 142 | 
            +
                    for i, down_block_type in enumerate(down_block_types):
         | 
| 143 | 
            +
                        res = 2 ** i
         | 
| 144 | 
            +
                        input_channel = output_channel
         | 
| 145 | 
            +
                        output_channel = block_out_channels[i]
         | 
| 146 | 
            +
                        is_final_block = i == len(block_out_channels) - 1
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                        down_block = get_down_block(
         | 
| 149 | 
            +
                            down_block_type,
         | 
| 150 | 
            +
                            num_layers=layers_per_block,
         | 
| 151 | 
            +
                            in_channels=input_channel,
         | 
| 152 | 
            +
                            out_channels=output_channel,
         | 
| 153 | 
            +
                            temb_channels=time_embed_dim,
         | 
| 154 | 
            +
                            add_downsample=not is_final_block,
         | 
| 155 | 
            +
                            resnet_eps=norm_eps,
         | 
| 156 | 
            +
                            resnet_act_fn=act_fn,
         | 
| 157 | 
            +
                            resnet_groups=norm_num_groups,
         | 
| 158 | 
            +
                            cross_attention_dim=cross_attention_dim,
         | 
| 159 | 
            +
                            attn_num_head_channels=attention_head_dim[i],
         | 
| 160 | 
            +
                            downsample_padding=downsample_padding,
         | 
| 161 | 
            +
                            dual_cross_attention=dual_cross_attention,
         | 
| 162 | 
            +
                            use_linear_projection=use_linear_projection,
         | 
| 163 | 
            +
                            only_cross_attention=only_cross_attention[i],
         | 
| 164 | 
            +
                            upcast_attention=upcast_attention,
         | 
| 165 | 
            +
                            resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 166 | 
            +
             | 
| 167 | 
            +
                            unet_use_cross_frame_attention=unet_use_cross_frame_attention,
         | 
| 168 | 
            +
                            unet_use_temporal_attention=unet_use_temporal_attention,
         | 
| 169 | 
            +
                            
         | 
| 170 | 
            +
                            use_motion_module=use_motion_module and (res in motion_module_resolutions) and (not motion_module_decoder_only),
         | 
| 171 | 
            +
                            motion_module_type=motion_module_type,
         | 
| 172 | 
            +
                            motion_module_kwargs=motion_module_kwargs,
         | 
| 173 | 
            +
                        )
         | 
| 174 | 
            +
                        self.down_blocks.append(down_block)
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                    # mid
         | 
| 177 | 
            +
                    if mid_block_type == "UNetMidBlock3DCrossAttn":
         | 
| 178 | 
            +
                        self.mid_block = UNetMidBlock3DCrossAttn(
         | 
| 179 | 
            +
                            in_channels=block_out_channels[-1],
         | 
| 180 | 
            +
                            temb_channels=time_embed_dim,
         | 
| 181 | 
            +
                            resnet_eps=norm_eps,
         | 
| 182 | 
            +
                            resnet_act_fn=act_fn,
         | 
| 183 | 
            +
                            output_scale_factor=mid_block_scale_factor,
         | 
| 184 | 
            +
                            resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 185 | 
            +
                            cross_attention_dim=cross_attention_dim,
         | 
| 186 | 
            +
                            attn_num_head_channels=attention_head_dim[-1],
         | 
| 187 | 
            +
                            resnet_groups=norm_num_groups,
         | 
| 188 | 
            +
                            dual_cross_attention=dual_cross_attention,
         | 
| 189 | 
            +
                            use_linear_projection=use_linear_projection,
         | 
| 190 | 
            +
                            upcast_attention=upcast_attention,
         | 
| 191 | 
            +
             | 
| 192 | 
            +
                            unet_use_cross_frame_attention=unet_use_cross_frame_attention,
         | 
| 193 | 
            +
                            unet_use_temporal_attention=unet_use_temporal_attention,
         | 
| 194 | 
            +
                            
         | 
| 195 | 
            +
                            use_motion_module=use_motion_module and motion_module_mid_block,
         | 
| 196 | 
            +
                            motion_module_type=motion_module_type,
         | 
| 197 | 
            +
                            motion_module_kwargs=motion_module_kwargs,
         | 
| 198 | 
            +
                        )
         | 
| 199 | 
            +
                    else:
         | 
| 200 | 
            +
                        raise ValueError(f"unknown mid_block_type : {mid_block_type}")
         | 
| 201 | 
            +
                    
         | 
| 202 | 
            +
                    # count how many layers upsample the videos
         | 
| 203 | 
            +
                    self.num_upsamplers = 0
         | 
| 204 | 
            +
             | 
| 205 | 
            +
                    # up
         | 
| 206 | 
            +
                    reversed_block_out_channels = list(reversed(block_out_channels))
         | 
| 207 | 
            +
                    reversed_attention_head_dim = list(reversed(attention_head_dim))
         | 
| 208 | 
            +
                    only_cross_attention = list(reversed(only_cross_attention))
         | 
| 209 | 
            +
                    output_channel = reversed_block_out_channels[0]
         | 
| 210 | 
            +
                    for i, up_block_type in enumerate(up_block_types):
         | 
| 211 | 
            +
                        res = 2 ** (3 - i)
         | 
| 212 | 
            +
                        is_final_block = i == len(block_out_channels) - 1
         | 
| 213 | 
            +
             | 
| 214 | 
            +
                        prev_output_channel = output_channel
         | 
| 215 | 
            +
                        output_channel = reversed_block_out_channels[i]
         | 
| 216 | 
            +
                        input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
         | 
| 217 | 
            +
             | 
| 218 | 
            +
                        # add upsample block for all BUT final layer
         | 
| 219 | 
            +
                        if not is_final_block:
         | 
| 220 | 
            +
                            add_upsample = True
         | 
| 221 | 
            +
                            self.num_upsamplers += 1
         | 
| 222 | 
            +
                        else:
         | 
| 223 | 
            +
                            add_upsample = False
         | 
| 224 | 
            +
             | 
| 225 | 
            +
                        up_block = get_up_block(
         | 
| 226 | 
            +
                            up_block_type,
         | 
| 227 | 
            +
                            num_layers=layers_per_block + 1,
         | 
| 228 | 
            +
                            in_channels=input_channel,
         | 
| 229 | 
            +
                            out_channels=output_channel,
         | 
| 230 | 
            +
                            prev_output_channel=prev_output_channel,
         | 
| 231 | 
            +
                            temb_channels=time_embed_dim,
         | 
| 232 | 
            +
                            add_upsample=add_upsample,
         | 
| 233 | 
            +
                            resnet_eps=norm_eps,
         | 
| 234 | 
            +
                            resnet_act_fn=act_fn,
         | 
| 235 | 
            +
                            resnet_groups=norm_num_groups,
         | 
| 236 | 
            +
                            cross_attention_dim=cross_attention_dim,
         | 
| 237 | 
            +
                            attn_num_head_channels=reversed_attention_head_dim[i],
         | 
| 238 | 
            +
                            dual_cross_attention=dual_cross_attention,
         | 
| 239 | 
            +
                            use_linear_projection=use_linear_projection,
         | 
| 240 | 
            +
                            only_cross_attention=only_cross_attention[i],
         | 
| 241 | 
            +
                            upcast_attention=upcast_attention,
         | 
| 242 | 
            +
                            resnet_time_scale_shift=resnet_time_scale_shift,
         | 
| 243 | 
            +
             | 
| 244 | 
            +
                            unet_use_cross_frame_attention=unet_use_cross_frame_attention,
         | 
| 245 | 
            +
                            unet_use_temporal_attention=unet_use_temporal_attention,
         | 
| 246 | 
            +
             | 
| 247 | 
            +
                            use_motion_module=use_motion_module and (res in motion_module_resolutions),
         | 
| 248 | 
            +
                            motion_module_type=motion_module_type,
         | 
| 249 | 
            +
                            motion_module_kwargs=motion_module_kwargs,
         | 
| 250 | 
            +
                        )
         | 
| 251 | 
            +
                        self.up_blocks.append(up_block)
         | 
| 252 | 
            +
                        prev_output_channel = output_channel
         | 
| 253 | 
            +
             | 
| 254 | 
            +
                    # out
         | 
| 255 | 
            +
                    self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
         | 
| 256 | 
            +
                    self.conv_act = nn.SiLU()
         | 
| 257 | 
            +
                    self.conv_out = InflatedConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                def set_attention_slice(self, slice_size):
         | 
| 260 | 
            +
                    r"""
         | 
| 261 | 
            +
                    Enable sliced attention computation.
         | 
| 262 | 
            +
             | 
| 263 | 
            +
                    When this option is enabled, the attention module will split the input tensor in slices, to compute attention
         | 
| 264 | 
            +
                    in several steps. This is useful to save some memory in exchange for a small speed decrease.
         | 
| 265 | 
            +
             | 
| 266 | 
            +
                    Args:
         | 
| 267 | 
            +
                        slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
         | 
| 268 | 
            +
                            When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
         | 
| 269 | 
            +
                            `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
         | 
| 270 | 
            +
                            provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
         | 
| 271 | 
            +
                            must be a multiple of `slice_size`.
         | 
| 272 | 
            +
                    """
         | 
| 273 | 
            +
                    sliceable_head_dims = []
         | 
| 274 | 
            +
             | 
| 275 | 
            +
                    def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
         | 
| 276 | 
            +
                        if hasattr(module, "set_attention_slice"):
         | 
| 277 | 
            +
                            sliceable_head_dims.append(module.sliceable_head_dim)
         | 
| 278 | 
            +
             | 
| 279 | 
            +
                        for child in module.children():
         | 
| 280 | 
            +
                            fn_recursive_retrieve_slicable_dims(child)
         | 
| 281 | 
            +
             | 
| 282 | 
            +
                    # retrieve number of attention layers
         | 
| 283 | 
            +
                    for module in self.children():
         | 
| 284 | 
            +
                        fn_recursive_retrieve_slicable_dims(module)
         | 
| 285 | 
            +
             | 
| 286 | 
            +
                    num_slicable_layers = len(sliceable_head_dims)
         | 
| 287 | 
            +
             | 
| 288 | 
            +
                    if slice_size == "auto":
         | 
| 289 | 
            +
                        # half the attention head size is usually a good trade-off between
         | 
| 290 | 
            +
                        # speed and memory
         | 
| 291 | 
            +
                        slice_size = [dim // 2 for dim in sliceable_head_dims]
         | 
| 292 | 
            +
                    elif slice_size == "max":
         | 
| 293 | 
            +
                        # make smallest slice possible
         | 
| 294 | 
            +
                        slice_size = num_slicable_layers * [1]
         | 
| 295 | 
            +
             | 
| 296 | 
            +
                    slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
         | 
| 297 | 
            +
             | 
| 298 | 
            +
                    if len(slice_size) != len(sliceable_head_dims):
         | 
| 299 | 
            +
                        raise ValueError(
         | 
| 300 | 
            +
                            f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
         | 
| 301 | 
            +
                            f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
         | 
| 302 | 
            +
                        )
         | 
| 303 | 
            +
             | 
| 304 | 
            +
                    for i in range(len(slice_size)):
         | 
| 305 | 
            +
                        size = slice_size[i]
         | 
| 306 | 
            +
                        dim = sliceable_head_dims[i]
         | 
| 307 | 
            +
                        if size is not None and size > dim:
         | 
| 308 | 
            +
                            raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
         | 
| 309 | 
            +
             | 
| 310 | 
            +
                    # Recursively walk through all the children.
         | 
| 311 | 
            +
                    # Any children which exposes the set_attention_slice method
         | 
| 312 | 
            +
                    # gets the message
         | 
| 313 | 
            +
                    def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
         | 
| 314 | 
            +
                        if hasattr(module, "set_attention_slice"):
         | 
| 315 | 
            +
                            module.set_attention_slice(slice_size.pop())
         | 
| 316 | 
            +
             | 
| 317 | 
            +
                        for child in module.children():
         | 
| 318 | 
            +
                            fn_recursive_set_attention_slice(child, slice_size)
         | 
| 319 | 
            +
             | 
| 320 | 
            +
                    reversed_slice_size = list(reversed(slice_size))
         | 
| 321 | 
            +
                    for module in self.children():
         | 
| 322 | 
            +
                        fn_recursive_set_attention_slice(module, reversed_slice_size)
         | 
| 323 | 
            +
             | 
| 324 | 
            +
                def _set_gradient_checkpointing(self, module, value=False):
         | 
| 325 | 
            +
                    if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
         | 
| 326 | 
            +
                        module.gradient_checkpointing = value
         | 
| 327 | 
            +
             | 
| 328 | 
            +
                def forward(
         | 
| 329 | 
            +
                    self,
         | 
| 330 | 
            +
                    sample: torch.FloatTensor,
         | 
| 331 | 
            +
                    timestep: Union[torch.Tensor, float, int],
         | 
| 332 | 
            +
                    encoder_hidden_states: torch.Tensor,
         | 
| 333 | 
            +
                    class_labels: Optional[torch.Tensor] = None,
         | 
| 334 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 335 | 
            +
                    # for controlnet
         | 
| 336 | 
            +
                    down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
         | 
| 337 | 
            +
                    mid_block_additional_residual: Optional[torch.Tensor] = None,
         | 
| 338 | 
            +
                    return_dict: bool = True,
         | 
| 339 | 
            +
                ) -> Union[UNet3DConditionOutput, Tuple]:
         | 
| 340 | 
            +
                    r"""
         | 
| 341 | 
            +
                    Args:
         | 
| 342 | 
            +
                        sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
         | 
| 343 | 
            +
                        timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
         | 
| 344 | 
            +
                        encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
         | 
| 345 | 
            +
                        return_dict (`bool`, *optional*, defaults to `True`):
         | 
| 346 | 
            +
                            Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
         | 
| 347 | 
            +
             | 
| 348 | 
            +
                    Returns:
         | 
| 349 | 
            +
                        [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
         | 
| 350 | 
            +
                        [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
         | 
| 351 | 
            +
                        returning a tuple, the first element is the sample tensor.
         | 
| 352 | 
            +
                    """
         | 
| 353 | 
            +
                    # By default samples have to be AT least a multiple of the overall upsampling factor.
         | 
| 354 | 
            +
                    # The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
         | 
| 355 | 
            +
                    # However, the upsampling interpolation output size can be forced to fit any upsampling size
         | 
| 356 | 
            +
                    # on the fly if necessary.
         | 
| 357 | 
            +
                    default_overall_up_factor = 2**self.num_upsamplers
         | 
| 358 | 
            +
             | 
| 359 | 
            +
                    # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
         | 
| 360 | 
            +
                    forward_upsample_size = False
         | 
| 361 | 
            +
                    upsample_size = None
         | 
| 362 | 
            +
             | 
| 363 | 
            +
                    if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
         | 
| 364 | 
            +
                        logger.info("Forward upsample size to force interpolation output size.")
         | 
| 365 | 
            +
                        forward_upsample_size = True
         | 
| 366 | 
            +
             | 
| 367 | 
            +
                    # prepare attention_mask
         | 
| 368 | 
            +
                    if attention_mask is not None:
         | 
| 369 | 
            +
                        attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
         | 
| 370 | 
            +
                        attention_mask = attention_mask.unsqueeze(1)
         | 
| 371 | 
            +
             | 
| 372 | 
            +
                    # center input if necessary
         | 
| 373 | 
            +
                    if self.config.center_input_sample:
         | 
| 374 | 
            +
                        sample = 2 * sample - 1.0
         | 
| 375 | 
            +
             | 
| 376 | 
            +
                    # time
         | 
| 377 | 
            +
                    timesteps = timestep
         | 
| 378 | 
            +
                    if not torch.is_tensor(timesteps):
         | 
| 379 | 
            +
                        # This would be a good case for the `match` statement (Python 3.10+)
         | 
| 380 | 
            +
                        is_mps = sample.device.type == "mps"
         | 
| 381 | 
            +
                        if isinstance(timestep, float):
         | 
| 382 | 
            +
                            dtype = torch.float32 if is_mps else torch.float64
         | 
| 383 | 
            +
                        else:
         | 
| 384 | 
            +
                            dtype = torch.int32 if is_mps else torch.int64
         | 
| 385 | 
            +
                        timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
         | 
| 386 | 
            +
                    elif len(timesteps.shape) == 0:
         | 
| 387 | 
            +
                        timesteps = timesteps[None].to(sample.device)
         | 
| 388 | 
            +
             | 
| 389 | 
            +
                    # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
         | 
| 390 | 
            +
                    timesteps = timesteps.expand(sample.shape[0])
         | 
| 391 | 
            +
             | 
| 392 | 
            +
                    t_emb = self.time_proj(timesteps)
         | 
| 393 | 
            +
             | 
| 394 | 
            +
                    # timesteps does not contain any weights and will always return f32 tensors
         | 
| 395 | 
            +
                    # but time_embedding might actually be running in fp16. so we need to cast here.
         | 
| 396 | 
            +
                    # there might be better ways to encapsulate this.
         | 
| 397 | 
            +
                    t_emb = t_emb.to(dtype=self.dtype)
         | 
| 398 | 
            +
                    emb = self.time_embedding(t_emb)
         | 
| 399 | 
            +
             | 
| 400 | 
            +
                    if self.class_embedding is not None:
         | 
| 401 | 
            +
                        if class_labels is None:
         | 
| 402 | 
            +
                            raise ValueError("class_labels should be provided when num_class_embeds > 0")
         | 
| 403 | 
            +
             | 
| 404 | 
            +
                        if self.config.class_embed_type == "timestep":
         | 
| 405 | 
            +
                            class_labels = self.time_proj(class_labels)
         | 
| 406 | 
            +
             | 
| 407 | 
            +
                        class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
         | 
| 408 | 
            +
                        emb = emb + class_emb
         | 
| 409 | 
            +
             | 
| 410 | 
            +
                    # pre-process
         | 
| 411 | 
            +
                    sample = self.conv_in(sample)
         | 
| 412 | 
            +
             | 
| 413 | 
            +
                    # down
         | 
| 414 | 
            +
                    is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
         | 
| 415 | 
            +
             | 
| 416 | 
            +
                    down_block_res_samples = (sample,)
         | 
| 417 | 
            +
                    for downsample_block in self.down_blocks:
         | 
| 418 | 
            +
                        if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
         | 
| 419 | 
            +
                            sample, res_samples = downsample_block(
         | 
| 420 | 
            +
                                hidden_states=sample,
         | 
| 421 | 
            +
                                temb=emb,
         | 
| 422 | 
            +
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 423 | 
            +
                                attention_mask=attention_mask,
         | 
| 424 | 
            +
                            )
         | 
| 425 | 
            +
                        else:
         | 
| 426 | 
            +
                            sample, res_samples = downsample_block(hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states)
         | 
| 427 | 
            +
             | 
| 428 | 
            +
                        down_block_res_samples += res_samples
         | 
| 429 | 
            +
             | 
| 430 | 
            +
                    if is_controlnet:
         | 
| 431 | 
            +
                        new_down_block_res_samples = ()
         | 
| 432 | 
            +
             | 
| 433 | 
            +
                        for down_block_res_sample, down_block_additional_residual in zip(
         | 
| 434 | 
            +
                            down_block_res_samples, down_block_additional_residuals
         | 
| 435 | 
            +
                        ):
         | 
| 436 | 
            +
                            down_block_res_sample = down_block_res_sample + down_block_additional_residual
         | 
| 437 | 
            +
                            new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
         | 
| 438 | 
            +
             | 
| 439 | 
            +
                        down_block_res_samples = new_down_block_res_samples
         | 
| 440 | 
            +
             | 
| 441 | 
            +
                    # mid
         | 
| 442 | 
            +
                    sample = self.mid_block(
         | 
| 443 | 
            +
                        sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
         | 
| 444 | 
            +
                    )
         | 
| 445 | 
            +
             | 
| 446 | 
            +
                    if is_controlnet:
         | 
| 447 | 
            +
                        sample = sample + mid_block_additional_residual
         | 
| 448 | 
            +
             | 
| 449 | 
            +
                    # up
         | 
| 450 | 
            +
                    for i, upsample_block in enumerate(self.up_blocks):
         | 
| 451 | 
            +
                        is_final_block = i == len(self.up_blocks) - 1
         | 
| 452 | 
            +
             | 
| 453 | 
            +
                        res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
         | 
| 454 | 
            +
                        down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
         | 
| 455 | 
            +
             | 
| 456 | 
            +
                        # if we have not reached the final block and need to forward the
         | 
| 457 | 
            +
                        # upsample size, we do it here
         | 
| 458 | 
            +
                        if not is_final_block and forward_upsample_size:
         | 
| 459 | 
            +
                            upsample_size = down_block_res_samples[-1].shape[2:]
         | 
| 460 | 
            +
             | 
| 461 | 
            +
                        if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
         | 
| 462 | 
            +
                            sample = upsample_block(
         | 
| 463 | 
            +
                                hidden_states=sample,
         | 
| 464 | 
            +
                                temb=emb,
         | 
| 465 | 
            +
                                res_hidden_states_tuple=res_samples,
         | 
| 466 | 
            +
                                encoder_hidden_states=encoder_hidden_states,
         | 
| 467 | 
            +
                                upsample_size=upsample_size,
         | 
| 468 | 
            +
                                attention_mask=attention_mask,
         | 
| 469 | 
            +
                            )
         | 
| 470 | 
            +
                        else:
         | 
| 471 | 
            +
                            sample = upsample_block(
         | 
| 472 | 
            +
                                hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size, encoder_hidden_states=encoder_hidden_states,
         | 
| 473 | 
            +
                            )
         | 
| 474 | 
            +
             | 
| 475 | 
            +
                    # post-process
         | 
| 476 | 
            +
                    sample = self.conv_norm_out(sample)
         | 
| 477 | 
            +
                    sample = self.conv_act(sample)
         | 
| 478 | 
            +
                    sample = self.conv_out(sample)
         | 
| 479 | 
            +
             | 
| 480 | 
            +
                    if not return_dict:
         | 
| 481 | 
            +
                        return (sample,)
         | 
| 482 | 
            +
             | 
| 483 | 
            +
                    return UNet3DConditionOutput(sample=sample)
         | 
| 484 | 
            +
             | 
| 485 | 
            +
                @classmethod
         | 
| 486 | 
            +
                def from_pretrained_2d(cls, pretrained_model_path, subfolder=None, unet_additional_kwargs=None):
         | 
| 487 | 
            +
                    if subfolder is not None:
         | 
| 488 | 
            +
                        pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
         | 
| 489 | 
            +
                    print(f"loaded temporal unet's pretrained weights from {pretrained_model_path} ...")
         | 
| 490 | 
            +
             | 
| 491 | 
            +
                    config_file = os.path.join(pretrained_model_path, 'config.json')
         | 
| 492 | 
            +
                    if not os.path.isfile(config_file):
         | 
| 493 | 
            +
                        raise RuntimeError(f"{config_file} does not exist")
         | 
| 494 | 
            +
                    with open(config_file, "r") as f:
         | 
| 495 | 
            +
                        config = json.load(f)
         | 
| 496 | 
            +
                    config["_class_name"] = cls.__name__
         | 
| 497 | 
            +
                    config["down_block_types"] = [
         | 
| 498 | 
            +
                        "CrossAttnDownBlock3D",
         | 
| 499 | 
            +
                        "CrossAttnDownBlock3D",
         | 
| 500 | 
            +
                        "CrossAttnDownBlock3D",
         | 
| 501 | 
            +
                        "DownBlock3D"
         | 
| 502 | 
            +
                    ]
         | 
| 503 | 
            +
                    config["up_block_types"] = [
         | 
| 504 | 
            +
                        "UpBlock3D",
         | 
| 505 | 
            +
                        "CrossAttnUpBlock3D",
         | 
| 506 | 
            +
                        "CrossAttnUpBlock3D",
         | 
| 507 | 
            +
                        "CrossAttnUpBlock3D"
         | 
| 508 | 
            +
                    ]
         | 
| 509 | 
            +
                    # config["mid_block_type"] = "UNetMidBlock3DCrossAttn"
         | 
| 510 | 
            +
             | 
| 511 | 
            +
                    from diffusers.utils import WEIGHTS_NAME
         | 
| 512 | 
            +
                    model = cls.from_config(config, **unet_additional_kwargs)
         | 
| 513 | 
            +
                    model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
         | 
| 514 | 
            +
                    if not os.path.isfile(model_file):
         | 
| 515 | 
            +
                        raise RuntimeError(f"{model_file} does not exist")
         | 
| 516 | 
            +
                    state_dict = torch.load(model_file, map_location="cpu")
         | 
| 517 | 
            +
             | 
| 518 | 
            +
                    m, u = model.load_state_dict(state_dict, strict=False)
         | 
| 519 | 
            +
                    print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
         | 
| 520 | 
            +
                    # print(f"### missing keys:\n{m}\n### unexpected keys:\n{u}\n")
         | 
| 521 | 
            +
                    
         | 
| 522 | 
            +
                    params = [p.numel() if "temporal" in n else 0 for n, p in model.named_parameters()]
         | 
| 523 | 
            +
                    print(f"### Temporal Module Parameters: {sum(params) / 1e6} M")
         | 
| 524 | 
            +
                    
         | 
| 525 | 
            +
                    return model
         | 
    	
        magicanimate/pipelines/__pycache__/animation.cpython-37.pyc
    ADDED
    
    | Binary file (7.07 kB). View file | 
|  | 
    	
        magicanimate/pipelines/__pycache__/animation.cpython-38.pyc
    ADDED
    
    | Binary file (7.1 kB). View file | 
|  | 
    	
        magicanimate/pipelines/__pycache__/context.cpython-38.pyc
    ADDED
    
    | Binary file (2.04 kB). View file | 
|  | 
    	
        magicanimate/pipelines/__pycache__/dist_animation.cpython-37.pyc
    ADDED
    
    | Binary file (7.05 kB). View file | 
|  | 
    	
        magicanimate/pipelines/__pycache__/dist_animation.cpython-38.pyc
    ADDED
    
    | Binary file (7.1 kB). View file | 
|  | 
    	
        magicanimate/pipelines/__pycache__/pipeline_animation.cpython-38.pyc
    ADDED
    
    | Binary file (21.7 kB). View file | 
|  | 
    	
        magicanimate/pipelines/animation.py
    ADDED
    
    | @@ -0,0 +1,282 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2023 ByteDance and/or its affiliates.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Copyright (2023) MagicAnimate Authors
         | 
| 4 | 
            +
            #
         | 
| 5 | 
            +
            # ByteDance, its affiliates and licensors retain all intellectual
         | 
| 6 | 
            +
            # property and proprietary rights in and to this material, related
         | 
| 7 | 
            +
            # documentation and any modifications thereto. Any use, reproduction,
         | 
| 8 | 
            +
            # disclosure or distribution of this material and related documentation
         | 
| 9 | 
            +
            # without an express license agreement from ByteDance or
         | 
| 10 | 
            +
            # its affiliates is strictly prohibited.
         | 
| 11 | 
            +
            import argparse
         | 
| 12 | 
            +
            import datetime
         | 
| 13 | 
            +
            import inspect
         | 
| 14 | 
            +
            import os
         | 
| 15 | 
            +
            import random
         | 
| 16 | 
            +
            import numpy as np
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            from PIL import Image
         | 
| 19 | 
            +
            from omegaconf import OmegaConf
         | 
| 20 | 
            +
            from collections import OrderedDict
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            import torch
         | 
| 23 | 
            +
            import torch.distributed as dist
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            from diffusers import AutoencoderKL, DDIMScheduler, UniPCMultistepScheduler
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            from tqdm import tqdm
         | 
| 28 | 
            +
            from transformers import CLIPTextModel, CLIPTokenizer
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            from magicanimate.models.unet_controlnet import UNet3DConditionModel
         | 
| 31 | 
            +
            from magicanimate.models.controlnet import ControlNetModel
         | 
| 32 | 
            +
            from magicanimate.models.appearance_encoder import AppearanceEncoderModel
         | 
| 33 | 
            +
            from magicanimate.models.mutual_self_attention import ReferenceAttentionControl
         | 
| 34 | 
            +
            from magicanimate.pipelines.pipeline_animation import AnimationPipeline
         | 
| 35 | 
            +
            from magicanimate.utils.util import save_videos_grid
         | 
| 36 | 
            +
            from magicanimate.utils.dist_tools import distributed_init
         | 
| 37 | 
            +
            from accelerate.utils import set_seed
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            from magicanimate.utils.videoreader import VideoReader
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            from einops import rearrange
         | 
| 42 | 
            +
             | 
| 43 | 
            +
            from pathlib import Path
         | 
| 44 | 
            +
             | 
| 45 | 
            +
             | 
| 46 | 
            +
            def main(args):
         | 
| 47 | 
            +
             | 
| 48 | 
            +
                *_, func_args = inspect.getargvalues(inspect.currentframe())
         | 
| 49 | 
            +
                func_args = dict(func_args)
         | 
| 50 | 
            +
                
         | 
| 51 | 
            +
                config  = OmegaConf.load(args.config)
         | 
| 52 | 
            +
                  
         | 
| 53 | 
            +
                # Initialize distributed training
         | 
| 54 | 
            +
                device = torch.device(f"cuda:{args.rank}")
         | 
| 55 | 
            +
                dist_kwargs = {"rank":args.rank, "world_size":args.world_size, "dist":args.dist}
         | 
| 56 | 
            +
                
         | 
| 57 | 
            +
                if config.savename is None:
         | 
| 58 | 
            +
                    time_str = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
         | 
| 59 | 
            +
                    savedir = f"samples/{Path(args.config).stem}-{time_str}"
         | 
| 60 | 
            +
                else:
         | 
| 61 | 
            +
                    savedir = f"samples/{config.savename}"
         | 
| 62 | 
            +
                    
         | 
| 63 | 
            +
                if args.dist:
         | 
| 64 | 
            +
                    dist.broadcast_object_list([savedir], 0)
         | 
| 65 | 
            +
                    dist.barrier()
         | 
| 66 | 
            +
                
         | 
| 67 | 
            +
                if args.rank == 0:
         | 
| 68 | 
            +
                    os.makedirs(savedir, exist_ok=True)
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                inference_config = OmegaConf.load(config.inference_config)
         | 
| 71 | 
            +
                    
         | 
| 72 | 
            +
                motion_module = config.motion_module
         | 
| 73 | 
            +
                
         | 
| 74 | 
            +
                ### >>> create animation pipeline >>> ###
         | 
| 75 | 
            +
                tokenizer = CLIPTokenizer.from_pretrained(config.pretrained_model_path, subfolder="tokenizer")
         | 
| 76 | 
            +
                text_encoder = CLIPTextModel.from_pretrained(config.pretrained_model_path, subfolder="text_encoder")
         | 
| 77 | 
            +
                if config.pretrained_unet_path:
         | 
| 78 | 
            +
                    unet = UNet3DConditionModel.from_pretrained_2d(config.pretrained_unet_path, unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs))
         | 
| 79 | 
            +
                else:
         | 
| 80 | 
            +
                    unet = UNet3DConditionModel.from_pretrained_2d(config.pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs))
         | 
| 81 | 
            +
                appearance_encoder = AppearanceEncoderModel.from_pretrained(config.pretrained_appearance_encoder_path, subfolder="appearance_encoder").to(device)
         | 
| 82 | 
            +
                reference_control_writer = ReferenceAttentionControl(appearance_encoder, do_classifier_free_guidance=True, mode='write', fusion_blocks=config.fusion_blocks)
         | 
| 83 | 
            +
                reference_control_reader = ReferenceAttentionControl(unet, do_classifier_free_guidance=True, mode='read', fusion_blocks=config.fusion_blocks)
         | 
| 84 | 
            +
                if config.pretrained_vae_path is not None:
         | 
| 85 | 
            +
                    vae = AutoencoderKL.from_pretrained(config.pretrained_vae_path)
         | 
| 86 | 
            +
                else:
         | 
| 87 | 
            +
                    vae = AutoencoderKL.from_pretrained(config.pretrained_model_path, subfolder="vae")
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                ### Load controlnet
         | 
| 90 | 
            +
                controlnet   = ControlNetModel.from_pretrained(config.pretrained_controlnet_path)
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                unet.enable_xformers_memory_efficient_attention()
         | 
| 93 | 
            +
                appearance_encoder.enable_xformers_memory_efficient_attention()
         | 
| 94 | 
            +
                controlnet.enable_xformers_memory_efficient_attention()
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                vae.to(torch.float16)
         | 
| 97 | 
            +
                unet.to(torch.float16)
         | 
| 98 | 
            +
                text_encoder.to(torch.float16)
         | 
| 99 | 
            +
                appearance_encoder.to(torch.float16)
         | 
| 100 | 
            +
                controlnet.to(torch.float16)
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                pipeline = AnimationPipeline(
         | 
| 103 | 
            +
                    vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, controlnet=controlnet,
         | 
| 104 | 
            +
                    scheduler=DDIMScheduler(**OmegaConf.to_container(inference_config.noise_scheduler_kwargs)),
         | 
| 105 | 
            +
                    # NOTE: UniPCMultistepScheduler
         | 
| 106 | 
            +
                )
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                # 1. unet ckpt
         | 
| 109 | 
            +
                # 1.1 motion module
         | 
| 110 | 
            +
                motion_module_state_dict = torch.load(motion_module, map_location="cpu")
         | 
| 111 | 
            +
                if "global_step" in motion_module_state_dict: func_args.update({"global_step": motion_module_state_dict["global_step"]})
         | 
| 112 | 
            +
                motion_module_state_dict = motion_module_state_dict['state_dict'] if 'state_dict' in motion_module_state_dict else motion_module_state_dict
         | 
| 113 | 
            +
                try:
         | 
| 114 | 
            +
                    # extra steps for self-trained models
         | 
| 115 | 
            +
                    state_dict = OrderedDict()
         | 
| 116 | 
            +
                    for key in motion_module_state_dict.keys():
         | 
| 117 | 
            +
                        if key.startswith("module."):
         | 
| 118 | 
            +
                            _key = key.split("module.")[-1]
         | 
| 119 | 
            +
                            state_dict[_key] = motion_module_state_dict[key]
         | 
| 120 | 
            +
                        else:
         | 
| 121 | 
            +
                            state_dict[key] = motion_module_state_dict[key]
         | 
| 122 | 
            +
                    motion_module_state_dict = state_dict
         | 
| 123 | 
            +
                    del state_dict
         | 
| 124 | 
            +
                    missing, unexpected = pipeline.unet.load_state_dict(motion_module_state_dict, strict=False)
         | 
| 125 | 
            +
                    assert len(unexpected) == 0
         | 
| 126 | 
            +
                except:
         | 
| 127 | 
            +
                    _tmp_ = OrderedDict()
         | 
| 128 | 
            +
                    for key in motion_module_state_dict.keys():
         | 
| 129 | 
            +
                        if "motion_modules" in key:
         | 
| 130 | 
            +
                            if key.startswith("unet."):
         | 
| 131 | 
            +
                                _key = key.split('unet.')[-1]
         | 
| 132 | 
            +
                                _tmp_[_key] = motion_module_state_dict[key]
         | 
| 133 | 
            +
                            else:
         | 
| 134 | 
            +
                                _tmp_[key] = motion_module_state_dict[key]
         | 
| 135 | 
            +
                    missing, unexpected = unet.load_state_dict(_tmp_, strict=False)
         | 
| 136 | 
            +
                    assert len(unexpected) == 0
         | 
| 137 | 
            +
                    del _tmp_
         | 
| 138 | 
            +
                del motion_module_state_dict
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                pipeline.to(device)
         | 
| 141 | 
            +
                ### <<< create validation pipeline <<< ###
         | 
| 142 | 
            +
                
         | 
| 143 | 
            +
                random_seeds = config.get("seed", [-1])
         | 
| 144 | 
            +
                random_seeds = [random_seeds] if isinstance(random_seeds, int) else list(random_seeds)
         | 
| 145 | 
            +
                random_seeds = random_seeds * len(config.source_image) if len(random_seeds) == 1 else random_seeds
         | 
| 146 | 
            +
                
         | 
| 147 | 
            +
                # input test videos (either source video/ conditions)
         | 
| 148 | 
            +
                
         | 
| 149 | 
            +
                test_videos = config.video_path
         | 
| 150 | 
            +
                source_images = config.source_image
         | 
| 151 | 
            +
                num_actual_inference_steps = config.get("num_actual_inference_steps", config.steps)
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                # read size, step from yaml file
         | 
| 154 | 
            +
                sizes = [config.size] * len(test_videos)
         | 
| 155 | 
            +
                steps = [config.S] * len(test_videos)
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                config.random_seed = []
         | 
| 158 | 
            +
                prompt = n_prompt = ""
         | 
| 159 | 
            +
                for idx, (source_image, test_video, random_seed, size, step) in tqdm(
         | 
| 160 | 
            +
                    enumerate(zip(source_images, test_videos, random_seeds, sizes, steps)), 
         | 
| 161 | 
            +
                    total=len(test_videos), 
         | 
| 162 | 
            +
                    disable=(args.rank!=0)
         | 
| 163 | 
            +
                ):
         | 
| 164 | 
            +
                    samples_per_video = []
         | 
| 165 | 
            +
                    samples_per_clip = []
         | 
| 166 | 
            +
                    # manually set random seed for reproduction
         | 
| 167 | 
            +
                    if random_seed != -1: 
         | 
| 168 | 
            +
                        torch.manual_seed(random_seed)
         | 
| 169 | 
            +
                        set_seed(random_seed)
         | 
| 170 | 
            +
                    else:
         | 
| 171 | 
            +
                        torch.seed()
         | 
| 172 | 
            +
                    config.random_seed.append(torch.initial_seed())
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                    if test_video.endswith('.mp4'):
         | 
| 175 | 
            +
                        control = VideoReader(test_video).read()
         | 
| 176 | 
            +
                        if control[0].shape[0] != size:
         | 
| 177 | 
            +
                            control = [np.array(Image.fromarray(c).resize((size, size))) for c in control]
         | 
| 178 | 
            +
                        if config.max_length is not None:
         | 
| 179 | 
            +
                            control = control[config.offset: (config.offset+config.max_length)]
         | 
| 180 | 
            +
                        control = np.array(control)
         | 
| 181 | 
            +
                    
         | 
| 182 | 
            +
                    if source_image.endswith(".mp4"):
         | 
| 183 | 
            +
                        source_image = np.array(Image.fromarray(VideoReader(source_image).read()[0]).resize((size, size)))
         | 
| 184 | 
            +
                    else:
         | 
| 185 | 
            +
                        source_image = np.array(Image.open(source_image).resize((size, size)))
         | 
| 186 | 
            +
                    H, W, C = source_image.shape
         | 
| 187 | 
            +
                    
         | 
| 188 | 
            +
                    print(f"current seed: {torch.initial_seed()}")
         | 
| 189 | 
            +
                    init_latents = None
         | 
| 190 | 
            +
                    
         | 
| 191 | 
            +
                    # print(f"sampling {prompt} ...")
         | 
| 192 | 
            +
                    original_length = control.shape[0]
         | 
| 193 | 
            +
                    if control.shape[0] % config.L > 0:
         | 
| 194 | 
            +
                        control = np.pad(control, ((0, config.L-control.shape[0] % config.L), (0, 0), (0, 0), (0, 0)), mode='edge')
         | 
| 195 | 
            +
                    generator = torch.Generator(device=torch.device("cuda:0"))
         | 
| 196 | 
            +
                    generator.manual_seed(torch.initial_seed())
         | 
| 197 | 
            +
                    sample = pipeline(
         | 
| 198 | 
            +
                        prompt,
         | 
| 199 | 
            +
                        negative_prompt         = n_prompt,
         | 
| 200 | 
            +
                        num_inference_steps     = config.steps,
         | 
| 201 | 
            +
                        guidance_scale          = config.guidance_scale,
         | 
| 202 | 
            +
                        width                   = W,
         | 
| 203 | 
            +
                        height                  = H,
         | 
| 204 | 
            +
                        video_length            = len(control),
         | 
| 205 | 
            +
                        controlnet_condition    = control,
         | 
| 206 | 
            +
                        init_latents            = init_latents,
         | 
| 207 | 
            +
                        generator               = generator,
         | 
| 208 | 
            +
                        num_actual_inference_steps = num_actual_inference_steps,
         | 
| 209 | 
            +
                        appearance_encoder       = appearance_encoder, 
         | 
| 210 | 
            +
                        reference_control_writer = reference_control_writer,
         | 
| 211 | 
            +
                        reference_control_reader = reference_control_reader,
         | 
| 212 | 
            +
                        source_image             = source_image,
         | 
| 213 | 
            +
                        **dist_kwargs,
         | 
| 214 | 
            +
                    ).videos
         | 
| 215 | 
            +
             | 
| 216 | 
            +
                    if args.rank == 0:
         | 
| 217 | 
            +
                        source_images = np.array([source_image] * original_length)
         | 
| 218 | 
            +
                        source_images = rearrange(torch.from_numpy(source_images), "t h w c -> 1 c t h w") / 255.0
         | 
| 219 | 
            +
                        samples_per_video.append(source_images)
         | 
| 220 | 
            +
                        
         | 
| 221 | 
            +
                        control = control / 255.0
         | 
| 222 | 
            +
                        control = rearrange(control, "t h w c -> 1 c t h w")
         | 
| 223 | 
            +
                        control = torch.from_numpy(control)
         | 
| 224 | 
            +
                        samples_per_video.append(control[:, :, :original_length])
         | 
| 225 | 
            +
             | 
| 226 | 
            +
                        samples_per_video.append(sample[:, :, :original_length])
         | 
| 227 | 
            +
                            
         | 
| 228 | 
            +
                        samples_per_video = torch.cat(samples_per_video)
         | 
| 229 | 
            +
             | 
| 230 | 
            +
                        video_name = os.path.basename(test_video)[:-4]
         | 
| 231 | 
            +
                        source_name = os.path.basename(config.source_image[idx]).split(".")[0]
         | 
| 232 | 
            +
                        save_videos_grid(samples_per_video[-1:], f"{savedir}/videos/{source_name}_{video_name}.mp4")
         | 
| 233 | 
            +
                        save_videos_grid(samples_per_video, f"{savedir}/videos/{source_name}_{video_name}/grid.mp4")
         | 
| 234 | 
            +
             | 
| 235 | 
            +
                        if config.save_individual_videos:
         | 
| 236 | 
            +
                            save_videos_grid(samples_per_video[1:2], f"{savedir}/videos/{source_name}_{video_name}/ctrl.mp4")
         | 
| 237 | 
            +
                            save_videos_grid(samples_per_video[0:1], f"{savedir}/videos/{source_name}_{video_name}/orig.mp4")
         | 
| 238 | 
            +
                            
         | 
| 239 | 
            +
                    if args.dist:
         | 
| 240 | 
            +
                        dist.barrier()
         | 
| 241 | 
            +
                           
         | 
| 242 | 
            +
                if args.rank == 0:
         | 
| 243 | 
            +
                    OmegaConf.save(config, f"{savedir}/config.yaml")
         | 
| 244 | 
            +
             | 
| 245 | 
            +
             | 
| 246 | 
            +
            def distributed_main(device_id, args):
         | 
| 247 | 
            +
                args.rank = device_id
         | 
| 248 | 
            +
                args.device_id = device_id
         | 
| 249 | 
            +
                if torch.cuda.is_available():
         | 
| 250 | 
            +
                    torch.cuda.set_device(args.device_id)
         | 
| 251 | 
            +
                    torch.cuda.init()
         | 
| 252 | 
            +
                distributed_init(args)
         | 
| 253 | 
            +
                main(args)
         | 
| 254 | 
            +
             | 
| 255 | 
            +
             | 
| 256 | 
            +
            def run(args):
         | 
| 257 | 
            +
             | 
| 258 | 
            +
                if args.dist:
         | 
| 259 | 
            +
                    args.world_size = max(1, torch.cuda.device_count())
         | 
| 260 | 
            +
                    assert args.world_size <= torch.cuda.device_count()
         | 
| 261 | 
            +
             | 
| 262 | 
            +
                    if args.world_size > 0 and torch.cuda.device_count() > 1:
         | 
| 263 | 
            +
                        port = random.randint(10000, 20000)
         | 
| 264 | 
            +
                        args.init_method = f"tcp://localhost:{port}"
         | 
| 265 | 
            +
                        torch.multiprocessing.spawn(
         | 
| 266 | 
            +
                            fn=distributed_main,
         | 
| 267 | 
            +
                            args=(args,),
         | 
| 268 | 
            +
                            nprocs=args.world_size,
         | 
| 269 | 
            +
                        )
         | 
| 270 | 
            +
                else:
         | 
| 271 | 
            +
                    main(args)
         | 
| 272 | 
            +
             | 
| 273 | 
            +
             | 
| 274 | 
            +
            if __name__ == "__main__":
         | 
| 275 | 
            +
                parser = argparse.ArgumentParser()
         | 
| 276 | 
            +
                parser.add_argument("--config", type=str, required=True)
         | 
| 277 | 
            +
                parser.add_argument("--dist", action="store_true", required=False)
         | 
| 278 | 
            +
                parser.add_argument("--rank", type=int, default=0, required=False)
         | 
| 279 | 
            +
                parser.add_argument("--world_size", type=int, default=1, required=False)
         | 
| 280 | 
            +
             | 
| 281 | 
            +
                args = parser.parse_args()
         | 
| 282 | 
            +
                run(args)
         | 
    	
        magicanimate/pipelines/context.py
    ADDED
    
    | @@ -0,0 +1,76 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # *************************************************************************
         | 
| 2 | 
            +
            # This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo-
         | 
| 3 | 
            +
            # difications”). All Bytedance Inc.'s Modifications are Copyright (2023) B-
         | 
| 4 | 
            +
            # ytedance Inc..  
         | 
| 5 | 
            +
            # *************************************************************************
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Adapted from https://github.com/s9roll7/animatediff-cli-prompt-travel/tree/main
         | 
| 8 | 
            +
            import numpy as np
         | 
| 9 | 
            +
            from typing import Callable, Optional, List
         | 
| 10 | 
            +
             | 
| 11 | 
            +
             | 
| 12 | 
            +
            def ordered_halving(val):
         | 
| 13 | 
            +
                bin_str = f"{val:064b}"
         | 
| 14 | 
            +
                bin_flip = bin_str[::-1]
         | 
| 15 | 
            +
                as_int = int(bin_flip, 2)
         | 
| 16 | 
            +
             | 
| 17 | 
            +
                return as_int / (1 << 64)
         | 
| 18 | 
            +
             | 
| 19 | 
            +
             | 
| 20 | 
            +
            def uniform(
         | 
| 21 | 
            +
                step: int = ...,
         | 
| 22 | 
            +
                num_steps: Optional[int] = None,
         | 
| 23 | 
            +
                num_frames: int = ...,
         | 
| 24 | 
            +
                context_size: Optional[int] = None,
         | 
| 25 | 
            +
                context_stride: int = 3,
         | 
| 26 | 
            +
                context_overlap: int = 4,
         | 
| 27 | 
            +
                closed_loop: bool = True,
         | 
| 28 | 
            +
            ):
         | 
| 29 | 
            +
                if num_frames <= context_size:
         | 
| 30 | 
            +
                    yield list(range(num_frames))
         | 
| 31 | 
            +
                    return
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                context_stride = min(context_stride, int(np.ceil(np.log2(num_frames / context_size))) + 1)
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                for context_step in 1 << np.arange(context_stride):
         | 
| 36 | 
            +
                    pad = int(round(num_frames * ordered_halving(step)))
         | 
| 37 | 
            +
                    for j in range(
         | 
| 38 | 
            +
                        int(ordered_halving(step) * context_step) + pad,
         | 
| 39 | 
            +
                        num_frames + pad + (0 if closed_loop else -context_overlap),
         | 
| 40 | 
            +
                        (context_size * context_step - context_overlap),
         | 
| 41 | 
            +
                    ):
         | 
| 42 | 
            +
                        yield [e % num_frames for e in range(j, j + context_size * context_step, context_step)]
         | 
| 43 | 
            +
             | 
| 44 | 
            +
             | 
| 45 | 
            +
            def get_context_scheduler(name: str) -> Callable:
         | 
| 46 | 
            +
                if name == "uniform":
         | 
| 47 | 
            +
                    return uniform
         | 
| 48 | 
            +
                else:
         | 
| 49 | 
            +
                    raise ValueError(f"Unknown context_overlap policy {name}")
         | 
| 50 | 
            +
             | 
| 51 | 
            +
             | 
| 52 | 
            +
            def get_total_steps(
         | 
| 53 | 
            +
                scheduler,
         | 
| 54 | 
            +
                timesteps: List[int],
         | 
| 55 | 
            +
                num_steps: Optional[int] = None,
         | 
| 56 | 
            +
                num_frames: int = ...,
         | 
| 57 | 
            +
                context_size: Optional[int] = None,
         | 
| 58 | 
            +
                context_stride: int = 3,
         | 
| 59 | 
            +
                context_overlap: int = 4,
         | 
| 60 | 
            +
                closed_loop: bool = True,
         | 
| 61 | 
            +
            ):
         | 
| 62 | 
            +
                return sum(
         | 
| 63 | 
            +
                    len(
         | 
| 64 | 
            +
                        list(
         | 
| 65 | 
            +
                            scheduler(
         | 
| 66 | 
            +
                                i,
         | 
| 67 | 
            +
                                num_steps,
         | 
| 68 | 
            +
                                num_frames,
         | 
| 69 | 
            +
                                context_size,
         | 
| 70 | 
            +
                                context_stride,
         | 
| 71 | 
            +
                                context_overlap,
         | 
| 72 | 
            +
                            )
         | 
| 73 | 
            +
                        )
         | 
| 74 | 
            +
                    )
         | 
| 75 | 
            +
                    for i in range(len(timesteps))
         | 
| 76 | 
            +
                )
         | 
