|
import inspect
|
|
from typing import Any, Callable, Dict, List, Optional, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import (
|
|
CLIPTextModel,
|
|
CLIPTokenizer,
|
|
T5EncoderModel,
|
|
T5TokenizerFast,
|
|
)
|
|
|
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
|
from diffusers.loaders import FluxLoraLoaderMixin
|
|
from diffusers.models.autoencoders import AutoencoderKL
|
|
|
|
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
|
from diffusers.utils import (
|
|
USE_PEFT_BACKEND,
|
|
is_torch_xla_available,
|
|
logging,
|
|
replace_example_docstring,
|
|
scale_lora_layers,
|
|
unscale_lora_layers,
|
|
)
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
|
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
|
|
|
|
from transformer_flux import FluxTransformer2DModel
|
|
from controlnet_flux import FluxControlNetModel
|
|
|
|
if is_torch_xla_available():
|
|
import torch_xla.core.xla_model as xm
|
|
|
|
XLA_AVAILABLE = True
|
|
else:
|
|
XLA_AVAILABLE = False
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
EXAMPLE_DOC_STRING = """
|
|
Examples:
|
|
```py
|
|
>>> import torch
|
|
>>> from diffusers.utils import load_image
|
|
>>> from diffusers import FluxControlNetPipeline
|
|
>>> from diffusers import FluxControlNetModel
|
|
|
|
>>> controlnet_model = "InstantX/FLUX.1-dev-controlnet-canny-alpha"
|
|
>>> controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
|
|
>>> pipe = FluxControlNetPipeline.from_pretrained(
|
|
... base_model, controlnet=controlnet, torch_dtype=torch.bfloat16
|
|
... )
|
|
>>> pipe.to("cuda")
|
|
>>> control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")
|
|
>>> control_mask = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")
|
|
>>> prompt = "A girl in city, 25 years old, cool, futuristic"
|
|
>>> image = pipe(
|
|
... prompt,
|
|
... control_image=control_image,
|
|
... controlnet_conditioning_scale=0.6,
|
|
... num_inference_steps=28,
|
|
... guidance_scale=3.5,
|
|
... ).images[0]
|
|
>>> image.save("flux.png")
|
|
```
|
|
"""
|
|
|
|
|
|
|
|
def calculate_shift(
|
|
image_seq_len,
|
|
base_seq_len: int = 256,
|
|
max_seq_len: int = 4096,
|
|
base_shift: float = 0.5,
|
|
max_shift: float = 1.16,
|
|
):
|
|
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
|
b = base_shift - m * base_seq_len
|
|
mu = image_seq_len * m + b
|
|
return mu
|
|
|
|
|
|
|
|
def retrieve_timesteps(
|
|
scheduler,
|
|
num_inference_steps: Optional[int] = None,
|
|
device: Optional[Union[str, torch.device]] = None,
|
|
timesteps: Optional[List[int]] = None,
|
|
sigmas: Optional[List[float]] = None,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
|
|
|
Args:
|
|
scheduler (`SchedulerMixin`):
|
|
The scheduler to get timesteps from.
|
|
num_inference_steps (`int`):
|
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
|
must be `None`.
|
|
device (`str` or `torch.device`, *optional*):
|
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
|
timesteps (`List[int]`, *optional*):
|
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
|
`num_inference_steps` and `sigmas` must be `None`.
|
|
sigmas (`List[float]`, *optional*):
|
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
|
`num_inference_steps` and `timesteps` must be `None`.
|
|
|
|
Returns:
|
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
|
second element is the number of inference steps.
|
|
"""
|
|
if timesteps is not None and sigmas is not None:
|
|
raise ValueError(
|
|
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
|
|
)
|
|
if timesteps is not None:
|
|
accepts_timesteps = "timesteps" in set(
|
|
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
|
)
|
|
if not accepts_timesteps:
|
|
raise ValueError(
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
|
f" timestep schedules. Please check whether you are using the correct scheduler."
|
|
)
|
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
num_inference_steps = len(timesteps)
|
|
elif sigmas is not None:
|
|
accept_sigmas = "sigmas" in set(
|
|
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
|
)
|
|
if not accept_sigmas:
|
|
raise ValueError(
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
|
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
|
)
|
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
num_inference_steps = len(timesteps)
|
|
else:
|
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
return timesteps, num_inference_steps
|
|
|
|
|
|
class FluxControlNetInpaintingPipeline(DiffusionPipeline, FluxLoraLoaderMixin):
|
|
r"""
|
|
The Flux pipeline for text-to-image generation.
|
|
|
|
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
|
|
|
Args:
|
|
transformer ([`FluxTransformer2DModel`]):
|
|
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
|
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
|
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
|
vae ([`AutoencoderKL`]):
|
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
|
text_encoder ([`CLIPTextModel`]):
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
|
text_encoder_2 ([`T5EncoderModel`]):
|
|
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
|
|
the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
|
|
tokenizer (`CLIPTokenizer`):
|
|
Tokenizer of class
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
|
|
tokenizer_2 (`T5TokenizerFast`):
|
|
Second Tokenizer of class
|
|
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
|
|
"""
|
|
|
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
|
|
_optional_components = []
|
|
_callback_tensor_inputs = ["latents", "prompt_embeds"]
|
|
|
|
def __init__(
|
|
self,
|
|
scheduler: FlowMatchEulerDiscreteScheduler,
|
|
vae: AutoencoderKL,
|
|
text_encoder: CLIPTextModel,
|
|
tokenizer: CLIPTokenizer,
|
|
text_encoder_2: T5EncoderModel,
|
|
tokenizer_2: T5TokenizerFast,
|
|
transformer: FluxTransformer2DModel,
|
|
controlnet: FluxControlNetModel,
|
|
):
|
|
super().__init__()
|
|
|
|
self.register_modules(
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
text_encoder_2=text_encoder_2,
|
|
tokenizer=tokenizer,
|
|
tokenizer_2=tokenizer_2,
|
|
transformer=transformer,
|
|
scheduler=scheduler,
|
|
controlnet=controlnet,
|
|
)
|
|
self.vae_scale_factor = (
|
|
2 ** (len(self.vae.config.block_out_channels))
|
|
if hasattr(self, "vae") and self.vae is not None
|
|
else 16
|
|
)
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_resize=True, do_convert_rgb=True, do_normalize=True)
|
|
self.mask_processor = VaeImageProcessor(
|
|
vae_scale_factor=self.vae_scale_factor,
|
|
do_resize=True,
|
|
do_convert_grayscale=True,
|
|
do_normalize=False,
|
|
do_binarize=True,
|
|
)
|
|
self.tokenizer_max_length = (
|
|
self.tokenizer.model_max_length
|
|
if hasattr(self, "tokenizer") and self.tokenizer is not None
|
|
else 77
|
|
)
|
|
self.default_sample_size = 64
|
|
|
|
@property
|
|
def do_classifier_free_guidance(self):
|
|
return self._guidance_scale > 1
|
|
|
|
def _get_t5_prompt_embeds(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
num_images_per_prompt: int = 1,
|
|
max_sequence_length: int = 512,
|
|
device: Optional[torch.device] = None,
|
|
dtype: Optional[torch.dtype] = None,
|
|
):
|
|
device = device or self._execution_device
|
|
dtype = dtype or self.text_encoder.dtype
|
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt
|
|
batch_size = len(prompt)
|
|
|
|
text_inputs = self.tokenizer_2(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=max_sequence_length,
|
|
truncation=True,
|
|
return_length=False,
|
|
return_overflowing_tokens=False,
|
|
return_tensors="pt",
|
|
)
|
|
text_input_ids = text_inputs.input_ids
|
|
untruncated_ids = self.tokenizer_2(
|
|
prompt, padding="longest", return_tensors="pt"
|
|
).input_ids
|
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
|
text_input_ids, untruncated_ids
|
|
):
|
|
removed_text = self.tokenizer_2.batch_decode(
|
|
untruncated_ids[:, self.tokenizer_max_length - 1 : -1]
|
|
)
|
|
logger.warning(
|
|
"The following part of your input was truncated because `max_sequence_length` is set to "
|
|
f" {max_sequence_length} tokens: {removed_text}"
|
|
)
|
|
|
|
prompt_embeds = self.text_encoder_2(
|
|
text_input_ids.to(device), output_hidden_states=False
|
|
)[0]
|
|
|
|
dtype = self.text_encoder_2.dtype
|
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
|
|
|
_, seq_len, _ = prompt_embeds.shape
|
|
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
prompt_embeds = prompt_embeds.view(
|
|
batch_size * num_images_per_prompt, seq_len, -1
|
|
)
|
|
|
|
return prompt_embeds
|
|
|
|
def _get_clip_prompt_embeds(
|
|
self,
|
|
prompt: Union[str, List[str]],
|
|
num_images_per_prompt: int = 1,
|
|
device: Optional[torch.device] = None,
|
|
):
|
|
device = device or self._execution_device
|
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt
|
|
batch_size = len(prompt)
|
|
|
|
text_inputs = self.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=self.tokenizer_max_length,
|
|
truncation=True,
|
|
return_overflowing_tokens=False,
|
|
return_length=False,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
text_input_ids = text_inputs.input_ids
|
|
untruncated_ids = self.tokenizer(
|
|
prompt, padding="longest", return_tensors="pt"
|
|
).input_ids
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
|
text_input_ids, untruncated_ids
|
|
):
|
|
removed_text = self.tokenizer.batch_decode(
|
|
untruncated_ids[:, self.tokenizer_max_length - 1 : -1]
|
|
)
|
|
logger.warning(
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
|
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
|
)
|
|
prompt_embeds = self.text_encoder(
|
|
text_input_ids.to(device), output_hidden_states=False
|
|
)
|
|
|
|
|
|
prompt_embeds = prompt_embeds.pooler_output
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
|
|
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
|
|
|
return prompt_embeds
|
|
|
|
def encode_prompt(
|
|
self,
|
|
prompt: Union[str, List[str]],
|
|
prompt_2: Union[str, List[str]],
|
|
device: Optional[torch.device] = None,
|
|
num_images_per_prompt: int = 1,
|
|
do_classifier_free_guidance: bool = True,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
max_sequence_length: int = 512,
|
|
lora_scale: Optional[float] = None,
|
|
):
|
|
r"""
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
prompt to be encoded
|
|
prompt_2 (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
|
used in all text-encoders
|
|
device: (`torch.device`):
|
|
torch device
|
|
num_images_per_prompt (`int`):
|
|
number of images that should be generated per prompt
|
|
do_classifier_free_guidance (`bool`):
|
|
whether to use classifier-free guidance or not
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
negative prompt to be encoded
|
|
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
|
negative prompt to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is
|
|
used in all text-encoders
|
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
|
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
|
clip_skip (`int`, *optional*):
|
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
|
the output of the pre-final layer will be used for computing the prompt embeddings.
|
|
lora_scale (`float`, *optional*):
|
|
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
|
"""
|
|
device = device or self._execution_device
|
|
|
|
|
|
|
|
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
|
|
self._lora_scale = lora_scale
|
|
|
|
|
|
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
|
scale_lora_layers(self.text_encoder, lora_scale)
|
|
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
|
|
scale_lora_layers(self.text_encoder_2, lora_scale)
|
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt
|
|
if prompt is not None:
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
if prompt_embeds is None:
|
|
prompt_2 = prompt_2 or prompt
|
|
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
|
|
|
|
|
pooled_prompt_embeds = self._get_clip_prompt_embeds(
|
|
prompt=prompt,
|
|
device=device,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
)
|
|
prompt_embeds = self._get_t5_prompt_embeds(
|
|
prompt=prompt_2,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
max_sequence_length=max_sequence_length,
|
|
device=device,
|
|
)
|
|
|
|
if do_classifier_free_guidance:
|
|
|
|
negative_prompt = negative_prompt or ""
|
|
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
|
|
|
negative_pooled_prompt_embeds = self._get_clip_prompt_embeds(
|
|
negative_prompt,
|
|
device=device,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
)
|
|
negative_prompt_embeds = self._get_t5_prompt_embeds(
|
|
negative_prompt_2,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
max_sequence_length=max_sequence_length,
|
|
device=device,
|
|
)
|
|
else:
|
|
negative_pooled_prompt_embeds = None
|
|
negative_prompt_embeds = None
|
|
|
|
if self.text_encoder is not None:
|
|
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
|
|
|
unscale_lora_layers(self.text_encoder, lora_scale)
|
|
|
|
if self.text_encoder_2 is not None:
|
|
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
|
|
|
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
|
|
|
text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3).to(
|
|
device=device, dtype=self.text_encoder.dtype
|
|
)
|
|
|
|
return prompt_embeds, pooled_prompt_embeds, negative_prompt_embeds, negative_pooled_prompt_embeds,text_ids
|
|
|
|
def check_inputs(
|
|
self,
|
|
prompt,
|
|
prompt_2,
|
|
height,
|
|
width,
|
|
prompt_embeds=None,
|
|
pooled_prompt_embeds=None,
|
|
callback_on_step_end_tensor_inputs=None,
|
|
max_sequence_length=None,
|
|
):
|
|
if height % 8 != 0 or width % 8 != 0:
|
|
raise ValueError(
|
|
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
|
|
)
|
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all(
|
|
k in self._callback_tensor_inputs
|
|
for k in callback_on_step_end_tensor_inputs
|
|
):
|
|
raise ValueError(
|
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
|
)
|
|
|
|
if prompt is not None and prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
|
" only forward one of the two."
|
|
)
|
|
elif prompt_2 is not None and prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
|
" only forward one of the two."
|
|
)
|
|
elif prompt is None and prompt_embeds is None:
|
|
raise ValueError(
|
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
|
)
|
|
elif prompt is not None and (
|
|
not isinstance(prompt, str) and not isinstance(prompt, list)
|
|
):
|
|
raise ValueError(
|
|
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
|
|
)
|
|
elif prompt_2 is not None and (
|
|
not isinstance(prompt_2, str) and not isinstance(prompt_2, list)
|
|
):
|
|
raise ValueError(
|
|
f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}"
|
|
)
|
|
|
|
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
|
raise ValueError(
|
|
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
|
)
|
|
|
|
if max_sequence_length is not None and max_sequence_length > 512:
|
|
raise ValueError(
|
|
f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}"
|
|
)
|
|
|
|
|
|
@staticmethod
|
|
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
|
|
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
|
|
latent_image_ids[..., 1] = (
|
|
latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
|
|
)
|
|
latent_image_ids[..., 2] = (
|
|
latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
|
|
)
|
|
|
|
(
|
|
latent_image_id_height,
|
|
latent_image_id_width,
|
|
latent_image_id_channels,
|
|
) = latent_image_ids.shape
|
|
|
|
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1)
|
|
latent_image_ids = latent_image_ids.reshape(
|
|
batch_size,
|
|
latent_image_id_height * latent_image_id_width,
|
|
latent_image_id_channels,
|
|
)
|
|
|
|
return latent_image_ids.to(device=device, dtype=dtype)
|
|
|
|
|
|
@staticmethod
|
|
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
|
|
latents = latents.view(
|
|
batch_size, num_channels_latents, height // 2, 2, width // 2, 2
|
|
)
|
|
latents = latents.permute(0, 2, 4, 1, 3, 5)
|
|
latents = latents.reshape(
|
|
batch_size, (height // 2) * (width // 2), num_channels_latents * 4
|
|
)
|
|
|
|
return latents
|
|
|
|
|
|
@staticmethod
|
|
def _unpack_latents(latents, height, width, vae_scale_factor):
|
|
batch_size, num_patches, channels = latents.shape
|
|
|
|
height = height // vae_scale_factor
|
|
width = width // vae_scale_factor
|
|
|
|
latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
|
|
latents = latents.permute(0, 3, 1, 4, 2, 5)
|
|
|
|
latents = latents.reshape(
|
|
batch_size, channels // (2 * 2), height * 2, width * 2
|
|
)
|
|
|
|
return latents
|
|
|
|
|
|
def prepare_latents(
|
|
self,
|
|
batch_size,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
dtype,
|
|
device,
|
|
generator,
|
|
latents=None,
|
|
):
|
|
height = 2 * (int(height) // self.vae_scale_factor)
|
|
width = 2 * (int(width) // self.vae_scale_factor)
|
|
|
|
shape = (batch_size, num_channels_latents, height, width)
|
|
|
|
if latents is not None:
|
|
latent_image_ids = self._prepare_latent_image_ids(
|
|
batch_size, height, width, device, dtype
|
|
)
|
|
return latents.to(device=device, dtype=dtype), latent_image_ids
|
|
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
raise ValueError(
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
)
|
|
|
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|
latents = self._pack_latents(
|
|
latents, batch_size, num_channels_latents, height, width
|
|
)
|
|
|
|
latent_image_ids = self._prepare_latent_image_ids(
|
|
batch_size, height, width, device, dtype
|
|
)
|
|
|
|
return latents, latent_image_ids
|
|
|
|
|
|
def prepare_image(
|
|
self,
|
|
image,
|
|
width,
|
|
height,
|
|
batch_size,
|
|
num_images_per_prompt,
|
|
device,
|
|
dtype,
|
|
):
|
|
if isinstance(image, torch.Tensor):
|
|
pass
|
|
else:
|
|
image = self.image_processor.preprocess(image, height=height, width=width)
|
|
|
|
image_batch_size = image.shape[0]
|
|
|
|
if image_batch_size == 1:
|
|
repeat_by = batch_size
|
|
else:
|
|
|
|
repeat_by = num_images_per_prompt
|
|
|
|
image = image.repeat_interleave(repeat_by, dim=0)
|
|
|
|
image = image.to(device=device, dtype=dtype)
|
|
|
|
return image
|
|
|
|
def prepare_image_with_mask(
|
|
self,
|
|
image,
|
|
mask,
|
|
width,
|
|
height,
|
|
batch_size,
|
|
num_images_per_prompt,
|
|
device,
|
|
dtype,
|
|
do_classifier_free_guidance = False,
|
|
):
|
|
|
|
if isinstance(image, torch.Tensor):
|
|
pass
|
|
else:
|
|
image = self.image_processor.preprocess(image, height=height, width=width)
|
|
|
|
image_batch_size = image.shape[0]
|
|
if image_batch_size == 1:
|
|
repeat_by = batch_size
|
|
else:
|
|
|
|
repeat_by = num_images_per_prompt
|
|
image = image.repeat_interleave(repeat_by, dim=0)
|
|
image = image.to(device=device, dtype=dtype)
|
|
|
|
|
|
if isinstance(mask, torch.Tensor):
|
|
pass
|
|
else:
|
|
mask = self.mask_processor.preprocess(mask, height=height, width=width)
|
|
mask = mask.repeat_interleave(repeat_by, dim=0)
|
|
mask = mask.to(device=device, dtype=dtype)
|
|
|
|
|
|
masked_image = image.clone()
|
|
masked_image[(mask > 0.5).repeat(1, 3, 1, 1)] = -1
|
|
|
|
|
|
image_latents = self.vae.encode(masked_image.to(self.vae.dtype)).latent_dist.sample()
|
|
image_latents = (
|
|
image_latents - self.vae.config.shift_factor
|
|
) * self.vae.config.scaling_factor
|
|
image_latents = image_latents.to(dtype)
|
|
|
|
mask = torch.nn.functional.interpolate(
|
|
mask, size=(height // self.vae_scale_factor * 2, width // self.vae_scale_factor * 2)
|
|
)
|
|
mask = 1 - mask
|
|
|
|
control_image = torch.cat([image_latents, mask], dim=1)
|
|
|
|
|
|
packed_control_image = self._pack_latents(
|
|
control_image,
|
|
batch_size * num_images_per_prompt,
|
|
control_image.shape[1],
|
|
control_image.shape[2],
|
|
control_image.shape[3],
|
|
)
|
|
|
|
if do_classifier_free_guidance:
|
|
packed_control_image = torch.cat([packed_control_image] * 2)
|
|
|
|
return packed_control_image, height, width
|
|
|
|
@property
|
|
def guidance_scale(self):
|
|
return self._guidance_scale
|
|
|
|
@property
|
|
def joint_attention_kwargs(self):
|
|
return self._joint_attention_kwargs
|
|
|
|
@property
|
|
def num_timesteps(self):
|
|
return self._num_timesteps
|
|
|
|
@property
|
|
def interrupt(self):
|
|
return self._interrupt
|
|
|
|
@torch.no_grad()
|
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
|
def __call__(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
prompt_2: Optional[Union[str, List[str]]] = None,
|
|
height: Optional[int] = None,
|
|
width: Optional[int] = None,
|
|
num_inference_steps: int = 28,
|
|
timesteps: List[int] = None,
|
|
guidance_scale: float = 7.0,
|
|
true_guidance_scale: float = 3.5 ,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
|
control_image: PipelineImageInput = None,
|
|
control_mask: PipelineImageInput = None,
|
|
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
|
max_sequence_length: int = 512,
|
|
):
|
|
r"""
|
|
Function invoked when calling the pipeline for generation.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
|
instead.
|
|
prompt_2 (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
|
will be used instead
|
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
expense of slower inference.
|
|
timesteps (`List[int]`, *optional*):
|
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
|
passed will be used. Must be in descending order.
|
|
guidance_scale (`float`, *optional*, defaults to 7.0):
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
|
usually at the expense of lower image quality.
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
The number of images to generate per prompt.
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
to make generation deterministic.
|
|
latents (`torch.FloatTensor`, *optional*):
|
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
tensor will ge generated by sampling using the supplied random `generator`.
|
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
|
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
The output format of the generate image. Choose between
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
|
|
joint_attention_kwargs (`dict`, *optional*):
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|
`self.processor` in
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
callback_on_step_end (`Callable`, *optional*):
|
|
A function that calls at the end of each denoising steps during the inference. The function is called
|
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
|
`callback_on_step_end_tensor_inputs`.
|
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
|
`._callback_tensor_inputs` attribute of your pipeline class.
|
|
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
|
|
|
|
Examples:
|
|
|
|
Returns:
|
|
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
|
|
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
|
|
images.
|
|
"""
|
|
|
|
height = height or self.default_sample_size * self.vae_scale_factor
|
|
width = width or self.default_sample_size * self.vae_scale_factor
|
|
|
|
|
|
self.check_inputs(
|
|
prompt,
|
|
prompt_2,
|
|
height,
|
|
width,
|
|
prompt_embeds=prompt_embeds,
|
|
pooled_prompt_embeds=pooled_prompt_embeds,
|
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
|
max_sequence_length=max_sequence_length,
|
|
)
|
|
|
|
self._guidance_scale = true_guidance_scale
|
|
self._joint_attention_kwargs = joint_attention_kwargs
|
|
self._interrupt = False
|
|
|
|
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
device = self._execution_device
|
|
dtype = self.transformer.dtype
|
|
|
|
lora_scale = (
|
|
self.joint_attention_kwargs.get("scale", None)
|
|
if self.joint_attention_kwargs is not None
|
|
else None
|
|
)
|
|
(
|
|
prompt_embeds,
|
|
pooled_prompt_embeds,
|
|
negative_prompt_embeds,
|
|
negative_pooled_prompt_embeds,
|
|
text_ids
|
|
) = self.encode_prompt(
|
|
prompt=prompt,
|
|
prompt_2=prompt_2,
|
|
prompt_embeds=prompt_embeds,
|
|
pooled_prompt_embeds=pooled_prompt_embeds,
|
|
do_classifier_free_guidance = self.do_classifier_free_guidance,
|
|
negative_prompt = negative_prompt,
|
|
negative_prompt_2 = negative_prompt_2,
|
|
device=device,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
max_sequence_length=max_sequence_length,
|
|
lora_scale=lora_scale,
|
|
)
|
|
|
|
|
|
if self.do_classifier_free_guidance:
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim = 0)
|
|
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim = 0)
|
|
text_ids = torch.cat([text_ids, text_ids], dim = 0)
|
|
|
|
|
|
num_channels_latents = self.transformer.config.in_channels // 4
|
|
if isinstance(self.controlnet, FluxControlNetModel):
|
|
control_image, height, width = self.prepare_image_with_mask(
|
|
image=control_image,
|
|
mask=control_mask,
|
|
width=width,
|
|
height=height,
|
|
batch_size=batch_size * num_images_per_prompt,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
device=device,
|
|
dtype=dtype,
|
|
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
|
)
|
|
|
|
|
|
num_channels_latents = self.transformer.config.in_channels // 4
|
|
latents, latent_image_ids = self.prepare_latents(
|
|
batch_size * num_images_per_prompt,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
latents,
|
|
)
|
|
|
|
if self.do_classifier_free_guidance:
|
|
latent_image_ids = torch.cat([latent_image_ids] * 2)
|
|
|
|
|
|
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
|
image_seq_len = latents.shape[1]
|
|
mu = calculate_shift(
|
|
image_seq_len,
|
|
self.scheduler.config.base_image_seq_len,
|
|
self.scheduler.config.max_image_seq_len,
|
|
self.scheduler.config.base_shift,
|
|
self.scheduler.config.max_shift,
|
|
)
|
|
timesteps, num_inference_steps = retrieve_timesteps(
|
|
self.scheduler,
|
|
num_inference_steps,
|
|
device,
|
|
timesteps,
|
|
sigmas,
|
|
mu=mu,
|
|
)
|
|
|
|
num_warmup_steps = max(
|
|
len(timesteps) - num_inference_steps * self.scheduler.order, 0
|
|
)
|
|
self._num_timesteps = len(timesteps)
|
|
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
if self.interrupt:
|
|
continue
|
|
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
|
|
|
|
|
timestep = t.expand(latent_model_input.shape[0]).to(latent_model_input.dtype)
|
|
|
|
|
|
if self.transformer.config.guidance_embeds:
|
|
guidance = torch.tensor([guidance_scale], device=device)
|
|
guidance = guidance.expand(latent_model_input.shape[0])
|
|
else:
|
|
guidance = None
|
|
|
|
|
|
(
|
|
controlnet_block_samples,
|
|
controlnet_single_block_samples,
|
|
) = self.controlnet(
|
|
hidden_states=latent_model_input,
|
|
controlnet_cond=control_image,
|
|
conditioning_scale=controlnet_conditioning_scale,
|
|
timestep=timestep / 1000,
|
|
guidance=guidance,
|
|
pooled_projections=pooled_prompt_embeds,
|
|
encoder_hidden_states=prompt_embeds,
|
|
txt_ids=text_ids,
|
|
img_ids=latent_image_ids,
|
|
joint_attention_kwargs=self.joint_attention_kwargs,
|
|
return_dict=False,
|
|
)
|
|
|
|
noise_pred = self.transformer(
|
|
hidden_states=latent_model_input,
|
|
|
|
timestep=timestep / 1000,
|
|
guidance=guidance,
|
|
pooled_projections=pooled_prompt_embeds,
|
|
encoder_hidden_states=prompt_embeds,
|
|
controlnet_block_samples=[
|
|
sample.to(dtype=self.transformer.dtype)
|
|
for sample in controlnet_block_samples
|
|
],
|
|
controlnet_single_block_samples=[
|
|
sample.to(dtype=self.transformer.dtype)
|
|
for sample in controlnet_single_block_samples
|
|
] if controlnet_single_block_samples is not None else controlnet_single_block_samples,
|
|
txt_ids=text_ids,
|
|
img_ids=latent_image_ids,
|
|
joint_attention_kwargs=self.joint_attention_kwargs,
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
|
|
if self.do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + true_guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
|
|
latents_dtype = latents.dtype
|
|
latents = self.scheduler.step(
|
|
noise_pred, t, latents, return_dict=False
|
|
)[0]
|
|
|
|
if latents.dtype != latents_dtype:
|
|
if torch.backends.mps.is_available():
|
|
|
|
latents = latents.to(latents_dtype)
|
|
|
|
if callback_on_step_end is not None:
|
|
callback_kwargs = {}
|
|
for k in callback_on_step_end_tensor_inputs:
|
|
callback_kwargs[k] = locals()[k]
|
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
|
|
|
latents = callback_outputs.pop("latents", latents)
|
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
|
|
|
|
|
if i == len(timesteps) - 1 or (
|
|
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
|
):
|
|
progress_bar.update()
|
|
|
|
if XLA_AVAILABLE:
|
|
xm.mark_step()
|
|
|
|
if output_type == "latent":
|
|
image = latents
|
|
|
|
else:
|
|
latents = self._unpack_latents(
|
|
latents, height, width, self.vae_scale_factor
|
|
)
|
|
latents = (
|
|
latents / self.vae.config.scaling_factor
|
|
) + self.vae.config.shift_factor
|
|
latents = latents.to(self.vae.dtype)
|
|
|
|
image = self.vae.decode(latents, return_dict=False)[0]
|
|
image = self.image_processor.postprocess(image, output_type=output_type)
|
|
|
|
|
|
self.maybe_free_model_hooks()
|
|
|
|
if not return_dict:
|
|
return (image,)
|
|
|
|
return FluxPipelineOutput(images=image)
|
|
|