change to use exact match first
Browse files- nl2bash_m.py +93 -57
nl2bash_m.py
CHANGED
|
@@ -11,85 +11,121 @@
|
|
| 11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
# See the License for the specific language governing permissions and
|
| 13 |
# limitations under the License.
|
| 14 |
-
"""
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
import evaluate
|
| 17 |
import datasets
|
|
|
|
| 18 |
|
|
|
|
| 19 |
|
| 20 |
-
# TODO: Add BibTeX citation
|
| 21 |
-
_CITATION = """\
|
| 22 |
-
@InProceedings{huggingface:module,
|
| 23 |
-
title = {A great new module},
|
| 24 |
-
authors={huggingface, Inc.},
|
| 25 |
-
year={2020}
|
| 26 |
-
}
|
| 27 |
-
"""
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
This new module is designed to solve this great ML task and is crafted with a lot of care.
|
| 32 |
"""
|
| 33 |
|
| 34 |
-
|
| 35 |
-
# TODO: Add description of the arguments of the module here
|
| 36 |
_KWARGS_DESCRIPTION = """
|
| 37 |
-
Calculates how good are predictions given some references, using certain scores
|
| 38 |
Args:
|
| 39 |
-
predictions:
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
Returns:
|
| 44 |
-
|
| 45 |
-
another_score: description of the second score,
|
| 46 |
Examples:
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
>>>
|
| 51 |
-
>>> results
|
| 52 |
-
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
"""
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
|
| 59 |
|
| 60 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 61 |
class nl2bash_m(evaluate.Metric):
|
| 62 |
-
"""TODO: Short description of my evaluation module."""
|
| 63 |
-
|
| 64 |
def _info(self):
|
| 65 |
-
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
| 66 |
return evaluate.MetricInfo(
|
| 67 |
-
# This is the description that will appear on the modules page.
|
| 68 |
-
module_type="metric",
|
| 69 |
description=_DESCRIPTION,
|
| 70 |
citation=_CITATION,
|
| 71 |
inputs_description=_KWARGS_DESCRIPTION,
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
# Additional links to the codebase or references
|
| 80 |
-
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
| 81 |
-
reference_urls=["http://path.to.reference.url/new_module"]
|
| 82 |
)
|
| 83 |
|
| 84 |
-
def
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
-
|
| 90 |
-
"""Returns the scores"""
|
| 91 |
-
# TODO: Compute the different scores of the module
|
| 92 |
-
accuracy = sum(i == j for i, j in zip(predictions, references)) / len(predictions)
|
| 93 |
-
return {
|
| 94 |
-
"accuracy": accuracy,
|
| 95 |
-
}
|
|
|
|
| 11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
# See the License for the specific language governing permissions and
|
| 13 |
# limitations under the License.
|
| 14 |
+
"""Exact Match metric."""
|
| 15 |
+
import re
|
| 16 |
+
import string
|
| 17 |
|
|
|
|
| 18 |
import datasets
|
| 19 |
+
import numpy as np
|
| 20 |
|
| 21 |
+
import evaluate
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
_DESCRIPTION = """
|
| 25 |
+
Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.
|
|
|
|
| 26 |
"""
|
| 27 |
|
|
|
|
|
|
|
| 28 |
_KWARGS_DESCRIPTION = """
|
|
|
|
| 29 |
Args:
|
| 30 |
+
predictions: List of predicted texts.
|
| 31 |
+
references: List of reference texts.
|
| 32 |
+
regexes_to_ignore: List, defaults to None. Regex expressions of characters to
|
| 33 |
+
ignore when calculating the exact matches. Note: these regexes are removed
|
| 34 |
+
from the input data before the changes based on the options below (e.g. ignore_case,
|
| 35 |
+
ignore_punctuation, ignore_numbers) are applied.
|
| 36 |
+
ignore_case: Boolean, defaults to False. If true, turns everything
|
| 37 |
+
to lowercase so that capitalization differences are ignored.
|
| 38 |
+
ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before
|
| 39 |
+
comparing predictions and references.
|
| 40 |
+
ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before
|
| 41 |
+
comparing predictions and references.
|
| 42 |
Returns:
|
| 43 |
+
exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 1.0, inclusive.
|
|
|
|
| 44 |
Examples:
|
| 45 |
+
>>> exact_match = evaluate.load("exact_match")
|
| 46 |
+
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
|
| 47 |
+
>>> preds = ["cat?", "theater", "yelling", "agent"]
|
| 48 |
+
>>> results = exact_match.compute(references=refs, predictions=preds)
|
| 49 |
+
>>> print(round(results["exact_match"], 2))
|
| 50 |
+
0.25
|
| 51 |
+
>>> exact_match = evaluate.load("exact_match")
|
| 52 |
+
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
|
| 53 |
+
>>> preds = ["cat?", "theater", "yelling", "agent"]
|
| 54 |
+
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)
|
| 55 |
+
>>> print(round(results["exact_match"], 2))
|
| 56 |
+
0.5
|
| 57 |
+
>>> exact_match = evaluate.load("exact_match")
|
| 58 |
+
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
|
| 59 |
+
>>> preds = ["cat?", "theater", "yelling", "agent"]
|
| 60 |
+
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)
|
| 61 |
+
>>> print(round(results["exact_match"], 2))
|
| 62 |
+
0.75
|
| 63 |
+
>>> exact_match = evaluate.load("exact_match")
|
| 64 |
+
>>> refs = ["the cat", "theater", "YELLING", "agent007"]
|
| 65 |
+
>>> preds = ["cat?", "theater", "yelling", "agent"]
|
| 66 |
+
>>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)
|
| 67 |
+
>>> print(round(results["exact_match"], 2))
|
| 68 |
+
1.0
|
| 69 |
+
>>> exact_match = evaluate.load("exact_match")
|
| 70 |
+
>>> refs = ["The cat sat on the mat.", "Theaters are great.", "It's like comparing oranges and apples."]
|
| 71 |
+
>>> preds = ["The cat sat on the mat?", "Theaters are great.", "It's like comparing apples and oranges."]
|
| 72 |
+
>>> results = exact_match.compute(references=refs, predictions=preds)
|
| 73 |
+
>>> print(round(results["exact_match"], 2))
|
| 74 |
+
0.33
|
| 75 |
"""
|
| 76 |
|
| 77 |
+
_CITATION = """
|
| 78 |
+
"""
|
| 79 |
|
| 80 |
|
| 81 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 82 |
class nl2bash_m(evaluate.Metric):
|
|
|
|
|
|
|
| 83 |
def _info(self):
|
|
|
|
| 84 |
return evaluate.MetricInfo(
|
|
|
|
|
|
|
| 85 |
description=_DESCRIPTION,
|
| 86 |
citation=_CITATION,
|
| 87 |
inputs_description=_KWARGS_DESCRIPTION,
|
| 88 |
+
features=datasets.Features(
|
| 89 |
+
{
|
| 90 |
+
"predictions": datasets.Value("string", id="sequence"),
|
| 91 |
+
"references": datasets.Value("string", id="sequence"),
|
| 92 |
+
}
|
| 93 |
+
),
|
| 94 |
+
reference_urls=[],
|
|
|
|
|
|
|
|
|
|
| 95 |
)
|
| 96 |
|
| 97 |
+
def _compute(
|
| 98 |
+
self,
|
| 99 |
+
predictions,
|
| 100 |
+
references,
|
| 101 |
+
regexes_to_ignore=None,
|
| 102 |
+
ignore_case=False,
|
| 103 |
+
ignore_punctuation=False,
|
| 104 |
+
ignore_numbers=False,
|
| 105 |
+
):
|
| 106 |
+
|
| 107 |
+
if regexes_to_ignore is not None:
|
| 108 |
+
for s in regexes_to_ignore:
|
| 109 |
+
predictions = np.array([re.sub(s, "", x) for x in predictions])
|
| 110 |
+
references = np.array([re.sub(s, "", x) for x in references])
|
| 111 |
+
else:
|
| 112 |
+
predictions = np.asarray(predictions)
|
| 113 |
+
references = np.asarray(references)
|
| 114 |
+
|
| 115 |
+
if ignore_case:
|
| 116 |
+
predictions = np.char.lower(predictions)
|
| 117 |
+
references = np.char.lower(references)
|
| 118 |
+
|
| 119 |
+
if ignore_punctuation:
|
| 120 |
+
repl_table = string.punctuation.maketrans("", "", string.punctuation)
|
| 121 |
+
predictions = np.char.translate(predictions, table=repl_table)
|
| 122 |
+
references = np.char.translate(references, table=repl_table)
|
| 123 |
+
|
| 124 |
+
if ignore_numbers:
|
| 125 |
+
repl_table = string.digits.maketrans("", "", string.digits)
|
| 126 |
+
predictions = np.char.translate(predictions, table=repl_table)
|
| 127 |
+
references = np.char.translate(references, table=repl_table)
|
| 128 |
+
|
| 129 |
+
score_list = predictions == references
|
| 130 |
|
| 131 |
+
return {"exact_match": np.mean(score_list)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|