Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer | |
| from diffusers import DDPMWuerstchenScheduler, StableCascadeDecoderPipeline | |
| from diffusers.models import StableCascadeUNet | |
| from diffusers.pipelines.wuerstchen import PaellaVQModel | |
| from diffusers.utils.testing_utils import ( | |
| enable_full_determinism, | |
| load_numpy, | |
| load_pt, | |
| numpy_cosine_similarity_distance, | |
| require_torch_gpu, | |
| skip_mps, | |
| slow, | |
| torch_device, | |
| ) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from ..test_pipelines_common import PipelineTesterMixin | |
| enable_full_determinism() | |
| class StableCascadeDecoderPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
| pipeline_class = StableCascadeDecoderPipeline | |
| params = ["prompt"] | |
| batch_params = ["image_embeddings", "prompt", "negative_prompt"] | |
| required_optional_params = [ | |
| "num_images_per_prompt", | |
| "num_inference_steps", | |
| "latents", | |
| "negative_prompt", | |
| "guidance_scale", | |
| "output_type", | |
| "return_dict", | |
| ] | |
| test_xformers_attention = False | |
| callback_cfg_params = ["image_embeddings", "text_encoder_hidden_states"] | |
| def text_embedder_hidden_size(self): | |
| return 32 | |
| def time_input_dim(self): | |
| return 32 | |
| def block_out_channels_0(self): | |
| return self.time_input_dim | |
| def time_embed_dim(self): | |
| return self.time_input_dim * 4 | |
| def dummy_tokenizer(self): | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| return tokenizer | |
| def dummy_text_encoder(self): | |
| torch.manual_seed(0) | |
| config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| projection_dim=self.text_embedder_hidden_size, | |
| hidden_size=self.text_embedder_hidden_size, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| ) | |
| return CLIPTextModelWithProjection(config).eval() | |
| def dummy_vqgan(self): | |
| torch.manual_seed(0) | |
| model_kwargs = { | |
| "bottleneck_blocks": 1, | |
| "num_vq_embeddings": 2, | |
| } | |
| model = PaellaVQModel(**model_kwargs) | |
| return model.eval() | |
| def dummy_decoder(self): | |
| torch.manual_seed(0) | |
| model_kwargs = { | |
| "in_channels": 4, | |
| "out_channels": 4, | |
| "conditioning_dim": 128, | |
| "block_out_channels": [16, 32, 64, 128], | |
| "num_attention_heads": [-1, -1, 1, 2], | |
| "down_num_layers_per_block": [1, 1, 1, 1], | |
| "up_num_layers_per_block": [1, 1, 1, 1], | |
| "down_blocks_repeat_mappers": [1, 1, 1, 1], | |
| "up_blocks_repeat_mappers": [3, 3, 2, 2], | |
| "block_types_per_layer": [ | |
| ["SDCascadeResBlock", "SDCascadeTimestepBlock"], | |
| ["SDCascadeResBlock", "SDCascadeTimestepBlock"], | |
| ["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"], | |
| ["SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"], | |
| ], | |
| "switch_level": None, | |
| "clip_text_pooled_in_channels": 32, | |
| "dropout": [0.1, 0.1, 0.1, 0.1], | |
| } | |
| model = StableCascadeUNet(**model_kwargs) | |
| return model.eval() | |
| def get_dummy_components(self): | |
| decoder = self.dummy_decoder | |
| text_encoder = self.dummy_text_encoder | |
| tokenizer = self.dummy_tokenizer | |
| vqgan = self.dummy_vqgan | |
| scheduler = DDPMWuerstchenScheduler() | |
| components = { | |
| "decoder": decoder, | |
| "vqgan": vqgan, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "scheduler": scheduler, | |
| "latent_dim_scale": 4.0, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| inputs = { | |
| "image_embeddings": torch.ones((1, 4, 4, 4), device=device), | |
| "prompt": "horse", | |
| "generator": generator, | |
| "guidance_scale": 2.0, | |
| "num_inference_steps": 2, | |
| "output_type": "np", | |
| } | |
| return inputs | |
| def test_wuerstchen_decoder(self): | |
| device = "cpu" | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| output = pipe(**self.get_dummy_inputs(device)) | |
| image = output.images | |
| image_from_tuple = pipe(**self.get_dummy_inputs(device), return_dict=False) | |
| image_slice = image[0, -3:, -3:, -1] | |
| image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] | |
| assert image.shape == (1, 64, 64, 3) | |
| expected_slice = np.array([0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 0.0]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 | |
| def test_inference_batch_single_identical(self): | |
| self._test_inference_batch_single_identical(expected_max_diff=1e-2) | |
| def test_attention_slicing_forward_pass(self): | |
| test_max_difference = torch_device == "cpu" | |
| test_mean_pixel_difference = False | |
| self._test_attention_slicing_forward_pass( | |
| test_max_difference=test_max_difference, | |
| test_mean_pixel_difference=test_mean_pixel_difference, | |
| ) | |
| def test_float16_inference(self): | |
| super().test_float16_inference() | |
| def test_stable_cascade_decoder_prompt_embeds(self): | |
| device = "cpu" | |
| components = self.get_dummy_components() | |
| pipe = StableCascadeDecoderPipeline(**components) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| image_embeddings = inputs["image_embeddings"] | |
| prompt = "A photograph of a shiba inu, wearing a hat" | |
| ( | |
| prompt_embeds, | |
| prompt_embeds_pooled, | |
| negative_prompt_embeds, | |
| negative_prompt_embeds_pooled, | |
| ) = pipe.encode_prompt(device, 1, 1, False, prompt=prompt) | |
| generator = torch.Generator(device=device) | |
| decoder_output_prompt = pipe( | |
| image_embeddings=image_embeddings, | |
| prompt=prompt, | |
| num_inference_steps=1, | |
| output_type="np", | |
| generator=generator.manual_seed(0), | |
| ) | |
| decoder_output_prompt_embeds = pipe( | |
| image_embeddings=image_embeddings, | |
| prompt=None, | |
| prompt_embeds=prompt_embeds, | |
| prompt_embeds_pooled=prompt_embeds_pooled, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| negative_prompt_embeds_pooled=negative_prompt_embeds_pooled, | |
| num_inference_steps=1, | |
| output_type="np", | |
| generator=generator.manual_seed(0), | |
| ) | |
| assert np.abs(decoder_output_prompt.images - decoder_output_prompt_embeds.images).max() < 1e-5 | |
| def test_stable_cascade_decoder_single_prompt_multiple_image_embeddings(self): | |
| device = "cpu" | |
| components = self.get_dummy_components() | |
| pipe = StableCascadeDecoderPipeline(**components) | |
| pipe.set_progress_bar_config(disable=None) | |
| prior_num_images_per_prompt = 2 | |
| decoder_num_images_per_prompt = 2 | |
| prompt = ["a cat"] | |
| batch_size = len(prompt) | |
| generator = torch.Generator(device) | |
| image_embeddings = randn_tensor( | |
| (batch_size * prior_num_images_per_prompt, 4, 4, 4), generator=generator.manual_seed(0) | |
| ) | |
| decoder_output = pipe( | |
| image_embeddings=image_embeddings, | |
| prompt=prompt, | |
| num_inference_steps=1, | |
| output_type="np", | |
| guidance_scale=0.0, | |
| generator=generator.manual_seed(0), | |
| num_images_per_prompt=decoder_num_images_per_prompt, | |
| ) | |
| assert decoder_output.images.shape[0] == ( | |
| batch_size * prior_num_images_per_prompt * decoder_num_images_per_prompt | |
| ) | |
| def test_stable_cascade_decoder_single_prompt_multiple_image_embeddings_with_guidance(self): | |
| device = "cpu" | |
| components = self.get_dummy_components() | |
| pipe = StableCascadeDecoderPipeline(**components) | |
| pipe.set_progress_bar_config(disable=None) | |
| prior_num_images_per_prompt = 2 | |
| decoder_num_images_per_prompt = 2 | |
| prompt = ["a cat"] | |
| batch_size = len(prompt) | |
| generator = torch.Generator(device) | |
| image_embeddings = randn_tensor( | |
| (batch_size * prior_num_images_per_prompt, 4, 4, 4), generator=generator.manual_seed(0) | |
| ) | |
| decoder_output = pipe( | |
| image_embeddings=image_embeddings, | |
| prompt=prompt, | |
| num_inference_steps=1, | |
| output_type="np", | |
| guidance_scale=2.0, | |
| generator=generator.manual_seed(0), | |
| num_images_per_prompt=decoder_num_images_per_prompt, | |
| ) | |
| assert decoder_output.images.shape[0] == ( | |
| batch_size * prior_num_images_per_prompt * decoder_num_images_per_prompt | |
| ) | |
| class StableCascadeDecoderPipelineIntegrationTests(unittest.TestCase): | |
| def setUp(self): | |
| # clean up the VRAM before each test | |
| super().setUp() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def tearDown(self): | |
| # clean up the VRAM after each test | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_stable_cascade_decoder(self): | |
| pipe = StableCascadeDecoderPipeline.from_pretrained( | |
| "stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.bfloat16 | |
| ) | |
| pipe.enable_model_cpu_offload() | |
| pipe.set_progress_bar_config(disable=None) | |
| prompt = "A photograph of the inside of a subway train. There are raccoons sitting on the seats. One of them is reading a newspaper. The window shows the city in the background." | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| image_embedding = load_pt( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_cascade/image_embedding.pt" | |
| ) | |
| image = pipe( | |
| prompt=prompt, | |
| image_embeddings=image_embedding, | |
| output_type="np", | |
| num_inference_steps=2, | |
| generator=generator, | |
| ).images[0] | |
| assert image.shape == (1024, 1024, 3) | |
| expected_image = load_numpy( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_cascade/stable_cascade_decoder_image.npy" | |
| ) | |
| max_diff = numpy_cosine_similarity_distance(image.flatten(), expected_image.flatten()) | |
| assert max_diff < 1e-4 | |